
Received: 21 September 2022 Revised: 20 December 2022 Accepted: 27 December 2022

DOI: 10.1002/ctm2.1167

REVIEW

Geranylgeranyl diphosphate synthase: Role in human
health, disease and potential therapeutic target

Molly E. Muehlebach1 Sarah A. Holstein2

1Cancer Research Doctoral Program,
University of Nebraska Medical Center,
Omaha, Nebraska, USA
2Department of Internal Medicine,
University of Nebraska Medical Center,
Omaha, Nebraska, USA

Correspondence
SarahA.Holstein,DivisionofOncology
andHematology,Department of Internal
Medicine,University ofNebraskaMedical
Center,Omaha,NE68198,USA.
Email: sarah.holstein@unmc.edu

Graphical Abstract

∙ Geranylgeranyl diphosphate synthase (GGDPS), an enzyme in the isoprenoid
biosynthesis pathway, is responsible for the production of geranylgeranyl
pyrophosphate (GGPP) used for protein geranylgeranylation.

∙ Dysregulation of GGDPS expression and/or activity is implicated in the patho-
physiology of type 2 diabetes, liver disease, pulmonary disease and several
malignancies.

∙ GGDPS inhibitors have promising efficacy in preclinicalmodels ofmalignancy
and pulmonary fibrosis.
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Abstract
Geranylgeranyl diphosphate synthase (GGDPS), an enzyme in the isoprenoid
biosynthesis pathway, is responsible for the production of geranylgeranyl
pyrophosphate (GGPP). GGPP serves as a substrate for the post-translational
modification (geranylgeranylation) of proteins, including those belonging to the
Ras superfamily of small GTPases. These proteins play key roles in signalling
pathways, cytoskeletal regulation and intracellular transport, and in the absence
of the prenylation modification, cannot properly localise and function. Aberrant
expression of GGDPS has been implicated in various human pathologies, includ-
ing liver disease, type 2 diabetes, pulmonary disease and malignancy. Thus, this
enzyme is of particular interest from a therapeutic perspective. Here, we review
the physiological function of GGDPS as well as its role in pathophysiological pro-
cesses. We discuss the current GGDPS inhibitors under development and the
therapeutic implications of targeting this enzyme.

KEYWORDS
geranylgeranyl diphosphate synthase, geranylgeranylation, isoprenoid biosynthesis pathway,
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1 INTRODUCTION

Geranylgeranyl diphosphate synthase (GGDPS) is an
essential enzyme in the isoprenoid biosynthesis pathway
(IBP) (Figure 1). It facilitates the production of the 20-
carbon isoprenoid geranylgeranyl pyrophosphate (GGPP),
which acts as a substrate for the post-translational mod-
ification of proteins (geranylgeranylation) as well as a
precursor of vitamin K2 and ubiquinone. Protein preny-
lation enables proper localisation, and thus function,
of proteins that play key roles in signalling pathways,
cytoskeletal regulation and intracellular transport. While
other reviews have focused on topics such as inhibitors of
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the IBP and protein prenylation, less attention has been
paid to the key roles of GGDPS in human health and dis-
ease and the implications this has for the implementation
of novel therapeutic strategies.
The present review provides a comprehensive overview

and synthesis of the current literature examining the
role of GGDPS in human disease. This review takes a
mechanistic approach, exploring the role of GGDPS in
modulating disease processes such as insulin resistance
and development of type 2 diabetes (T2D), liver disease,
pulmonary disease and others. Also explored are the phar-
macological agents that impact GGDPS activity, as these
agents have not only provided insight into the sequelae of

Clin. Transl. Med. 2023;13:e1167. wileyonlinelibrary.com/journal/ctm2 1 of 23
https://doi.org/10.1002/ctm2.1167

https://orcid.org/0000-0002-9342-5635
mailto:sarah.holstein@unmc.edu
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/ctm2
https://doi.org/10.1002/ctm2.1167


2 of 23 MUEHLEBACH and HOLSTEIN

F IGURE 1 The mammalian isoprenoid biosynthesis pathway. Inhibitors (shown in red) include statins used most commonly for
treatment of hypercholesterolemia, nitrogenous bisphosphonates (NBPs) used for treatment of various bone diseases and GGDPS inhibitors
which have not yet been approved for clinical use.

disrupting GGDPS activity, but also have potential thera-
peutic relevance for a variety of malignancies and other
human diseases.

2 THE IBP

The IBP, also referred to as the mevalonate pathway,
is responsible for the production of all mammalian iso-
prenoids (Figure 1). The pathway begins in the endo-
plasmic reticulum (ER) with the rate-limiting conver-
sion of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-
CoA) to mevalonate via the enzyme HMG-CoA reduc-
tase (HMGCR). Through further phosphorylation and
decarboxylation, mevalonate is converted to isopentenyl
pyrophosphate (IPP). IPP and its isomer dimethylallyl
pyrophosphate (DMAPP) then undergo subsequent con-
densation reactions via farnesyl diphosphate synthase
(FDPS) to form first the 10-carbon geranyl pyrophosphate
(GPP) and then the 15-carbon farnesyl pyrophosphate
(FPP). FPP can then be utilised in the ER for sterol and

dolichol synthesis. In the cytosol, the enzyme GGDPS
utilises FPP along with IPP to catalyse the formation of
the 20-carbon GGPP. GGPP can also be used for other pur-
poses, such as the synthesis of vitamin K2 and ubiquinone
which is utilised during oxidative phosphorylation.1,2
Finally, following production of mammalian isoprenoids
FPP and GGPP, prenyltransferases, such as farnesyl trans-
ferase (FTase) and geranylgeranyl transferases (GGTase I,
GGTase II and GGTase III), catalyse the addition of the
isoprenoids to target proteins.3–5 This post-translational
modification is known as protein prenylation.
Prenyltransferases catalyse the addition of isoprenoids

FPP or GGPP to a cysteine residue near the C-terminus of
the target substrate. Substrates for prenylation includeRas,
Rho and Rab families of small GTPases, nuclear lamins,
as well as certain kinases and phosphatases. It is the motif
encompassing the C-terminal cysteine residue that confers
substrate specificity for prenyltransferase enzymes.6 For
FTase andGGTase I, the cysteine is found in the consensus
sequence referred to as the CAAX box, in which case the C
refers to the Cys residue while A represents an aliphatic
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residue. Variation amongst the identity of the X residue
is what confers specificity for either FTase or GGTase I:
FTase targets substrates with a Met, Ser, Gln, Ala or Cys
while GGTase I targets those with a Leu or Glu.7 However,
these enzymes are not mutually exclusive with regards to
substrate specificity. K-Ras and N-Ras, which are usually
farnesylated, can be geranylgeranylated by GGTase I when
FTase is inhibited.8,9 Similarly, RhoB has been identified
as a substrate of both FTase and GGTase I.7 This crossover
may be due to the fact that FTase and GGTase I share a
common α-subunit.10
GGTase II, also referred to as Rab GGTase because of

