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Abstract

Lanthipeptides are ribosomally synthesized and posttranslationally modified peptide natural 

products characterized by the presence of lanthionine and methyllanthionine crosslinked amino 

acids formed by dehydration of Ser/Thr residues followed by conjugate addition of Cys onto 

the resulting dehydroamino acids. Class I lanthipeptide dehydratases utilize glutamyl-tRNAGlu 

as a cosubstrate to glutamylate Ser/Thr followed by glutamate elimination. The vast majority of 

lanthipeptides identified from class I synthase systems have been from Gram-positive bacteria. 

Herein, we report the heterologous expression and modification in Escherichia coli of two 

lanthipeptides from the Gram-negative Bacteroidetes Pedobacter lusitanus NL19. These peptides 

are representative of a group of compounds frequently encoded in Pedobacter genomes. Structural 

characterization of the lanthipeptides revealed a novel ring pattern as well as an unusual LL-

lanthionine stereochemical configuration and a cyclase that lacks the canonical zinc ligands found 

in most LanC enzymes.

Graphical Abstract

§These authors contributed equally to this work

Associated Content:
The Supporting Information, which includes materials, methods, supplemental tables and figures, is available free of charge at https://
pubs.acs.org

HHS Public Access
Author manuscript
ACS Chem Biol. Author manuscript; available in PMC 2023 January 17.

Published in final edited form as:
ACS Chem Biol. 2021 June 18; 16(6): 1019–1029. doi:10.1021/acschembio.1c00106.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://pubs.acs.org/
https://pubs.acs.org/


Introduction

Ribosomally synthesized and posttranslationally modified peptides (RiPPs) encompass a 

rapidly expanding class of natural products.1 RiPPs are biosynthesized from a genetically 

encoded precursor peptide, which contains an N-terminal leader peptide and a C-terminal 

core peptide. This precursor peptide is acted upon by an array of enzymes, typically encoded 

within the same biosynthetic gene cluster (BGC), that often bind to the leader peptide region 

and chemically modify the core peptide.1, 2 The recent expansion of characterized RiPPs is 

fueled by the ever-increasing availability of genomic data and by synthetic biology methods 

to access compounds by heterologous production.1, 3, 4

One of the most extensively studied classes of RiPPs is the lanthipeptides, which are 

characterized by the presence of lanthionine (Lan) and methyllanthionine (MeLan) residues 

that result in complex polycyclic peptide structures that may be further tailored with 

additional posttranslational modifications.5, 6 The (Me)Lan cross-links can be installed by 

one of five classes of lanthipeptide synthase systems (class I-V), which first dehydrate 

target Ser and Thr residues in the core peptide to generate dehydroalanine (Dha) and 

dehydrobutyrine (Dhb).5, 7–9 Cysteine residues located in the core peptide then react with 

these dehydrated residues via intramolecular Michael-type addition to form the thioether 

rings.

Class I lanthipeptide biosynthetic machinery is generally composed of a LanB dehydratase, 

which is responsible for activation and elimination of the side chain hydroxyl groups of 

Ser and Thr residues,10 and a LanC cyclase that is responsible for thioether formation.11 

LanB dehydratases utilize glutamyl-tRNAGlu to first glutamylate the side chains of target 

Ser/Thr prior to glutamate elimination (Figure 1A).12, 13 Understanding of this unusual 

transformation has been enhanced through biochemical, crystallographic, microscopy, and 

bioinformatics studies,14–21 which in turn have facilitated exploration of the chemical 

space of lanthipeptides produced from class I BGCs by heterologous expression strategies. 

