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Abstract
Insects are major actors in Earth’s ecosystems and their recent decline in abundance and diversity is alarming. The monitor-
ing of insects is paramount to understand the cause of this decline and guide conservation policies. In this contribution, an 
infrared laser-based system is used to remotely monitor the biomass density of flying insects in the wild. By measuring the 
optical extinction caused by insects crossing the 36-m long laser beam, the Entomological Bistatic Optical Sensor System 
used in this study can evaluate the mass of each specimen. At the field location, between July and December 2021, the instru-
ment made a total of 262,870 observations of insects for which the average dry mass was 17.1 mg and the median 3.4 mg. 
The daily average mass of flying insects per meter cube of air at the field location has been retrieved throughout the season 
and ranged between near 0 to 1.2 mg/m3. Thanks to its temporal resolution in the minute range, daily variations of biomass 
density have been observed as well. These measurements show daily activity patterns changing with the season, as large 
increases in biomass density were evident around sunset and sunrise during Summer but not during Fall.

1  Introduction

The decline of insects in terms of numbers and species 
diversity has become a major concern both in the scientific 
community and to the general public [1–4]. While there 
is much variation across species, space and time, multiple 
studies point toward a rate of decline in abundance in the 
range of 1 to 2% per year [4–7]. Well-documented pollina-
tors, such as bumble bees (Bombus sp.) have shown evidence 
of an ongoing decline in diversity [4, 8–10]. Similarly, the 
European Butterfly Indicator for Grassland species points 
toward a near 50% decline in butterflies between 1990 and 
2011 in Europe [11], while Hallmann et al. [4] observed a 
75% decline in insect biomass in Germany between 1989 
and 2016. Overall, the stressors identified as responsible for 
this decline appear to be very diverse: agricultural intensi-
fication, land-use change, deforestation, habitat fragmenta-
tion, the use of pesticides, pollution, and climate change [3, 
12–14].

However, direct evidence of a geographically widespread 
decline of most groups of insects remains sparse: popula-
tion trends, when available, show great variance between 
insect families or groups. For example, terrestrial insects 
seem to be more at risk than freshwater insects, of which 
abundance is increasing in some cases [15]. Similarly, stud-
ies on the effect of short-term events on insect populations, 
like weather events or human interventions, suffer from the 
same lack of data. Insect activities and abundance over such 
a short-time scale are generally unavailable as traditional 
methods only have the ability to monitor the population over 
days or weeks, not hours. Lack of reliable data on insect 
populations is now considered a significant issue in the field 
of entomology [16, 17]. Indeed, better tools are necessary to 
understand complex insect behaviors and the causes of the 
observed decline in insect biomass.

Monitoring the population of flying insects and its bio-
mass is generally done through the use of interception traps, 
such as malaise traps [18, 19], or attractant traps using light, 
pheromones, food, or CO2 as bait [20–25]. While those 
methodologies provide high accuracy for the identification 
of the family, genus, species, and sex of the captured insects 
through expert identification or DNA barcoding [26, 27], 
they do present some disadvantages. While there has been 
an improvement in automated and bulk analysis with the 
use of smart traps [28, 29] or automated insect barcoding 
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[30], most traps still require long and/or expensive labora-
tory analysis where insects must be identified and weighed. 
Entomologists still face a lack of large-scale and long-term 
data on biomass trends. Furthermore, traps are based on a 
destructive sampling process where insects are killed, which 
may be problematic both in terms of impact on potentially 
endangered species but also in terms of skewing abundance 
measurements when a large number of insects are removed 
from the ecosystem. Additionally, the attractive range of the 
traps is generally unknown and changes with weather condi-
tions [31–34]. As a consequence, traps provide poor popula-
tion or biomass density estimates because the area of effect 
of the trap is usually unknown. Baits used to attract insects 
are not evenly effective across species, age, and sex groups, 
resulting in systematic errors between species present near 
traps [35–38]. Finally, traps suffer from poor time resolution: 
due to the time required to identify captured insects, traps 
are often used sporadically, e.g., 1 day per week in the six-
year campaign reported by Kampen et al. [39]. Even while 
they operate, the time at which each insect has been captured 
is generally unknown, although physical traps with bottle 
rotator systems provide some information about the time of 
capture, the temporal resolution remains low.