its specificity for small GTPases of the Rab sub-family, tar-
gets a different recognition motif including XXCC, XCXC,
CCXX, CCXXX or CXXX with the X residue varying
depending on the substrate. Similar to FTase and GGTase
I, the enzyme is a heterodimer. However, its α-subunit
only has 27% identity with that of the FTase/GGTase I α-
subunit, while the β-subunit shows 29% identity to FTase.11
GGTase II also differs from FTase/GGTase I in that it
requires the assistance of the Rab escort protein (REP1)
which recruits substrate proteins to the enzyme, binds to
GGTase II and facilitates the trafficking of the Rab pro-
teins post-prenylation.12,13 In addition, GGTase II substrate
targets are often doubly geranylgeranylated.
GGTase III is a recently discovered prenyltransferase

enzyme that catalyses the double prenylation of the ubiqui-
tin ligase FBXL2, as well as Golgi SNARE14 protein Ykt6 in
combination with FTase.5,15 Similar to GGTase II, GGTase
III requires a chaperone protein (SKP1) for geranylgerany-
lation. It has been reported to share an identical β-subunit
with GGTase II but has a distinct α-subunit.
Discovering the identity and function of prenylated

proteins remains an active area of investigation. Use of
GGPP probes and alkynyl C15 pyrophosphate derivatives
through metabolic labelling have enabled identification of
substrates of the prenylome.6 One study discovered 80 sub-
strates, 64 of which were identified for the first time at an
endogenous expression level.16 Further clarification of the
prenylome will permit identification of potential targets of
therapies that disrupt protein prenylation.

3 GGDPS STRUCTURE

Human GGDPS was first characterised by Kavanagh et al.
in 2006.17 Characterisation of its paralogue FDPS as well
as orthologues in species such as S. cerevisiae, T. ther-
mophilus,P. horikoshii andB. taurus, have provided further
structure-function information. Kavanagh et al. reported
that GGDPS is a complex homohexamer made up of
three alpha-helical dimers forming a three-blade propeller-
like structure (Figure 2).17 They found each of the six

monomers to associate with twoMg2+ ions and one GGPP
molecule. However, more recent studies suggested that
three Mg2+ are required for substrate binding.18 Such dis-
crepancies are most likely due to the low resolution at
which the enzyme was characterised.18,19 Miyagi et al. also
reported GGDPS to form an octamer in its active form,
proving the need for more information on the quaternary
structure of this enzyme.20 Interestingly, sequence analy-
sis found that this complex quaternary structure is specific
to mammalian and insect GGDPS.17 Other plant, fun-
gal, archaeal and bacterial orthologues lack the conserved
residues that form the enzyme’s inter-dimer region.17 This
is because in eukaryotes, GGPP production follows the
addition of 5-carbon IPP to FPP while the plant, fungal,
archaeal and bacterial orthologues catalyse the condensa-
tion reaction of three IPP substrates to the allyl head of
DMAPP.21,22
With different quaternary structures and only 17%

sequence identity, FDPS and GGDPS have significantly
similar tertiary structures.17,23 Both enzymes contain five
conserved regions (I–V) maintained amongst all trans-
prenyltransferases (Figure 2). Regions II and V are made
up of aspartate-rich motifs (DDXXD/N) involved in liga-
tion of Mg2+ ions and association with the pyrophosphate
on the allylic substrate. Region III (GQXXD) contains
a Gln185 which also facilitates this process by provid-
ing a polar contact for the allylic tail and Mg2+ ions.
Region I (GKXXR) contains basic residues, specifically
Arg28, His57, Arg73 and Arg74, responsible for pyrophos-
phate binding of IPP in the homoallylic subpocket. Region
IV (KT) provides a Thr152 and Lys151 that stabilise the
carbocation intermediate.
Conservation of these key residuesmay explain the near-

identical catalytic mechanism of both FDPS and GGDPS.
This mechanism is proposed to be a three-step ionisation–
condensation–elimination reaction.24 First, the enzyme
binds IPP and the allylic substrate in their respective pock-
ets. Then, the allylic carbocation is formed by removal of
the IPP tail, facilitated by the three Mg2+ ions bound in
the catalytic cavity. The C1 carbon on the carbocation elec-
trophilically attacks the C4 carbon on the IPP substrate
forming a C C bond. The final product is formed from
stereospecific elimination of a proton.
Variation between these two isozymes arises when com-

paring the hydrophobic channel for the allylic substrate
isoprenyl tail. FDPS contains two capping phenyl residues
in this cavity (Phe89/99) which are expected to limit chain
length (Figure 2). GGDPS instead containsAla59 and Ser60
which allows for the larger C20 GGPP product.17 Interest-
ingly, GGDPS has a second hydrophobic cavity below its
active site. Kavanagh et al. determined this second site to
represent an inhibitory binding site upon realisation that
the aliphatic GGPP product tail does not extend into the
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F IGURE 2 Human GGDPS. (A) Protein structure of human GGDPS with bound GGPP (blue), water molecules (yellow) and Mg2+ ions
(red). (B) Amino acid sequence for human GGDPS. Conserved sequence motifs are shown in red and labelled (I–V). Residues unique to
GGDPS (not present in FDPS) that allow for chain length elongation are shown in green. Images created from the RCSB Protein Data Bank
(www.rcsb.org) of PDB Ihttps://doi.org/10.2210/pdb2Q80/pdb (Kavanagh et al.17).

former elongation site, but instead into this second binding
cavity. This GGPP molecule was found to bind the aspar-
tate motifs in the allylic site rather than the basic residues
in the homoallylic site, suggesting an inhibitory feedback
mechanism for product regulation. This was confirmed
by crystallography studies showing a GGPP analogue, 3-
azaGGPP, acting as a competitive inhibitor with respect to
FPP.25

4 GGDPS REGULATION

Regulation of GGDPS activity primarily stems from prod-
uct inhibition.17,26–28 As mentioned earlier, GGDPS has
an inhibitory binding site which binds GGPP and ren-

ders the enzyme inactive. This creates a negative feedback
loop to maintain homeostatic GGPP levels. Recent stud-
ies have also implicated regulation of the enzyme at the
transcriptional level. Activation of the extracellular signal-
regulated kinase (ERK) pathway initiates translocation of
transcription factor early growth response gene 1 (EGR1)
which promotes expression of GGDPS as well as expres-
sion of other cholesterol biosynthesis enzymes such as
HMGCR29–33 (Figure 3). Activation of the ERK pathway
and subsequent EGR1-initiated GGDPS expression can
occur in response to changes in insulin levels, consis-
tent with the insulin-dependent induction of cholesterol
biosynthesis that is found in the liver. Recent evidence
also suggests a role of EGR2 in regulation of GGDPS
expression.34 Transcriptional regulation of GGDPS is also

http://www.rcsb.org
https://doi.org/10.2210/pdb2Q80/pdb
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F IGURE 3 Ras/ERK/EGR1 pathway regulation of GGDPS
gene expression. GGDPS has recently been identified as a target
gene for EGR1. Activation of the MAPK signalling pathway initiates
EGR1 expression and GGDPS expression. GGDPS expression allows
for production of GGPP, the substrate utilised by GGTases for
geranylgeranylation of target proteins (ex: K-Ras). Prenylation of
K-Ras promotes Ras membrane localisation allowing for the
reactivation of the ERK pathway in the presence of insulin or other
pathway activators, creating a positive feedback loop. Note: K-Ras is
usually farnesylated by FTase, however in regard to this pathway
promoting GGDPS expression, it was shown to be primarily
geranylgeranylated by GGTase I.