The overwhelming majority of class I lanthipeptides isolated to date are derived from 

BGCs from Gram-positive bacteria (predominantly Firmicutes and Actinobacteria).22–26 

However, surveys of genomic data have revealed that Gram-negative phyla (Bacteroidetes, in 

particular) contain a wealth of under-explored LanB-containing BGCs.26, 27 As such, these 

BGCs represent a potential source of lanthipeptides containing novel chemical structures 

and bioactivities. This potential is highlighted by the characterization of the pinensins from 

the Bacteroidetes Chitinophaga pinensis, which are the first reported lanthipeptides that 

exhibit antifungal activity.28

An example of the untapped abundance and diversity of class I lanthipeptides is illustrated 

by genomic analysis of Pedobacter lusitanus NL19, a Bacteroidetes originally isolated 

from depleted uranium mine runoff.29 This strain was shown to encode at least five 

class I lanthipeptide BGCs with potentially novel lanthionine topologies based on the 

putative precursor peptide sequences.27 Herein we describe the heterologous expression 

and structural characterization of two novel lanthipeptides from this strain. The precursor 

peptide-encoding genes pedA15.1 and pedA15.2 were identified previously within a 

single BGC (Figure 1B) that also encodes a putative class I dehydratase (PedB15) and 
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cyclase (PedC15). They were chosen for study as representative members of a group 

of lanthipeptides encoded in Bacteroidetes that have no sequence similarity with known 

compounds. In the current study, coexpression of these components in E. coli resulted 

in full modification of the precursor peptides only if glutamyl-tRNA synthetase (GluRS) 

and tRNAGlu from P. lusitanus were co-expressed. Structural analysis of the product 

revealed a hitherto uncharacterized Lan pattern as determined by mass spectrometry and 

NMR spectroscopy. This ring pattern appears common in Pedobacter. Interestingly, while 

the dehydratase contained all of the requisite catalytic residues, a sequence alignment of 

the PedC15 cyclase and its orthologs in Pedobacter with previously known lanthipeptide 

cyclases demonstrates the absence of a canonical zinc-binding site.30–32 Despite this 

absence, the PedA15 peptides were fully cyclized whereas cyclization was incomplete in 

the absence of the PedC15 cyclase. Most structurally characterized lanthipeptides have been 

shown to contain (methyl)lanthionine in the DL-configuration (D at the α-carbon that used 

to be Ser/Thr, and L on the α-carbon that used to be Cys).33 For some lanthipeptides, the 

stereochemical outcome of the cyclization reaction is influenced by the substrate sequence 

itself and leads to (methyl)lanthionines in the LL-configuration.34 Given the previous 

reports of substrate control over the stereochemical outcomes of lanthionine formation,35 

the stereochemistry of the lanthionine products from the Pedobacter BGC was analyzed 

demonstrating that both PedA15 peptides contain lanthionine residues with the uncommon 

LL-stereochemical configuration.

Results and Discussion

Heterologous Expression of PedA15.1 and PedA15.2.

Previous studies did not succeed in eliciting production of the lanthipeptides encoded 

in the BGCs in Pedobacter lusitanus NL19.27, 36 Therefore in this work we focused on 

heterologous expression in E. coli (Figure S1).37–40 We chose the Ped15 BGC because of 

the unusual features mentioned above. Comparison of related BGCs from other Pedobacter 
strains (Figure S2) suggests that the cluster shown in Figure 1B contains the minimal genes 

required for biosynthesis. The two precursor peptides PedA15.1 and PedA15.2 both contain 

leader peptides ending in a characteristic double Gly motif (Figure 1B) consistent with the 

presence of a gene encoding an ABC transporter with a C-terminal C39 protease domain 

that typically removes this family of leader peptides.41 The sequences of the core peptides 

of PedA15.1 and PedA15.2 are quite different although they do share similar potential ring-

forming motifs (Figure 1B). The discovery that LanB dehydratases utilize tRNAGlu to carry 

out dehydration of LanA precursor peptides has greatly facilitated heterologous expression 

strategies. Inclusion of the aminoacyl tRNA synthetase gene and an appropriate tRNA 

isoacceptor from the species of origin often considerably improves production of the fully 

modified natural product.14, 15 The improved activity of the LanB dehydratases is likely due 

to the high degree of conservation in tRNA sequences within phyla and the likelihood that 

LanB enzymes have coevolved to recognize specific tRNAs based on nucleotide sequence 

in the species of origin. In keeping with these observations, our initial attempts to obtain 

modified His6-tagged PedA15.1 and PedA15.2 through coexpression with PedB15 and 

PedC15 in E. coli were unsuccessful, resulting in minimally dehydrated peptides (Figure 