In the meantime, entomological optical systems based 
on light-matter interaction have seen significant improve-
ment over the last two decades [40–46] and could potentially 
complement trapping techniques and unlock some of the 
limitation of the field by providing biomass estimation and, 
in some cases, even the identification of the flying specimen 
[47–49]. In this contribution, we present the results of an 
Entomological Bistatic Optical Sensor System (eBoss) that 
allows for the continuous monitoring of the flying insect 
volumetric biomass density, expressed in mg/m3. This met-
ric, referred to simply as biomass density, describes the 
mass of an insect flying through one cubic meter of air at 
any given time. This study follows an earlier experiment 
[50], undertaken at the same location but using a different 

optoelectronic technology (based on backscattering rather 
than extinction). As the focus of the present study is an esti-
mation of biomass density, and this was not attempted in 
the previous investigation, a direct comparison of the two 
methods is not possible.

2 � Methods and materials

2.1 � Experimental setup

2.1.1 � Entomological bistatic optical sensor system

The eBoss relies on a low-intensity continuous laser diode 
source (CPS980, Thorlabs, USA) with a peak optical power 
of 5 mW, operating at 980 nm. Thanks to its low laser power 
and beam expansion, the system is eye-safe, including for 
animals, and requires no specific safety measure to oper-
ate. As shown in Fig. 1, the laser beam emitted by the laser 
diode is expanded to Ø72mm using a combination of lenses. 
The laser beam propagates horizontally over 36 m and about 
20 cm above the vegetation which is mowed every other 
month to prevent any interaction with the laser beam. At the 
end of the optical path, the light is collected by a converg-
ing lens, goes through a bandpass filter and is then focused 
onto the active area of an amplified, switchable-gain, sili-
con detector (PDA36A2, Thorlabs, USA). The bandpass 
filter has a transmission above 95% from 950 to 1000 nm, 
which allows for drift in laser wavelength caused by the large 
range of temperature throughout the season. The detector 
has an effective bandwidth of 90 kHz and a large active 
area of 3.6 × 3.6 mm. This large active area acts to reduce 
unwanted fluctuations in the recorded signals caused by 
small mechanical vibrations on the emitter side. The optical 
signal is recorded at a sampling frequency of 30,517 Hz over 
a 5 V range by a 16-bit digitizer (M4i4420- × 8, Spectrum, 
USA). The equipment was protected from wind, rain, and 

Fig. 1   Experimental layout of the Entomological Bistatic Optical Sensor System (eBoss), deployed during the 2021 field campaign. The laser 
beam is shown in pink and the field of view (FOV) of the receiver in green. The intersection of both defines the probe volume
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snow by two tents, one on the emitter and one on the receiver 
side. The acquisition system was integrated into a regular 
desktop computer with a screen so that basic check-up of 
the data could be done on-site. The whole setup consumes 
approximately 150 W of electrical power, mainly used by the 
desktop computer, coming from a nearby building. While 
it was not the direct purpose of this experiment, the whole 
system could be easily set up to be portable and autonomous: 
the desktop computer can be replaced by a much smaller 
integrated acquisition system, this would greatly reduce the 
power consumption and allow the whole system to be pow-
ered by a battery coupled with a small solar panel. Finally, 
a weatherproof casing would eliminate the need for tents. 
Operation feedback, such as average signal value and stand-
ard deviation, are then sent to the internet data storage (or 
“cloud”) via a 4G LTE router where they can be monitored 
remotely by the user to ensure proper operation of the sys-
tem without the need to physically visit the field location. 
In addition, a co-located weather station (WS-1002-WIFI, 
Ambient Weather, USA) was operating continuously to 
monitor the meteorological conditions such as tempera-
ture, rain, wind and UV radiation. Those measurements are 
saved both locally and in the cloud on the ambient weather 
network.

Figure 2 shows an example of a signal recorded by the 
eBoss when an insect flies through the probe volume of 
the system. The probe volume is defined as the intersec-
tion between the laser beam and the field of view of the 

detector, shown in Fig. 1. Considering the value of diver-
gences, the probe volume is almost identical to the vol-
ume covered by the laser beam. In the absence of any tar-
get in the probe volume, the recorded signal is a constant 
voltage corresponding to the flux of photons received by 
the detector. This baseline value can change by a few % 
over the course of a few hours due to variations in sun-
light, change in optical extinction of the probed air or 
small drift in laser power.