supported by the finding of two different GGDPS mRNAs
in 16 different human tissues, as well as several partial
cDNA sequences, suggesting the existence of additional
mRNAs.23,35 The two identified mRNAs were most abun-
dant in the heart, skeletal muscle and testis and the shorter
mRNA was the major species out of the two.23 However,
the functional consequences of the different mRNAs have
not yet been delineated.
Regulation of cholesterol biosynthesis enzymes, specif-

ically HMGCR, result from binding of sterol regula-
tory binding element (SREBP) transcription factors.36–39
SREBPs operate in a negative feedback loop which, when
cholesterol levels are high, leads to the degradation of
HMGCR.40 A SRE has not been identified in the GGPS1
gene, which encodes GGDPS, suggesting GGDPS expres-
sion is not dependent on SREBPs. This is supported by the
finding that while sterol accumulation leads to decreased
mRNA expression of enzymes such as HMGCR and FDPS,
GGDPSmRNA levels are unaffected by changes in cellular
sterol levels.35

5 GGDPS EXPRESSION AND KNOWN
MUTATIONS

Due to GGDPS’s role in isoprenoid biosynthesis and
metabolism, it is ubiquitously expressed in all tissues
(Figure 4). Based on data from the Human Protein
Atlas, GGPS1 expression is highest in the testis which
may be related to the essential role of GGDPS in
spermatogenesis.35,41,42 Expression levels also appear ele-
vated in the eye, skeletal muscle and breast tissue, sug-
gesting that GGDPS may play an important role in these
tissues as well. While previous studies have found ele-
vated levels of geranylgeranylated proteins in the human
heart, brain, skeletal muscle and testis, variation between
geranylgeranylated protein levels andGGPS1 tissue expres-
sion may indicate that expression of the synthase does
not necessarily correlate with levels of geranylgeranylated
proteins.23
Recent studies have shown a mutation in the GGPS1

genewas associatedwith a unique case ofmuscular dystro-
phy associated with congenital hearing loss and primary
ovarian insufficiency (Figure 5A).43 Multiple instances
of biallelic missense mutations were found to cause this
syndrome.43,44 Functional assays revealed that the activ-
ity of the mutated GGDPS was only moderately impaired
(∼50%), which would not be expected to elicit a pheno-
type. Because of this, the investigators hypothesised that
the described phenotype was perhaps a consequence of
a more subtle change in GGDPS function, such as affect-
ing subcellular localisation of the enzyme for cell-type
specific processes.43 Interestingly, attempts to knock-in
this mutation resulted in embryonic lethality, potentially
through underdevelopment of the placental/embryonic
vascular unit.43 This finding is consistent with the obser-
vation that GGPS1 is essential for folliculogenesis and
oocytematuration, asGGPS1 deficiency in oocytes impacts
female fertility in a stage-specific manner.45 It is theorised
thatGGPS1 deficiency or single nucleotide polymorphisms
(SNPs) in somatic cells of the uterus may be responsi-
ble for dystocia, or difficulty during the delivery process.
However, this has not been confirmed since most females
with GGPS1mutations suffer from primary ovarian insuf-
ficiency and infertility.46 Decreased GGPS1 expression in
the testis has also been associated with infertility in men,
suggesting a role for this enzyme in both male and female
reproductive organs.41,42,47,48
GGPS1 SNPs have also been identified in connection

with bone remodelling. Multiple studies have found var-
ious GGPS1 mutations to contribute to predisposition of
femoral fractures in response to prolonged bisphosphonate
therapy.49–52 The mechanism underlying this predisposi-
tion is not fully understood, but data suggest the frac-
tures may result from the combination of impaired FDPS



6 of 23 MUEHLEBACH and HOLSTEIN

F IGURE 4 GGPS1 expression across tissues. Expression values are shown in nTPM (normalised transcripts per million) created by
combining the HPA and GTEx transcriptomics datasets using the Human Protein Atlas normalisation pipeline. Data were obtained from the
Human Protein Atlas (https://www.proteinatlas.org/ENSG00000152904-GGPS1/tissue).

F IGURE 5 Pathophysiological processes and disease states influenced by GGPS1 mutations, tissue-specific GGPS1 deletions and GGSIs.
(A) GGPS1 mutations have been associated with a unique syndrome of muscular dystrophy associated with congenital hearing loss and
primary ovarian insufficiency. GGPS1 SNPs have also been associated with bone disease and theorised to cause dystocia and infertility issues
in women. (B) Tissue-specific KO models for spermatogenesis, cardiovascular and thoracic development, lung injury, insulin-resistance, liver
disease and bone health have uncovered possible roles of GGDPS in disease. (C) GGSIs show potential benefit in models of multiple myeloma,
pancreatic ductal adenocarcinoma (PDAC), sarcoma, pulmonary fibrosis and prostate cancer.

https://www.proteinatlas.org/ENSG00000152904-GGPS1/tissue
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activity (secondary to the bisphosphonate) and GGDPS
activity (secondary to the mutation).51

6 KNOCKOUTMODELS OF GGDPS

Various knockout models have elucidated a critical role of
GGDPS in embryonic development (Figure 5B). A knock-
in mouse model was generated to study the effect of the
Y259C missense mutation known to contribute to mus-
cular dystrophy associated with congenital hearing loss
and primary ovarian insufficiency which was mentioned
above.43 This mutation led to embryonic lethality due to
improper embryonic vascularisation and cell–cell junction
formation. A similar effect resulted from GGPS1 deletion
in mouse embryonic cardiomyocytes. The enzyme proved
to be essential for proper cardiac cytoarchitecture and cell–
cell junction formation.53 Similarly, knockout of GGDPS in
mouse embryonic endothelial cells disrupted vasculogene-
sis causing embryonic lethality, while deletion of the gene
in foetal lungs was shown to impair proper development of
airways and alveoli.54
The role of GGDPS in fertility has also been explored

using knock-out models. Loss of GGDPS in Sertoli cells
was found to enhance spermatogonia apoptosis and
block further spermatogonia development.47 Deletion in
myometrial cells was found to impair uterine contractions
resulting in dystocia and disrupted embryonic placing,
while deletion in oocytes was associated with ovarian
dysfunction and infertility.44,45
Connections between GGDPS and non-alcoholic fatty

liver disease (NAFLD) have been identified. Liver-specific
deletion of GGDPS was found to reprogram hepatic
metabolism toward glycolysis, resulting in fibrosis and
inflammation.55 In addition, liver-specific GGDPSdeletion
impaired mitochondrial function by disrupting modifi-
cation of essential mitochondrial proteins such as Rab7,
which is important for mitophagy and mitochondrial fis-
sion, further contributing to conversion toward a glycolytic
phenotype and liver fibrosis.55 GGPP also acts as a precur-
sor for coenzyme Q (CoQ) which functions as an electron
transporter in the mitochondrial electron transport chain.
Therefore, loss of GGDPS and depletion of GGPP may
disrupt CoQ synthesis and oxidative phosphorylation.
GGDPS has also been implicated in T2D through