2A). This poor activity of PedB15 with the glutamyl-tRNA of E. coli is likely the result 
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of differences in the tRNAGlu discriminator-base sequence between E. coli and P. lusitanus 
NL19 (Figure 2B),15 and not because of non-functionality of the enzyme, which contains 

all previously identified catalytic residues (Figure 1C). Indeed, the degree of dehydration 

of both precursor peptides improved greatly when P. lusitanus GluRS and tRNAGlu were 

coexpressed with the lanthionine synthase machinery (Figure 2C). Whereas no dehydration 

was observed in the presence of endogenous E. coli tRNAGlu, four to five dehydrations 

were observed with PedA15.1 when using GluRS/tRNAGlu from P. lusitanus NL19. Since 

the core peptide of PedA15.1 contains six Ser/Thr residues, some Ser/Thr residues escape 

dehydration. With PedA15.2, up to four dehydrations were observed indicating all four 

Ser/Thr in the core peptide were enzymatically modified.

The degree of cyclization in the purified peptides was examined using an N-ethylmaleimide 

(NEM) alkylation assay that probes for free cysteine within the core peptide region.42 

Modified PedA15.1 that had been coexpressed with PedB15, PedC15, and P. lusitanus 
GluRS/tRNAGlu did not react with NEM suggesting it was completely cyclized (Figure 

2C). In contrast, metal affinity and HPLC-purified full-length PedA15.2 obtained from 

co-expression showed partial reactivity towards NEM leading to a minor product with one 

NEM adduct, suggesting the partially cyclized minor peptide contained two of three possible 

lanthionine rings (Figure 2C). This mixture of products could not be separated by HPLC of 

the full-length peptide, but removal of the leader peptide through protease digestion enabled 

removal of the partially modified PedA15.2 product as discussed below.

Proteolytic removal of the leader peptide.

To access the core peptides of PedA15.1 and PedA15.2 for structural analysis, leader peptide 

removal was optimized. Initial attempts made use of the N-terminal C39-protease domain 

of the bifunctional transporter LahT (LahT150), which was previously demonstrated to be 

highly substrate tolerant toward a variety of lanthipeptide precursor peptides containing the 

conserved GG motif of Nif11-family leader peptides.43–45 Leader peptide removal with 

LahT150 was only observed in the case of PedA15.2 (Figure 3B, Figure S3). No proteolysis 

was observed in the case of PedA15.1, even though it contains the conserved amino acid 

sequence within the leader region (L-12, L-7, L-4, G-2, G-1) that has been previously shown 

to constitute the recognition motif for LahT150 and related proteases (Figure S3).45–47 

The residue at the P1’ position of PedA15.1 is Lys and it is possible that the positively 

charged side chain interferes with LahT150 recognition since none of the nine cognate 

LahA substrates has a positive charge at position P1’.45 A second clear difference between 

PedA15.1 and 15.2 near the leader peptide cleavage site is the Glu at position P2 in the 

former, which is a Tyr in the latter (Figure 1B). The Glu may prevent cleavage as this residue 

is an Ala in all LahA substrates, but a previous mutagenesis study on LahA peptides showed 

that mutation to Glu was tolerated by LahT150. Regardless, an alternative approach was 

adopted and endoproteinase LysN was effective at removing the leader peptide of PedA15.1 

(Figure 3A). Antimicrobial activity assays against a panel of bacteria and fungi did not result 

in any detectable activity for either modified core peptide or their combination (Table S3).

For most lanthipeptides containing a Gly-Gly motif leader peptide, cleavage with the C39 

protease domain of the transporter provides the mature natural product. However, for a 
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subset of compounds, such as the enterococcal cytolysin, haloduracin, lichenicidin, pinensin, 

carnolysin and bicereucin a short N-terminal segment of the core peptide-region is removed 

as part of a second proteolytic event by a protease that is not always encoded in the 

BGC.28, 40, 48–55 Since the products of the ped15 BGC have not been isolated from 

the native organism,36 it is not known whether such proteolysis occurs during PedA15 

precursor maturation. To explore this possibility and access the potential products of such 

a modification, PedBC-modified PedA15.1 and PedA15.2 were treated with aminopeptidase 

following initial leader peptide removal at the Gly-Gly motif using LahT150 or LysN as 

described above (Figure 3A, 3B). Such treatment resulted in the removal of the N-terminal 

6–7 amino acids following the GlyGly sequence, with aminopeptidase activity terminating at 

the first lanthionine rings in both peptides. Unfortunately, no antimicrobial activity for these 

peptides, individually or in combination, could be observed against any of the bacterial or 

fungal strains tested (Table S3).