Whenever an insect flies through the probe volume, the 
signal decreases as the target attenuates the optical intensity 
through scattering, diffraction, and absorption. Unlike the 
slow baseline variation mentioned above, the change in sig-
nal intensity due to the presence of the insect is on a much 
shorter time scale, in the order of 20 ms to 1 s. When the 
insect transits through the probe volume (also referred to as 
an event), the signal displays a Gaussian-like envelope as the 
insect enters then exits the probe volume, as shown in Fig. 2. 
This is caused by the spatial profile of the laser beam and 
the insect’s trajectory through the probe volume. In addition, 
the signal presents periodic drop in signal amplitude (sharp 
peaks) which are due to the rapid change in orientation of 
the wings of the insect during the wingbeat cycle. This fea-
ture allows to discriminate between flying insects that dis-
play periodicity and non-insect targets such as falling leaf or 
pollen that do not display any periodicity, as shown in Fig. 6. 
The periodicity of the change in signal amplitude also allows 
for the determination of the wingbeat frequency of the speci-
men by finding its fundamental frequency, which is done by 
detecting harmonic series in the frequency spectrum. This 
also allows for the discrimination between the wing and the 
body contributions to the signal [51].

In addition to the baseline variations, the short time scale 
noise level is the limiting factor of this methodology. Fig-
ure 3 shows the noise budget of the experiment. Several 
areas of improvement can be determined. The three main 
sources of noise are due to the acquisition card, unwanted IR 
sources and small mechanical vibrations on the emitter side.

2.1.2 � Measurement campaign

The measurement campaign took place from July 13 to 
December 7, 2021. The eBoss was running for 148 con-
secutive days, with downtime below 6.5% due to temporary 
shutdowns for alignment verification, routine maintenance 
and unwanted interruptions. Those few involuntary inter-
ruptions of the recording occurred due to the Ida storm of 
September 2nd that flooded the area and from two power out-
ages. The eBoss was installed in a field in a semi-urban envi-
ronment, a small patch of green within the city of Secaucus 
(Hudson County, NJ, USA), see Fig. 4, in the vicinity of one 
of the world’s largest megalopolises. The field is approxi-
mately 40 × 10 m with tall grass bordered by a roughly 1 ha 

Fig. 2   Example of an insect signal as the specimen flies through the 
probe volume of the eBoss. The bottom left and right corners show 
a magnification of three full wingbeat cycles of the wing contribu-
tion. The repeated patterns (136 Hz) are different when the specimen 
enters and exits the probe volume, which suggests a possible change 
in the orientation of the specimen
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woodlot. A co-located portable weather station was operat-
ing next to the field where the measurement campaign took 
place, as shown in Fig. 4.

2.2 � Data analysis

2.2.1 � Identification of insect signals

Figure 5B displays an example of 400 s of raw data recorded 
by the eBoss, showing the noise and baseline variations. 
Figure 5B also shows a magnification on one of the events 
in the raw time series. Events are characterized by a sudden 
drop in signal (in the order of a few ms) followed by a sud-
den increase returning the signal to its baseline value. Events 
from insects are automatically identified by a two-steps pro-
cess, the first step consists in identifying a region of interest 
where an object is likely to have crossed the probe volume, 
while the second step is used to identify harmonics typi-
cal of an insect signal. First, the raw signal is filtered by a 
10–900 Hz digital band-pass filter that removes the contribu-
tions of slow baseline drift with a period of 100 ms or more 
and high-frequency noise above 900 Hz. If the extinction 
of the signal is higher than the detection threshold for more 
than 0.1 ms, the signal is marked as a region of interest (i.e. 
a potential event). The detection threshold is defined as the 
sum of a sliding average of the signal and the sliding stand-
ard variation of the signal (red line in Fig. 5D). For both the 
average and standard deviation, the unweighted sliding win-
dows encompass 5 s of data, which allows for the threshold 
to follow the slow baseline drifts without being overly sensi-
tive to fast variations that are events. The threshold value is 
determined by the sum of the sliding average and 2.5 times 
the sliding standard deviation.