an EGR1/GGDPS/Ras/ERK1/2/IRS-1 pathway-dependent
manner.31 Knockout of GGDPS in the pancreatic β-cells
of insulin-resistant mice resulted in hyperglycaemia and
glucose intolerance due to β-cell dysfunction.56 How-
ever, deletion of GGDPS in the adipocytes and skeletal
muscle of insulin-resistant mice was found to restore
insulin sensitivity and glucose uptake.31,57 Thus, it is
evident that there is a complex and tissue-specific rela-

tionship between GGDPS and T2D that requires further
investigation.
Other GGDPS knockout models have focused on

ventilator-induced lung injury and acute lung injury
(ALI). In both mouse models, lung-specific deletion of
GGPS1 attenuated disease symptoms.58–60 Deletion of
GGPS1 reduced Rab10membrane localisation which led to
decreased activation of TLR4–NF-κB signaling.58 NF- κB
is a necessary transcription factor for NLRP3 activation,
therefore by inhibiting this pathway, NLRP3 inflamma-
some transcription was inhibited, attenuating disease-
induced lung inflammation.58 Further studies found that
inhibition of NLRP3 inflammasome by GGDPS inhibi-
tion resulted in promotion of autophagy, allowing for
attenuation of sepsis-induced lung injury.59 Similarly,
knockdown of the enzyme also inhibited migration and
invasion of lung adenocarcinoma cancer cells.61
Finally, in a mouse model evaluating GGDPS in the

context of bone fractures, it was identified that loss of
the enzyme improved the fracture healing process.62 This
was due to activation of the Bmp2/Smad-dependent Runx2
pathway. Bmp2 is essential for initiation of the fracture
healing process by regulating expression of transcription
factor Runx2 which can then initiate expression of genes
for terminal differentiation of chondrocytes. Bmp2 initi-
ates the phosphorylation of various Smad proteins such
as Smad1/5/8, which initiates terminal differentiation of
chrondrocytes, or Smad2/3, which inhibits terminal dif-
ferentiation. GGPS1 conditional knockdown mice were
found to have diminished TGF-β signalling within the
first 14 days post-fracture. Lack of GGDPS inhibited the
Ras/ERK/EGR1 pathway leading to decreased expression
of TGF-β, allowing for terminal differentiation of chon-
drocytes and accelerated fracture healing. However, Bmp2
signalling was up-regulated in GGPS1 KO mice within the
first 7 days post-fracture leading to increased Smad1/5/8
phosphorylation and Runx2 expression. In addition, it was
theorised that lack of TGF-β signalling reduced Smad2/3
expression allowing for decreased inhibition of Runx2. The
investigators also reported a significant increase in vascu-
lar endothelial growth factor A (Vegfa) expression at 7- and
21-days post-fracture, indicating that deletion of GGPS1
increased vasculogenesis further accelerating the fracture
healing process.

7 GGDPS IN DISEASE STATES

Overexpression of GGDPS has been associated with vari-
ous clinical pathologies. A positive correlation was found
between neurofibrillary tangle (NFT) density, p-Tau lev-
els and mRNA prevalence of both GGDPS and FDPS in
the brains of Alzheimer’s disease (AD) patients.63 With
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F IGURE 6 The putative roles of GGDPS in T2D. (A) GGDPS expression is elevated in pancreatic β-cells during chronic hyperglycaemic
challenge. Increased blood glucose stimulates release of the insulin granule pool. Docking and fusion of insulin granules is facilitated by Rab
proteins which require geranylgeranylation in order to localise and function properly. (B) Resulting hyperinsulinemia and increased secretory
demand may be the cause of pancreatic β-cell exhaustion accompanied by decreased expression of GGDPS. Decreased enzyme expression
diminishes intracellular GGPP levels, inhibiting geranylgeranylation of Rab proteins and subsequently disrupting the docking and fusion of
insulin granules. (C) GGDPS is up-regulated in adipocytes during hyperinsulinemia due to continuous activation of the Ras/ERK/EGR1
pathway. Continuous activation of the pathway leads to phosphorylation of IRS-1 at the inhibitory serine position, disrupting the PI3K/Akt
pathway and translocation of GLUT4 to the membrane. (D) GGDPS is up-regulated in skeletal muscle during hyperinsulinemia due to
continuous activation of the Ras/ERK/EGR1 pathway. In the skeletal muscle, RhoA is continuously geranylgeranylated allowing for activation
of ROCK2. Activation of the RhoA/ROCK pathway contributes to the inhibitory phosphorylation of IRS-1 disrupting GLUT4 translocation.

elevated levels of both FPP and GGPP having been iden-
tified in the brains of patients with AD, it has been pos-
tulated that elevated GGDPS expression may contribute to
NFT and β-amyloid plaque formation.64–66
As previously mentioned, aberrant levels of GGDPS

have also been implicated in T2D (Figure 6). Interestingly,

GGDPS is overexpressed in the liver, skeletal muscle and
adipose tissue of mice with obesity, insulin resistance and
hyperinsulinemia.57,67,68 However, GGDPS expression was
noted to be significantly decreased in the islet cells of T2D
patients in response to β-cell dysfunction.56 In normogly-
caemic patients, glucose challenge is met with a biphasic
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response in which the initial insulin release phase relies
on the docked insulin granule pool to facilitate glucose
uptake and glycogen synthesis.69 Patients with T2D have
been shown to have a decrease in insulin granules docked
at the plasma membrane, diminishing glucose-responsive
insulin release.56
GGDPS has been shown to be up-regulated in β-

cells during the compensatory hyperinsulinemia period
in db/db mice.57 However, GGDPS was found to be
down-regulated following prolonged excessive insulin
release and subsequent β-cell exhaustion.56 It is theo-
rised that such β-cell exhaustion is due to increased
secretory demand in response to chronic hyperglycaemic
challenge.69 This theory is supported by evidence that
GGDPS deficiency contributes to depletion of the docked
granule pool due to decreased geranylgeranylation of
Rab27a which is required for insulin granule docking.56
The reason for decreased expression of GGDPS during β-
cell exhaustion is not fully understood, but may be due to
oxidative stress, ER stress or the result of prolonged β-cell
use.70
Notably, geranylgeranylation of proteins such as Rab27a,