MS/MS and analysis of lanthionine pattern by mutational analysis.

The PedA peptides do not have any clear sequence homology with characterized 

lanthipeptides.26 However, analogous peptides are encoded in other Bacteroidetes (Figure 

4D). Given the potential for novel ring patterns with the PedA15 peptides, we initially tried 

to determine their structures using a combination of tandem mass spectrometry (MS/MS) 

and mutational analysis. Modified wild-type PedA15.1 and PedA15.2 core peptides were 

first purified by HPLC. For wild-type PedA15.1, upon leader peptide removal five- and 

fourfold dehydrated core peptide was isolated (Figure 3A). NEM assay of the purified 

core peptide confirmed the previous results on full-length peptide that PedA15.1 was 

fully cyclized, regardless of the dehydration state (Figure S4A). In the case of wild-type 

PedA15.2, the mixture of fully and partially modified core peptides were separable by 

HPLC. This procedure provided access to a four-fold dehydrated and fully-cyclized core 

peptide and a three-fold dehydrated core peptide lacking one of its three possible lanthionine 

rings, as determined by NEM assay (Figure S4B). Determination of the residues involved 

in Lan/MeLan formation can sometimes be achieved by site-directed mutagenesis. However, 

alanine scanning of potential ring forming residues in PedA15.1 still resulted in fully 

cyclized peptide as well as buildup of undesired glutathionylated peptide adducts formed 

in E. coli, suggestive of alternate topologies for alanine variants and making structural 

assessment by this approach impossible (Figure S5).

Analysis of the isolated core peptide of PedA15.1 by MS/MS provided mass fragments 

(Figures S6, S8) consistent with a lack of dehydration at Ser26 (counting from the 

Gly-Gly leader peptide-removal site). Having ruled out this residue as being involved in 

ring formation, further analysis indicated no fragmentation between Ser7 and Cys21. As 

fragmentation is generally not observed within (Me)Lan rings, these data suggest that the 

three possible rings formed in this peptide must be confined within the Ser7 to Cys21 

region. Likewise, fully modified PedA15.2 showed a lack of fragmentation within the 

putative lanthionine formation region (Figures S7, S9). However, MS/MS analysis of a 

three-fold-dehydrated and partially cyclized PedA15.2 core peptide (Figure S4B) isolated 

after HPLC purification revealed a characteristic y12 ion, suggesting that the missing ring in 

this intermediate involves Cys19 (Figure S10).
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Given these observations and the similarities in the precursor sequences, we surmised that 

maturation likely yields similar overlapping or nested ring topologies confined between 

Ser7 and Cys16 in PedA15.1 and Ser8 and Cys16 in PedA15.2. Given the potential for 

multiple different ring topologies within this sequence window, we could not determine the 

exact structures of the final product through MS/MS analysis of the WT peptides alone. 

Therefore, we elucidated the structure of the PedA15.1 peptide by 2D NMR spectroscopy 

and stereochemical analysis.

NMR analysis of cyclized PedA15.1.