This method effectively identifies all possible events 
in the raw signal that have frequency components in the 
10–900 Hz range. In practice, a non-negligible number 
of false events (i.e., not caused by a flying insect) are 

Fig. 3   Noise budget of the 
experiment. Five different 
sources of noise have been 
identified and their respective 
contribution is expressed in mV 
and in the percentage of total 
noise. The range of acquisition 
was between 0 and 5000 mV, 
spread over the 216 bins of the 
digitizer. Noise is defined by the 
standard deviation and the five 
sources of noise are assumed to 
be independent and normally 
distributed

Fig. 4   Top left: satellite view of the area. Top right: aerial view of the 
field location (40°47′09.8″N 74°03′28.1″W) where both green tents 
used to protect the equipment from rain can be seen. The optical path 
of the laser beam is indicated by an orange arrow, starting at the emit-
ter side and pointing toward the receiver side. The weather station, 
red circle, is located on top of a metal container located directly south 
of the field. Bottom: picture of the field from the receiver side
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selected as the region of interest. Therefore, the second 
step focuses on identifying harmonic components within 
a dynamic frequency range: the lower limit is defined 
from the duration of the event so that at least two full 
wingbeat periods can be found in the signal, the higher 
limit is set at a fix value at 2 kHz. Well-defined harmon-
ics are typical of a signal originating from flying insects 
and not simply from a leaf, pollen or large aerosols pass-
ing through the laser beam. While effective, this method 
has two main limitations: the first is that small insects 
for which the optical extinction is too low to cross the 
detection threshold will not be detected. The second is 
for events that present no clear periodic signal, this can 
happen if the wings do not fully enter the probed volume, 
or if the time of transit is too short to observe multiple 
wingbeat cycles. Figure 6 presents an example of two 
recorded events showing one from an insect with the peri-
odic amplitude modulations typical of an insect (Fig. 6A 
and C) and one from a non-insect object (Fig. 6B and D).

2.2.2 � Extinction cross sections

Because the cross section of the probe volume is known, 
the extinction cross section of the insect expressed in mm2 
can be derived from the drop in voltage measured by the 
instrument. The iris placed in front of the detector (Fig. 1) 
allows to remove the wings of the Gaussian profile of the 
laser beam from the probe volume. As a result, the energy 
density of the laser beam can be assumed to be constant 
within the probe volume (also sometimes referred to as the 
“flat top approximation”). Consequently, the insect extinc-
tion cross section can be derived by Eq. (1):

where I0 is the intensity of the signal before the transit 
event and I

B
 the value of the maximal signal decrease due to 

the insect body, as shown in Fig. 7. The cross section of the 

(1)�B = �pv ⋅
I0 − IB

I0

Fig. 5   Figure B shows 400  s of raw data, as recorded by the acqui-
sition system, with a sampling frequency of 30,517  Hz. A magnifi-
cation on one of the identified insect events is displayed as an illus-
tration. Figure A shows the count per bin of intensity and C the 
spectrogram of the raw data. In the spectrogram, the magnified event 
stands out and its fundamental frequency as well as its first two har-

monics are visible. Figure D shows the optical extinction obtained 
from figure B, after the application of a digital bandpass filter [10–
900  Hz] and averaging. The red line indicates the detection thresh-
old. Any part of the filtered signal that crosses the threshold is identi-
fied as a region of interest and the corresponding raw signal is then 
extracted for further analysis
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Fig. 6   Example of two types of signals and their corresponding fre-
quency analysis. Figure A is an example of signal caused by an insect 
showing clear periodic drop in signal amplitude. Figure C shows its 
associated Fast Fourier Transform, from which the insect wingbeat 

frequency can be determined. Figure B is an example of a signal from 
a non-insect target crossing the probe volume, which does not have 
any periodic drop in signal amplitude, as can be seen on its Fast Fou-
rier Transform (Figure D)

Fig. 7   Figure A shows a signal due to the crossing of an insect 
through the probe volume of the eBoss. The red arrow indicates the 
amplitude of the signal decrease that is due to the body of the insect. 
I0 is the value of the baseline and I

B
 is the value taken by the signal 

when the body of the insect is completely in the center of the probe 
volume. Figure B shows the same event after conversion in terms of 
extinction cross section, using Eq. (1)
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probe volume is denoted �pv and the extinction cross section 
of the insect body �B , both expressed in mm2. The validity 
of this approach has been confirmed by dropping opaque 
chrome steel spheres of known diameters through the probe 
volume, showing a maximum error in retrieved extinction 
cross section of 6%.