Rab3, Cdc42 and RhoA are essential for proper insulin
secretion. During β-cell exhaustion when GGDPS expres-
sion is decreased, expression of these small GTPases is
also decreased, thereby disrupting insulin trafficking and
secretion.56,67 Decreased levels of GGDPS activity may
also impact glucose homeostasis by disrupting proper
localisation of Rac1. Rac1 is important in the vesicular
trafficking of GLUT4 glucose transporters in skeletal mus-
cle and fat cells and disruption of GLUT4 transport to
the membrane results in loss of glucose-stimulated insulin
secretion.31,67,68,71
EGR1 was found to be highly expressed in the adipose

tissue of T2D patients, thus providing amechanism under-
lying the increased expression of GGDPS.31 EGR1 responds
to insulin stimulation, therefore GGDPS expression is sus-
tained in response to hyperinsulinism eventually leading
to insulin resistance.31 Mechanistically, EGR1 increases
in response to hyperinsulinism subsequently activating
GGDPS transcription. GGDPS expression then promotes
K-Ras membrane association allowing for the reactivation
of the ERK1/2 pathway in the presence of insulin. K-Ras is
usually a substrate of farnesylation but studies have shown
it can also be geranylgeranylated by GGTase I.8 Through
the use of FTase and GGTase I inhibitors respectively, it
was determined that it was the geranylgeranylation of K-
Ras that was necessary for the continued activation of
the pathway.30 Sustained activation of this pathway during
hyperinsulinemia has also been shown to cause desensi-
tisation of the PI3K/Akt pathway.32 Sustained activation
results in phosphorylation of insulin receptor substrate-
1 (IRS1) at the inhibitory serine position.31 This disrupts

PI3K/Akt pathway activation impairing translocation of
GLUT4 transporters and exacerbating insulin resistance.31
A similar mechanism was found in the skeletal muscle
of obese and insulin resistant mice albeit through activa-
tion of the RhoA/ROCK pathway due to GGDPS-mediated
geranylgeranylation.57
Progression of NAFLD to hepatocellular carcinoma

(HCC) has been associated with aberrant GGDPS
expression.38 Studies have found GGDPS down-regulation
to be a possible predictive factor for progression of
NAFLD to fibrosis, and lower expression of the enzyme
also has been shown to predict recurrence of HCC.55
Similar to T2D, the mechanism behind GGDPS expres-
sion and NAFLD progression seems to be related to the
Ras/ERK/EGR1 pathway (Figure 7). Short-term exposure
to a high-fat diet (HFD) has been shown to increase
EGR1 expression and GGDPS expression. Expression
of EGR1 also initiates expression of HMGCR leading to
de novo lipogenesis and subsequent fat accumulation.
Continuous activation of this pathway due to long-term
exposure to HFD leads to decreased insulin sensitivity and
down-regulation of EGR1 and GGDPS. Without sufficient
production of GGPP, FPP accumulates leading to the
farnesylation of liver kinase B1 (LKB1). LKB1 activates the
AMP-activated protein kinase (AMPK) pathway leading to
mitochondrial dysfunction and metabolic reprogramming
to a glycolytic phenotype.55 This results in hepatic inflam-
mation through increased release of pro-inflammatory
cytokines and macrophage infiltration, leading to hep-
atic fibrosis. This theorised mechanism is supported by
biopsies from patients with NAFLD without fibrosis and
inflammation which showed increased GGDPS expression
whereas decreased expression of the enzyme was found
in more advanced NAFLD cases.55 Non-alcoholic steato-
hepatitis (NASH) proceeds NAFLD in the progression of
HCC and initial characteristics of NASH include insulin
resistance resulting from elevated EGR1 expression in
response to long-term HFD.55 Along with the theory of
EGR1-induced NAFLD progression, advanced stages of
NASH show decreased EGR1 expression due to chronic
insulin insult. Therefore, the down-regulation of GGDPS
is also associated with the advancement of NASH leading
to HCC. Interestingly, with respect to virus-related HCC,
GGPS1 mRNA and protein expression levels were found
to be up-regulated in HCC tumour tissue compared with
adjacent non-malignant tissue.72 Additionally elevated
mRNA and protein expression levels were associated with
pathological indicators of advanced disease stage further
revealing the complicated and specific role of GGDPS
homeostasis in liver disease.
GGDPS has been implicated in inflammatory responses

of ALI and acute respiratory distress syndrome (ARDS).
The enzyme was found to have significantly increased
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F IGURE 7 The putative roles of GGDPS in liver disease. (A) Short-term high-fat diet (HFD) leads to increased insulin levels and
continuous activation of the Ras/ERK/EGR1 pathway. EGR1 induces the expression of GGDPS and HMGCR promoting continuous activation
of the Ras/ERK/EGR1 pathway and de novo lipogenesis causing gradual fat accumulation and development of NAFLD. (B) Long-term HFD
leads to decreased EGR1 and GGDPS expression. This inhibits the production of GGPP resulting in the accumulation of FPP. FPP is then
utilised by FTase for the farnesylation of LKB1 activating the LKB1/AMPK pathway causing a metabolic shift towards glycolysis. This
metabolic shift leads to hepatic inflammation and fibrosis. Continuous activation of the Ras/ERK/EGR1 pathway from HFD also leads to
insulin resistance which is characteristic of NASH indicating liver disease progression towards HCC.

expression in the alveolar macrophages isolated from
patients with ARDS and ALI-induced mice.73 It was
also shown that cigarette smoke extract induces GGDPS
expression in an EGR1-dependent manner resulting in
constitutive activation of the Ras/ERK/EGR1 pathway.30
GGDPS expression was increased in the lung tissues of
bleomycin-induced lung injury mice following lung injury
and fibrosis. Enzyme deficiency was found to augment
lung fibrosis suggesting a protective role of GGDPS in pul-
monary fibrosis.74,75 GGDPS expression was significantly
increased in lung adenocarcinoma tissues compared with
adjacent normal tissues, and expression level was found
to correlate with indicators of disease stage such as large
tumours, high TNM stage, lymph node metastasis and
poor prognosis.61 Similarly, GGDPS expression was found
to be negatively associated with survival in patients with
small cell lung cancer.76

8 IBP INHIBITORS

Altered metabolism is a hallmark of cancer, making the
IBP a target of interest. The IBP is essential for both sterol
and non-sterol synthesis and has also been associated with
cell survival and proliferation.77,78 The cellular effects due
to IBP inhibition vary depending on the specific enzyme
that is targeted. The following classes of IBP inhibitors
that have proven useful in understanding the effects of
depleting intracellularGGPP levels and globally disrupting
protein geranylgeranylation include statins, nitrogenous

bisphosphonates (NBPs) and GGDPS inhibitors (GGSIs).
Statin-mediated inhibition ofHMGCRdisrupts cholesterol
synthesis, but also disrupts synthesis of isoprenoid inter-
mediates (FPP and GGPP). Likewise, the NBPs, by virtue
of inhibiting FDPS, disrupt not only sterol synthesis but
also GGPP synthesis. Finally, direct inhibitors of GGDPS
do not impact sterol synthesis, but do impact synthesis
of compounds distal to GGPP synthesis in the pathway.
While all three classes of drugs have proven useful in elu-
cidating the effects of disrupting isoprenoid synthesis and
protein prenylation in vitro, only theGGSIs have the poten-
tial to directly address disease pathologies characterised
by aberrant GGDPS activity and/or dependence on GGPP
production.