NMR analysis was carried out on a core fragment obtained by trypsin digestion of PedBC-

modified PedA15.1 and subsequent HPLC purification. The fragment was predominantly 

composed of four-fold dehydrated core peptide with also some 5-fold dehydrated peptide 

and the spectra were acquired in DMSO-d6 at 37 °C. Analysis of TOCSY data identified 

32 spins systems attributed to the 33-mer core peptide (Figure S11; Table S4). Subsequent 

NOESY analysis allowed assignment confirmation by cross-peak correlation with TOCSY 

α-proton signals (Figure S12). Lanthionine cross-links were then identified by nuclear 

Overhauser effects (NOEs) observed between methylene protons across the thioether linkage 

(-CH2-S-CH2-), allowing for correlation of the otherwise distinct TOCSY spin systems 

of lanthionine. By this approach three lanthionine linkages were identified, with the first 

between Dha7 (formerly Ser7) and Cys16. The second ring was nested within the first ring, 

with lanthionine formation between Cys8 and Dha15 (formerly Ser15). The final ring was 

located between Dha18 (formerly Ser18) and Cys21 (Figure 4). The lanthionines between 

Ser7/Cys16 and Cys8/Ser15 result in formation of an unusual lanthipeptide ring pattern 

that has not been observed in previously characterized family members (Figure 4B). This 

motif results in the formation of a 14-membered bis-lanthionine ring moiety composed of 

two directly adjacent lanthionine residues (Figure 4C). Importantly, this motif is highly 

conserved in a family of lanthipeptides encoded predominantly in the genus Pedobacter 
(Figure 4D and S12). The NMR data also clearly showed that Thr10 had been converted into 

Dhb, and that Ser26 escapes dehydration, consistent with the MS/MS fragmentation data 

(Figure S8). The signals of the 4-fold dehydrated peptide in the sample were too weak to 

assign its structure, but the data did reveal that Ser12 escaped dehydration whereas the rings 

were still formed in this minor product, consistent with the NEM assays.

Stereochemical analysis of the modified PedA15 peptides.

Gas chromatography-mass spectrometry (GC-MS) analysis with a chiral stationary phase56 

was performed next on derivatized peptide hydrolysate to ascertain the stereochemical 

configuration of the cross-linked residues within cyclized PedA15 peptides and to support 

the conclusions of the NMR assignments and MS/MS fragmentation data. This analysis 

revealed that modified PedA15.1 and PedA15.2 both contained lanthionines, with no 

evidence of methyllanthionine present in either peptide. This finding is in agreement with 

the NMR data indicating that Thr10 in PedA15.1 had been dehydrated but not cyclized 

(Figures 4, 5; Table S4). Interestingly, co-injection with synthetic standards revealed the 

presence of lanthionine in both the LL- and DL-configuration. Integration of the relative 

peak areas of lanthionine isomers revealed that the relative stoichiometry of LL-lanthionine 

to DL-lanthionine was approximately 2:1 in both modified PedA15.1 and PedA15.2 peptides 
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(Figure 5A). The LL-stereochemistry for (methyl)lanthionine in lanthipeptides is usually 

confined to ring formation from DhxDhxXxxXxxCys sequences (Dhx = Dha or Dhb) in 

class II lanthipeptides.34, 35, 54, 57 The only example thus far of LL-stereochemistry that 

is not derived from such a sequence has been reported for a class I lanthipeptide from 

Streptomyces olivaceus NRRL B-3009.58 This latter peptide has no sequence similarity with 

the PedA15 peptides.

We next determined the location of the LL-lanthionine linkages in the modified PedA15.1 

peptide by analysis of Ser-to-Thr variants in the core-peptide. As neither wild-type PedA15 

peptide contains methyllanthionine, Ser-to-Thr mutation of ring-forming residues should 

introduce a single MeLan into the molecule, the stereochemistry of which can then be 

identified by GC-MS analysis. As this substitution would represent a minimal structural 

alteration of the overall peptide (one additional methyl group), we hypothesized that it 

would not alter the overall ring pattern and thus allow us to infer the stereochemistry of 

individual crosslinks by accounting for the previously observed DL-/LL-Lan stoichiometry 

in the wild-type peptide (Figure 5A). Following this approach, complete cyclization of 

individual Ser-to-Thr variants after co-expression was first confirmed by NEM assay and 

MALDI-TOF MS analysis (Figure S14). Subsequent hydrolysis, derivatization of the amino 

acids, and analysis by GC-MS indicated the presence of DL-MeLan upon introduction 

of the Ser18Thr mutation (Figure 5B). Complementary analysis of lanthionine in this 

sample showed only LL-lanthionine. Thus, we infer that the DL-Lan observed in wild-type 