2.2.3 � Insect mass estimation

When considering an insect n , the extinction cross section 
of its body �

n
 is a function of the geometrical cross section 

of the insect body A
n
 and the quasi-ballistic transmittance of 

the insect Tb,n , as described by Eq. (2). Quasi-ballistic pho-
tons being the photons that are transmitted and that reach the 
active area of the photodetector. Those photons are the ones 
that are not absorbed, and that undergoes a sufficiently small 
amount of scattering or diffraction so that their direction of 
propagation remains within the solid angle of detection of 
the photodetector.

The volume of the insect can be estimated from its geo-
metrical cross-section using Eq. (3):

where the volume in the insect V
n
 is expressed as a func-

tion of the geometrical cross section of its body A
n
 and as a 

function of K
n
 a proportionality factor. K

n
 is a unitless fac-

tor as long as V
n
 and A3∕2

n  are both expressed with the same 
volumetric unit.

The mass of an insect n is denoted m
n
 and is equal to its 

volume V
n
 times its volumetric mass density �

n
 , see Eq. (4). 

The volumetric mass density of insects may vary from one 
species to the next. However, Kühsel et al. [52] showed the 
relationship between an insect volume and its mass to be 
mainly linear, R2 = 0.92, across 113 insect species, indicat-
ing that considering the volumetric mass density of insects 
as constant across species is a reasonable approximation.

By combining Eqs. (2), (3) and (4) and by applying the 
aforementioned approximations (where Tb,n , Kn

 and �
n
 are 

considered constant across all insect species), the following 
relationship is derived:

The factor � takes into account the difference between 
geometrical and extinction cross sections, the relationship 
between surface and volume and the volumetric mass den-
sity of insects. While � is expressed in the unit of mass per 

(2)�
n
= (1 − Tb,n) ⋅ An

(3)V
n
= K

n
⋅ A

3∕2
n

(4)m
n
= �

n
⋅ V

n

(5)m
n
= � ⋅ K ⋅

(

�
n

(1 − Tb)

)3∕2

= � ⋅ �
3∕2
n

unit volume, it is important to note that it is not equal to the 
volumetric mass density of insects. To evaluate coefficient � , 
a laboratory eBoss prototype was used to retrieve the body 
extinction cross section of insects of known weight. Below 
is the list of insect species used for this experiment:

–	 Mosquitoes (both Culex quinquefasciatus and Aedes 
aegypti): 122 specimens.

–	 Flies (Musca domestica): 50 specimens.
–	 Bees (Osmia lignaria): 6 specimens.
–	 Wasps (Vespula maculifrons): 5 specimens.
–	 Bumble bees (Bombus bimaculatus): 4 specimens.

The number of specimens varies as some where available 
in large quantities by rearing them while others were cap-
tured in the field. Insects were weighed immediately upon 
their death as well as post desiccation using a 0.1 mg preci-
sion scale, to determine their wet and dry mass.

2.2.4 � Flying insect volumetric biomass density estimation

Using Eq. (5), the mass of every flying insect that crosses the 
probe volume is estimated. This allows for the determination 
of the mass of flying insects per unit of volume, referred to 
as biomass density in this contribution, denoted �b , which 
can be calculated for both wet and dry insect mass using 
Eq. (6):

This equation is derived from a statistical approach 
detailed in earlier work [53] where the aerial density 
(insects/m3) is determined but modified to be expressed in 
terms of biomass density instead. N is the number of events 
observed during the time period t

tot
 . For each event, the mass 

m
n
 is retrieved using the methodology described in the previ-

ous section, while the transit time Δt
n
 represents the duration 

during which the insect was within the probe volume of the 
eBoss, see [50, 53] for more details. As shown by Eq. (6), 
the biomass density �b is normalized by the volume of air 
probed by the instrument ΔV  so that it is expressed in mg/
m3.

The time resolution of the retrieved biomass density is 
defined by ttot , which can be set to days, weeks or months to 
observe the long-term evolution of the biomass density or 
set to minutes or hours to observe daily change in biomass 
density. As thoroughly discussed in previous work [50, 53], 
the number of observed events, and therefore the retrieved 
biomass density, is subject to stochastic fluctuations. For this 
reason, there is a tradeoff between time resolution and uncer-
tainty: small time scale, in the hour or minute range, may 
present significant statistical fluctuations on the retrieved 

(6)
�b =

∑N

n=1

Δt
n

ttot

⋅ m
n

ΔV
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biomass density while a longer time resolution may provide 
more robust results but these will be an average over any 
density variations that occurred during the sampling period.