9 STATINS

Statins are the most widely clinically used IBP inhibitors.
These agents inhibit the rate-limiting enzyme HMGCR,
thereby impacting both sterol and non-sterol synthesis.
Clinically they are used for the management of hyper-
cholesterolemia. Reduction in sterol synthesis induces
the cleavage and translocation of SREBPs, subsequently
regulating synthesis of cholesterol biosynthesis enzymes
as well as increasing expression of LDL receptors.36,37
In addition to lowering LDL-cholesterol levels, statins
have also been shown to inhibit neovascularisation and
regulate superoxide levels protecting against a wide vari-
ety of cardiovascular diseases, including atherosclerosis,
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TABLE 1 Summary of randomised trials involving statin/chemotherapy combinations in advanced malignancies

Reference Disease
Trial
phase Treatment

No. of
patients

Primary outcome
(statin vs.
placebo/observation)

Yulian et al.120 Locally advanced
breast cancer

II FAC + simvastatin
(40 mg)/placebo

66 ORR: 90 vs. 70%, p = .103

Han et al.121 Relapsed/refractory
advanced non-small
cell lung cancer

II Gefitinib ± simvastatin
(40 mg)

106 ORR: 38.5 vs. 31.5%,
p = .666

Konings et al.125 Advanced gastric
cancer

II ECC ± pravastatin (40 mg/d) 30 6-mos PFS: 43 vs. 47%

Hong et al.127 Advanced pancreatic
cancer

II Gemcitabine + simvastatin
(40 mg)/placebo

114 TTP: 2.4 vs. 3.6 mos;
p = .903

Seckl et al.123 Newly diagnosed small
cell lung cancer

III Cisplatin/etoposide +
pravastatin
(40 mg)/placebo

846 OS: median 10.7 vs. 10.6
mos, p = .9

Lim et al.124 Relapsed/refractory
metastatic colorectal
cancer

III FOLFIRI/XELIRI +
simvastatin
(40 mg)/placebo

269 PFS: median 5.9 vs. 7.0
mos, p = .937

Kim et al.126 Advanced gastric
cancer

III XP + simvastatin
(40 mg)/placebo

244 PFS: median 5.2 vs. 4.6
mos, p = .642

Abbreviations: ECC, epirubicin/cisplatin/capecitabine; FAC, fluorouracil/doxorubicin/cyclophosphamide; FOLFIRI, fluorouracil/leucovorin/irinotecan; ORR,
overall response rate; OS, overall survival; PFS, progression free survival; TAE, transarterial embolisation; TTP, time to progression; XELIRI,
capecitabine/irinotecan; XP, capecitabine/cisplatin.

ischemia–reperfusion injury, arrhythmia, cardiac fibrosis
and pulmonary hypertension.79–89
While statins are most commonly used for manage-

ment of hypercholesteremia, there has been significant
interest in their potential as anti-cancer agents.90 In vitro
studies in various malignancies such as breast, ovar-
ian, colon, prostate, lung adenocarcinoma, mesothelioma,
acute myeloid leukaemia and multiple myeloma have
shown that statins inhibit cell proliferation and invasion
and induce apoptosis.61,91–110 Such statin-induced apopto-
sis has been confirmed to be the result of GGPP depletion
rather than other products downstream of HMGCR such
as mevalonate or FPP.111,112 Further evidence supporting
the importance of GGPP depletion in the anti-cancer prop-
erties of statins is the finding that disruption of RhoA
geranylgeranylation impairs metastasis due to disruption
of cell attachment, invasion and migration.92,111
However, while these in vitro findings are intriguing, it

is noted that the concentrations required to disrupt pro-
tein prenylation (typically > 1 μM) are much higher than
those required to inhibit cholesterol biosynthesis,26 thus
standard doses of clinically utilised statins are unlikely
to impact protein prenylation in vivo.113–117 While sev-
eral phase 1 trials showed higher doses of statins could
result in serum levels in the micromolar range, these
doses were also associated with unwanted side effects with
minimal anti-tumour effects.114,118 In the Thibault et al.,
phase I study, it was noted that myopathy was the dose-
limiting toxicity of high-dose lovastatin treatment and that

treatment with ubiquinone could both reverse and pre-
vent this toxicity.118 Myopathy was not noted in another
phase I study of high-dose lovastatin, perhaps secondary
to differences in treatment duration.119
A few prospective randomised trials have evaluated

whether the addition of statins to standard chemotherapy
agents/regimens improve anti-tumour efficacy or survival
outcomes (Table 1).120–127 In aggregate these studies have
shown that standard doses of statins failed to significantly
improve response rates or survival outcomes in a variety
of solid tumour populations. A study in which patients
received adjuvant pravastatin following completion of
transarterial embolisation and 5-fluorouracil treatment for
advanced HCC, reported improvement in median over-
all survival (18 months for the pravastatin group vs. 9
months for the observation group, p = .006).122 Over-
all, the generally negative outcomes of these randomised
studies are most likely a consequence of standard statin
dosing being insufficient to significantly impair protein
geranylgeranylation in vivo.

10 NITROGENOUS
BISPHOSPHONATES

Bisphosphonate-based drugs have been around for over
50 years.128 Bisphosphonates act as non-hydrolysable ana-
logues of inorganic pyrophosphate that share a com-
mon phosphorous–carbon–phosphorous backbone which
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coordinates the chelation of calcium ions. Originally these
drugs were determined useful because of their calcium
binding properties, rendering them a treatment for bone
disease. More recently developed bisphosphonates, such
as zoledronic acid, were discovered to inhibit FDPS and
osteoclast resorption. These inhibitors belong to the class
of NBPs which are approved for treatment of various
bone diseases such as osteoporosis,metastatic bone disease
and myeloma bone disease. While these agents specifi-
cally inhibit FDPS, it was discovered that the mechanism
behind their effects on osteoclasts was due to downstream
depletion of GGPP.129,130,195
In vitro studies have shown NBPs to have a num-

ber of anti-tumour effects, including inhibiting tumour
cell proliferation, inducing apoptosis, inhibiting adhe-
sion and invasion, having anti-angiogenic properties as
well as synergistic effects with standard anti-neoplastic
drugs.132–143 In several studies, depletion of GGPP was
noted to be a key mechanism underlying the observed
anti-tumour effects.144–147 There have also been several
studies that demonstrated that NBPs have immunomod-
ulatory activities as a result of activation and proliferation
of Vγ9Vδ2 T cells, leading to anti-cancer activity.136,148–150
The underlyingmechanism for this phenomenon is related
toNBP-induced increase in intracellular IPP levels, as both
IPP and ApppI (an ATP analogue resulting from covalent
binding of IPP to AMP) serve as phosphoantigens which
stimulate Vγ9Vδ2 T cell expansion.151–154
In clinical studies, NBPs have been shown to decrease