PedA15.1 must be associated with the ring formed between Cys21 and Dha18. Using this 

same strategy, we were able to show that Ser-to-Thr mutation at positions 7 and 15 resulted 

in the formation of solely LL-MeLan (Figure 5C, 5D). Analysis of lanthionine from both 

the Ser7Thr and Ser15Thr variants indicated an approximately 1:1 ratio of LL- to DL-Lan 

(down from 2:1 LL- to DL-Lan observed in wild-type peptide). Thus, the Lan linkages 

formed between Cys8 and Dha15 and between Cys16 and Dha7 are formed with LL-Lan 

stereochemistry in the wild-type PedA15.1 peptide.

Collectively, the data indicate that the most C-terminal ring (between Dha18 and Cys21) 

formed in PedA15.1 is in the DL-Lan conformation, whereas the two remaining lanthionine 

residues that form the unusual 14-membered intertwined ring-system are both in the LL-Lan 

configuration (Figure 4C). These observations suggest that the LL-configuration, which until 

recently was thought to be accessed only in very special cases for class II lanthipeptides 

where even non-enzymatic cyclization gives the LL-stereochemistry,59 may be more 

common than anticipated and demonstrates the importance of stereochemical investigations 

of new lanthipeptides. Furthermore, the number of systems in which a single cyclase makes 

rings of both LL and DL stereochemistry is increasing and provides additional support for 

a model in which the substrate sequence determines the stereochemical outcome of the 

cyclization process.60

PedC is required for efficient cyclization

NEM alkylation assays show that both modified PedA15 peptides are only partially cyclized 

when the cyclase PedC15 is not coexpressed (Figures S15–S16). In addition, glutathione 

adducts are observed in these peptides now that a subset of dehydroamino acids have 
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not reacted with Cys residues. This finding suggests that despite the absence of the 

conserved zinc-binding residues in PedC15 that are essential for cyclization in other class 

I lanthipeptide cyclases (Figure 1C),32, 61, 62 PedC15 is important for cyclization. How 

this enzymatic control over cyclization is achieved without the canonical Zn2+ ligands will 

be an interesting topic for future mechanistic studies. We note that nearly all the LanC 

cyclases associated with PedA15-like precursors lack the canonical zinc binding ligands 

(Figure S17), but they all contain the His that is believed to protonate the enolate.61, 63 The 

absence of a Zn2+ site in lanthipeptide cyclases is increasingly reported for other classes of 

lanthipeptides, but no information on the molecular mechanisms used by these cyclases is 

currently available.7, 64

Conclusion

Herein, we report the heterologous expression and structural characterization of two 

lanthipeptides from Pedobacter lusitanus NL19. Our data indicate that expression of the 

ped15 biosynthetic machinery in E. coli produces modified peptides only if the tRNAGlu 

and GluRS from the native producer are coexpressed. Such recognition of only the 

cognate glutamyl-tRNA from the producing organisms by the LanB dehydratase had 

previously been shown for the Actinobacteria Microbispora sp. 107891 and Thermobispora 
bispora,14, 15 whereas LanB enzymes from the Firmicutes Lactococcus lactis and 

Geobacillus thermodenitrificans NG80–2 accepted glutamyl-tRNA from E. coli.13, 65 Thus, 

like the investigated enzymes from Actinobateria, the LanB of the Bacteroidetes P. lusitanus 
is also highly selective for its cognate tRNA. This observation is important for future 

synthetic biology studies to uncover the diverse lanthipeptides encoded in the BGCs from 

this phylum.26

The PedA15.1 product contains a novel ring pattern consisting of a 14-membered bis-

lanthionine moiety, as indicated by MS/MS and NMR structure determination. Based on 

MS/MS data, GC-MS analysis, and sequence similarity, the PedA15.2 peptide is very likely 

to contain this same structure, and this pattern appears well-conserved in lanthipeptides 

encoded in Pedobacter and related Bacteroidetes. In addition, chiral GC-MS analysis 

demonstrated that both Lan components of this 14-membered bis-lanthionine ring system 

possess the uncommon LL-Lan configuration.