skeletal morbidity in multiple myeloma, breast cancer,
prostate cancer, lung cancer and other tumours thatmetas-
tasize to the bone.155–158 There has been less certainty as to
whetherNBPs impact survival outcomes in amanner inde-
pendent of the effects on skeletal-related events (SREs). In
a phase III clinical trial evaluating the effects of bispho-
sphonate and thalidomide therapy for newly diagnosed
multiple myeloma patients, zoledronic acid was found
to improve overall survival and progression-free survival
while significantly lowering the SRE risk.159,160 The effect
of zoledronic acid on overall survival was reported to be
independent of the reduction in SREs, suggesting more
direct anti-myeloma effects,159,160 although a subsequent
analysis of the data suggested this effect did not quite
reach statistical significance (p= .0515).161 Ameta-analysis
of eight randomised studies involving patients with early
stage breast cancer suggested that adjuvant bisphospho-
nate use was associated with a reduction in the rate of
breast cancer recurrence in the bone (relative risk 0.83,
p = .004) and modest reduction in breast cancer mortality
(relative risk 0.91, p = .04).162 Several studies have sug-
gested more direct anti-tumour activity of zoledronic acid
in the setting of breast cancer where enhanced tumour
cell apoptosis or clearance of bone marrow disseminated

tumour cells have been observed.163–165 However, there are
also multiple randomised trials that have failed to demon-
strate improvement in non-bone related outcomes.166–173
Overall, it has not been apparent that NBPs have substan-
tial anti-cancer activities outside of the setting of bone
marrow/bone disease, which is likely a consequence of
their limited systemic distribution due to their high bone
affinity.174,175

11 GGDPS INHIBITORS

Given the therapeutic interest in more selectively tar-
geting GGDPS (and protein geranylgeranylation) without
impacting processes upstream in the IBP, efforts towards
developing specific GGSIs were initiated. Early genera-
tions of GGSIs included bisphosphonates containing iso-
prenoid substituents.176 One of the first discovered GGSIs,
digeranyl bisphosphonate (DGBP), was found to inhibit
GGDPS with an IC50 of around 200 nM.177 While crys-
tallography studies evaluating DGBP binding to human
GGDPS have not been reported, studies in Saccharomyces
cerevisae revealed that at least one geranyl chain on
the central carbon of the bisphosphonate headgroup is
required for specific inhibition of GGDPS. The bispho-
sphonate head group was found to complex with the
magnesium ions with the two prenyl side chains occupy-
ing the FPP binding site and the GGPP product-binding
site.178
Later advancements led to the development of iso-

prenoid bisphosphonates containing a triazole linker
group.179 Extensive structure-function analysis of a series
of triazole bisphosphonates revealed the importance of
alkyl chain length and olefin stereochemistry in determin-
ing inhibitor potency, and later studies showed the impact
of different substituents at the α-position.179–184
Other bisphosphonate-based GGSIs include thienopy-

rimidine bisphosphonate-based (Th-BP) compounds. The
extension of the thienopyrimidine moiety was shown to
increase potency due to its extension into the IPP bind-
ing site. However, this was only seen in compounds with a
modification at the C-2 position, while modification at the
C-6 position was found to increase potency for inhibition
of FDPS instead.185,186
Studies are ongoing to understand the systemic effects

of GGSIs. In studies involving triazole bisphosphonate
GGSIs, hepatoxicity was determined to be the dose-
limiting toxicity, with no effects observed on haemato-
logical, cardiac or renal parameters.187–189 These studies
suggested that the hepatoxicity was a consequence of
GGDPS inhibition and not due to the triazole moiety,
since the use of a structurally-similar compound (differ-
ing by having one less carbon in the isoprenoid side chain)
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with ∼400-fold less potency as a GGSI (RAM3059) did not
induce liver damage at doses >threefold higher than the
maximal tolerated dose (MTD) of the lead compound.189
However, further studies are necessary to confirm that
these effects are target based and not specific to the
compound structure. It was also confirmed that doses
below the MTD could be safely administered and result
in inhibition of protein geranylgeranylation in vivo.189 In
addition, the combination of low-dose statinwith low-dose
GGSI resulted in undetectable hepatic GGPP levels and
enhanced the hepatotoxic effects, suggesting an associa-
tion between on-target effects (reduction of GGPP) and
hepatotoxicity.188
A non-triazole containing GGSI was found to cause sig-

nificant weight loss in amousemodel of prostate cancer.190
The weight loss suggested possible toxicity from the GGSI,
however this same result was not seen in non-tumour
bearing mice when treated with the inhibitor, suggest-
ing that the GGSI alone was not responsible for the
toxicity.190
In 2018, Lacbay et al. screened over 200 Th-BP analogues

and determined one compound (11c) to disrupt protein ger-
anylgeranylation and decrease serum M-protein levels in
a mouse model of myeloma.185 Interestingly, following a
10-day treatment course (3 mg/kg/day via intraperitoneal
injection), serological analyses revealed that three out of
the seven treated animals hadmarkedly elevated (>10-fold
upper limit of normal (ULN)) AST levels and three more
with >twofold ULN increases. Elevations in ALT levels
were also observed in five animals, ranging from twofold
to 12-fold ULN. In 2022, Lee et al. conducted further stud-
ies with the same Th-BP GGSI.186 Here, they reported that
seven days after administration of a single dose of GGSI
(up to 10mg/kg via IV administration), no abnormalities in
liver function tests were observed. Whether this dose level
was sufficient to substantially alter hepatic GGPP levels or
disrupt hepatic protein geranylgeranylation was not dis-
closed. In addition, the pharmacokinetic studies revealed
a terminal half-life of 5.34 h, significantly shorter than the
previously reported triazole bisphosphonates,187,189 thus
making it difficult to draw any definitive conclusions
regarding class effect versus specific agent effect and
hepatoxicity.
Finally, a dual FDPS–GGDPS inhibitor also showed

potent activity without signs of toxicity in a murine
xenograft model utilising SK-ES-1 sarcoma cells, although
the only reported metric of toxicity was animal weight.191
In aggregate, the available preclinical literature has
demonstrated the feasibility of systemically administer-
ing GGSI therapy, although further studies are needed to
better understand the observed hepatic toxicity and thus
maximise the therapeutic window.

12 THERAPEUTIC EFFECTS OF
GGDPS INHIBITORS

In contrast to statins and FDPS inhibitors which globally
disrupt sterol synthesis and protein prenylation, inhibition
of GGDPS depletes GGPP levels, thereby impacting pro-
tein geranylgeranylation, without inhibiting farnesylation
or sterol synthesis. It is important to note that both in vitro
and in vivo data suggest that the effects of GGDPS inhi-
bition on a myriad of cellular processes are primarily due
to disruption of geranylgeranylation.77,130,131,178,192–195 How-
ever, there are also data that suggest that GGSI-induced
FPP accumulation can induce apoptosis as a consequence
of conversion of FPP to farnesol.196
GGDPS inhibition is associated with anti-proliferative

effects in a variety of malignancies as a result of disrup-
tion of geranylgeranylation of proteins essential for cell
growth and survival processes (Figure 5).78,146,197 While Ras
proteins are primarily farnesylated by FTase I, the Rho
and Rab families are geranylgeranylated by GGTase I and
GGTase II respectively. Rho proteins such as Rho, Rac
and Cdc42 are important for cytoskeletal reorganisation
and regulate dynamics such as cell polarity, cell motil-
ity and membrane protrusion. Rab proteins are important
in intracellular membrane trafficking and regulate vesicle
formation, transport, docking and fusion. Understanding
the impact of GGDPS inhibition on Rho and Rab protein
localisation and function is essential for understanding the
potential therapeutic benefit of these inhibitors.
In vitro studies showed that the GGSI DGBP inhibited