At present we have not detected bioactivity in our preliminary screening for antimicrobial 

and antifungal activity of the modified core peptides. It is possible that we screened 

organisms that are not targeted by the compounds, or that the N-termini of the natural 

products do not correspond to the two sites of leader peptide removal we explored 

herein (after the GlyGly motif or right before the first lanthionine). The conservation 

of the ring pattern in multiple organisms strongly suggests that these peptides have a 

beneficial function for their hosts. We therefore cannot rule out that these compounds have 

other, non-antimicrobial activities, such as reported for the morphogenic lanthipeptides 

SapB and SapT,66, 67 or the anti-allodynic labyrinthopeptins.68 The potential need for 

other post-translational modifications to impart activity is not supported by the collective 

BGCs, which do not show any other conserved genes (Figure S2), but since modification 

enzymes are sometimes encoded remotely,1, 43, 69–71 we cannot completely rule out 
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this possibility. These observations highlight both the challenges of a genome mining 

strategy that prioritizes lanthipeptide precursor peptides that are as different as possible 

from previously characterized family members, and the opportunities for discovering new 

functions of natural products in microbial ecology. Indeed, only a subset of lanthipeptides 

identified thus far by genome mining have identifiable bioactivities and this subset has often 

consisted of structural analogs of known lantibiotics,51, 52, 65, 72–76 whereas many others 

with novel ring patterns are still awaiting identification of their functions.58, 65, 69, 70, 77–80 

Historically natural products with antimicrobial activity have been prioritized for their 

potential application as therapeutics, but the RiPPs now discovered by genome mining 

provide the opportunity to learn more about chemical ecology in the microbial world.81–84

Materials and Methods:

A detailed description of all materials and methods used in this work is provided in the 

Supporting Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Class I lanthipeptide biosynthesis in Pedobacter lusitanus NL19.
(A) Schematic overview of (methyl)lanthionine formation by class I lanthipeptide synthases. 

(B) Ped15 biosynthetic gene cluster and the precursor peptides examined in this study. Red, 

precursor peptides; Blue, transport; Olive, core biosynthetic machinery; Green, regulatory 

proteins. N/A no annotation. BGC components visualized using the Gene Graphics web 

tool.85 Previously identified recognition motif for LahT150 is shown in bold. (C) Sequence 

conservation of catalytic residues in the core biosynthetic enzymes of the Ped15 biosynthetic 

gene cluster. Key catalytic residues are highlighted in blue (LanBs) and red (LanC’s) and are 

labeled according to their proposed mechanistic role.
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Figure 2. Heterologous expression of modified PedA15 peptides in E. coli and analysis by 
MALDI-TOF MS.
(A) Coexpression in E. coli BL21 (DE3) of PedA15 precursor peptides, PedB15 and 

PedC15 in the absence of P. lusitanus tRNAGlu/GluRS. Both PedA15.1 (left; avg. m/z 

8687.7 calc.; 8686.6 obs.) and PedA15.2 (right; avg. m/z 8085.0 calc.; 8085.4 obs.) were 

unmodified in the absence of aminoacyl-tRNA from the native producer. Consequently, 

NEM treatment of these samples resulted in full alkylation of all Cys residues (grey spectra). 

(B) Comparison of tRNAGlu sequences in E. coli (Proteobacterium) and P. lusitanus NL19 

(Bacteroidetes). The anticodon is denoted in subscript. Nucleotide positions previously 

shown to be important for LanB compatibility are in bold.15 (C) PedA15 precursor peptides 

co-expressed with PedB15, PedC15 and P. lusitanus tRNAGlu/GluRS. Isolated product for 

PedA15.1 (left) contained a mixture of 4x (avg. m/z 8615.7 calc.; 8615.8 obs.) and 5x 

(avg. m/z 8597.6 calc.; 8597.0 obs.) dehydrated peptide and was fully cyclized as evidenced 

by a lack of NEM alkylation. PedA15.2 (right) was purified as a mixture of 3x (avg. m/z 

8030.9 calc.; 8030.5 obs.) and 4x dehydrated (avg. m/z 8012.9 calc.; 8012.7 obs.) peptide, 

with a minor amount of partially cyclized peptide product observed by NEM alkylation. M, 

parental mass (avg. m/z, unmodified peptide); NEM, N-ethylmaleimide (grey traces); “-n” 

H2O, indicates the number (n) of dehydrations consistent with the m/z of the labeled peak.
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Figure 3. 
Isolation and analysis of modified PedA15 core peptides by mass spectrometry. (A) 

Proteolytic digestion and MALDI-TOF MS analysis of PedA15.1 core peptide fragments. 

Modified PedA15.1 peptide was treated with LysN and analyzed (top; 5x dehydrated, 

[M+H] mono. m/z 3578.9 calc.; 3578.5 obs.) followed by aminopeptidase treatment 

and analysis by MALDI-TOF MS (bottom; 5x dehydrated, [M+H] mono. m/z 2855.2 

calc.; 2855.5 obs.). (B) Analysis of PedA15.2 core peptide fragments generated through 

proteolysis. Modified PedA15.2 was treated with LahT150 and analyzed by MALDI-

TOF MS (top; 4x dehydrated, [M] avg., m/z 2958.2 calc.; 2958.5 obs.) followed by 

aminopeptidase treatment (bottom; 4x dehydrated, [M+H] mono., m/z 2261.9 calc.; 2262.5 

obs.). AP, aminopeptidase.
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Figure 4. NMR analysis of cyclized PedA15.1 core peptide.
(A) 2D-NMR overlay (TOCSY, black; NOESY, teal) of the aliphatic region highlighting 

CH2-S-CH2 intra-bridge correlations used to infer lanthionine ring pattern. Intra-bridge 

NOEs are denoted with black dotted lines. Residues and lanthionine ring systems are color 

coded according to the sequence diagram at the top. The NMR data also showed that the 

difference between 4 and 5-fold dehydrated peptide is at Ser12, and that this residue is not 

involved in ring formation. For full structural assignment data, see Supporting Information. 

(B) Diagram representing the pattern of cyclized PedA15.1 that is dehydrated five times, as 

determined by NMR and MS/MS analysis (C) Representation of the unusual 14-membered 

bis-lanthionine heterocycle identified in the PedA15 peptides. 3D model generated in 

Avogadro86 representing the LL-Lan/LL-Lan stereochemical configuration. (D) Sequence 
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logo for the core peptide of a family of class I lanthipeptide precursor peptides encoded in 

Bacteroidetes. See Figure S13 for individual peptides. The SCXnSC motif (n = 3–6, Fig. 

S13) is highlighted in red and blue.
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Figure 5. Chiral GC-MS analysis of modified PedA15 peptides.
(A) Chiral GC-MS analysis of Ped15B/C-modified PedA15.1 (left) and PedA15.2 (right) 

core peptide fragments. See Materials and Methods for derivatization of the amino acids. 

Relative peak integration ratios for LL- and DL-Lan isomers are shown for each trace. (B) 

Ser-to-Thr mutation at position +18 from the GlyGly site resulted in the production of the 

DL-MeLan diastereomer (left). Lan in this mutant displayed solely the LL-Lan configuration 

(right). (C) Ser-to-Thr mutation at position +15 resulted in the production of the LL-MeLan 

diastereomer (left). Analysis of Lan in this sample revealed an approximately 1:1 ratio 

of DL- to LL-Lan (right). (D) Ser-to-Thr mutation at position +7 also resulted in the 

production of the LL-MeLan diastereomer (left). Analysis of Lan revealed an approximately 

1:1 ratio of DL- to LL-Lan (right). For each set of traces, derivatized samples are shown in 
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black and samples spiked with synthetic standards (DL- or LL-(Me)Lan, as indicated) are 

shown below in dark grey and light grey, respectively. Traces are selected-ion monitoring 

chromatograms for m/z = 365 (Lan) or 379 (MeLan), which correspond to the characteristic 

mass fragment for each derivatized compound. Retention times drift slightly and therefore 

coinjections with authentic standards were used to verify assignments.
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