cell migration in a human breast cancer cell line MDA-
MB-231 and induced autophagy in both MDA-MB-13 and
PC3 prostate cancer cells.197,198 LC3-II accumulation (a
marker of autophagic flux) was also evident whenmultiple
myeloma cell lines were treated with DGBP.199 However,
the use of GGTase I and GGTase II specific inhibitors did
not recapitulate the effects of DGBP, indicating that DGBP
effects are not solely due to disruption of geranylgeranyla-
tion. Another interesting study found that GGSI-induced
GGPP depletion inhibited micropinocytosis of GGPP lead-
ing to amino acid starvation and apoptosis.77 However,
these effects were specific to MCF10A PTEN knockout
cells and K-RasG12V expressing cells, suggesting these
effects may be specific to certain oncogenic cell types.
One study found DGBP to inhibit proliferation and

induce apoptosis in lymphocytic leukaemia cells more
potently than the FDPS inhibitor zoledronate.146 Addition
ofGGPP followingDGBP treatmentwas shown to abrogate
the anti-proliferative effects, indicating GGPP depletion to
be the key mechanism underlying DGBP effects. DGBP
was also found to induce apoptosis in T-cell acute lym-
phoblastic leukaemia (T-ALL) cell lines.200 A potential
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mechanismwas postulated, connecting disruption of Rab7
localisation due to GGPP depletion with inhibition of
Notch1 expression.201 Notch1 is altered in over 60% of T-
ALL cases and has been shown to promote proliferation
and differentiation.201 It was concluded that disruption of
Rab7 localisation inhibited Notch1 proliferation, allowing
for caspase activation and apoptosis of T-ALL cells.
The GGSI disodium [(6Z,11E,15E)-9-[bis(sodiooxy)

phosphoryl]-17-hydroxy-2,6,12,6-tetramethyheptadeca-
2,6,11,15-tetraen-9-yl]phosphonate (GGOHBP) was found
to significantly decrease adrenal gland metastasis in a
murine model of human prostate cancer.190 In a sep-
arate study it was also reported to significantly reduce
whole body tumour burden, slow tumour development
and prolong survival in a murine model of human
prostate cancer.202 Lipophilic bisphosphonate BPH-1222
in combination with rapamycin was found to potently
suppress tumour growth in a murine model of lung
adenocarcinoma.203 BPH-1222 is an analogue of zole-
dronate that targets both FDPS and GGDPS. Treatment
with BPH-1222 alone was found to block K-Ras preny-
lation initiating ER stress and autophagy, but it did not
ultimately induce apoptosis. Combination treatment of
the bisphosphonate along with rapamycin allowed for the
induction of autophagy and concomitant inhibition of the
mTOR pathway which had previously allowed for tumour
cell survival.203 Similarly, a dual FDPS–GGDPS inhibitor
was found to delay tumour growth in a mouse xenograft
sarcoma model.191
Inmalignancies characterised by aberrant protein secre-

tion, disruption of Rab geranylgeranylation was found
to be the primary mechanism underlying GGSI-induced
cytotoxicity. Treatment of multiple myeloma cells with
GGSIs or GGTase II inhibitors results in activation
of the unfolded protein response (UPR) pathway and
apoptosis.187,192 Accumulation of monoclonal protein in
the ER was shown to cause ER stress and activation of
the UPR.192 Prolonged activation of the UPR, such as with
GGSI-mediated inhibition of Rab activity, leads to activa-
tion of the apoptotic pathway. The previously mentioned
novel triazole-based GGSIs were shown to potently disrupt
monoclonal protein secretion in multiple myeloma cells
leading to apoptosis.179,181 These same triazole bisphospho-
nates were also found to decrease tumour growth in mice
with multiple myeloma flank xenografts.187 Similar results
were reported with the use of a Th-BP inhibitor in both in
vitro and in vivo models of multiple myeloma.193
GGSIs have also shown efficacy in models of pancreatic

ductal adenocarcinoma (PDAC). PDAC is characterised
by the abnormal production of aberrantly glycosylated
mucins.204 Treatment of PDAC cell lines with a GGSI was
found to disrupt intracellular trafficking of key mucins
like MUC1 leading to activation of the UPR and subse-

quent apoptosis.194 These resultswere recapitulated in vivo
where triazole bisphosphonate GGSI therapy significantly
slowed tumour growth in two different mouse models of
PDAC.194
GGSIs may also be therapeutically relevant in bone dis-

orders. Bone diseases are commonly treated with NBPs
which result in disruption of cytoskeletal arrangement
through disruption of the F-actin ring and ruffled boarder
necessary for osteoclast function.130,131,195 As these effects
on osteoclast formation result from depletion of GGPP
rather than FPP, GGSIs may be an alternative to FDPS
inhibitors.195 Therefore, the use of GGSIs, especially in
the case of bone pain or fractures resulting from the pri-
mary disease, such as in the case of multiple myeloma,
may hold promise in treating both the primary disease as
well as preventing bone resorption. Further potential bene-
fits include the greater systemic distribution of the triazole
bisphosphonate GGSIs compared with NBPs.187
Finally, there has also been interest in the thera-

peutic potential of GGSIs in pulmonary fibrosis. DGBP
was found to abrogate pulmonary fibrosis in a mouse
model utilising bleomycin-induced lung injury.74 DGBP
disrupted localisation of Rac1 to the mitochondria of
alveolar macrophages, which in turn attenuated mito-
chondrial oxidative stress levels and limited the fibrotic
lung response.74

13 CONCLUSIONS

In this review, we provide a comprehensive overview of
the role of GGDPS in normal physiological processes.
While the factors that impact the expression and reg-
ulation of the enzyme in pathophysiological conditions
remain incompletely understood, it is evident that the
EGR1/GGDPS/Ras/ERK1/2 pathway plays an important
role. However, whether there are other modulators or
pathways that impact GGDPS activity remain to be deter-
mined.
It is evident that GGDPS is a contributor to a wide

range of human pathologies, including liver disease, T2D,
pulmonary disease and malignancy, and therefore is an
enzyme of significant clinical interest (Figure 8). Available
preclinical studies involving GGSIs have demonstrated
efficacy in several malignancy types that are currently
considered incurable (e.g., multiple myeloma and PDAC)
(Figure 8). In addition, preclinical studies with a GGSI
have revealed efficacy in pulmonary fibrosis, a disease
with limited therapeutic options. Overall, there is sub-
stantial rationale for the further development of GGSIs
and to expand the scope of GGSI therapeutic interven-
tion research to not only include other malignancies, but
also other disease states such as liver disease and T2D.
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F IGURE 8 Overview of the pathological processes impacted
by altered GGDPS expression or activity

Ultimately, successful translation to the clinic will depend
not only on understanding the GGSIs’ disease-modulating
effects but also the impact of targeting GGDPS in normal
cells. Thus, continued exploration of this enzyme’s role
in normal human physiology and pathophysiology is of
critical importance.
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