3 � Results

3.1 � Laboratory results for insect mass estimation

As presented in Sect. 2.2.3, Eq. (5) allows for the retrieval 
of the mass of an individual insect using the measured 
extinction cross section of the specimen and the coefficient 
η . A fit of Eq. (5) provides an estimation of the insect mass 
m from their body extinction cross section � (Fig. 8). In 
terms of percent error between predicted and actual mass, 
the worst prediction is for the dry mass of mosquitoes with 
a 113% percent relative error. However, the absolute error 
is only 1 mg, meaning that the dry mass of mosquitoes 

tends to be overestimated by 1 mg. On the other hand, 
the best prediction in terms of percent error is for the dry 
mass of bumblebees with only a 3.2% difference, due to 
an average overestimation of 2.4 mg.

Using a Levenberg–Marquardt algorithm [54, 55] to fit 
Eq. (5), the values of η can be estimated for both the wet 
and dry insect mass. This fit allows for the determination 
of the relation between mass and extinction cross section 
of the insect body, as shown by Eqs. (7) and (8).

where m is the estimated mass in mg (either dry or wet), 
� the insect body extinction cross section in mm2. As such, 
the value of � is expressed in mg/m3 in both aforemen-
tioned equations.

(7)mwet = 0.157 ⋅ σ3∕2R2

adj
= 96%

(8)mdry = 0.075 ⋅ σ3∕2R2

adj
= 98%

Fig. 8   Figure A and B display the result of the fit of Eq.  (5) for the 
wet and dry mass, respectively. Error bars represent the stand-
ard deviation. Figure C and D display the results of the estimated 
mass (respectfully wet and dry) using the results of the previous fit, 

Eqs.  (7) and (8), as a function of the actual mass measured with a 
0.1  mg precision scale. Each insect group is identified by a unique 
marker, m for Culicidae, h for Musca domestica, b for Osmia lignaria, 
w for Vespula maculifrons and bb for Bombus bimaculatus
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3.2 � Seasonal variation of flying insect biomass 
density

As shown in Eq.  (6), the dry biomass density can be 
retrieved on a user-defined time resolution. In Fig. 9, the 
sliding two weeks average over a one-day time resolution 
has been presented as it reduces stochastic fluctuations pos-
sibly caused by changing atmospheric conditions and by the 
statistical nature of the process. In the rest of the publication, 
only the results of dry biomass density will be presented. 
The dry biomass density was chosen over the wet biomass 
density for several reasons. The wet biomass includes the 
insect water content which may not be relevant when evalu-
ating the quantity of food availability for predators. Moreo-
ver, the dry biomass is more easily compared with the gold 
standard results of insect traps, which often only provided 
dry insect mass from laboratory measurements. In addition, 
the dry mass estimation, from our described methodology, 
is more precise than the wet mass estimation.

As shown in Fig. 9, the flying insect biomass density 
is following a downward trend as time passes. This result 
was expected as the population of several insect species are 
known to decrease with decreasing temperatures. Interest-
ingly, however, the observed biomass density does not drop 
to 0 mg/m3, even in early December when the campaign 
stopped. Despite the low temperature, some insects remain 

active in December but only during the warmest hours of the 
day and very little activity is seen at night when tempera-
tures are the lowest (see the following section and Fig. 11).

Figure 9 shows several fluctuations in the total biomass 
density which may be an indication of the emergence and 
disappearance of seasonal species or a shift in insect behav-
ior. From mid-July to late August, the flying insect biomass 
density is at its highest values, oscillating around 0.5 mg/
m3. During this time, the max value of biomass density was 
around 1.2 mg/m3 when considered over an entire day. On 
the other hand, the minimum of flying insect activity takes 
place from the end of November to December when the 
biomass density varies around 0.1 mg/m3 when considered 
over an entire day. Despite the average daily temperature 
dropping near 3 °C during December, there was continuous 
flying insect activity.

In addition to the seasonal variation of the biomass den-
sity, the mass of each of the 262,870 insect events observed 
throughout the season can be estimated. This provides infor-
mation on the mass distribution of insects on the field during 
2021. The dry mass distribution can be seen in Fig. 10A, 
showing the average and median values. Low masses in the 
range of 0.1 mg are observed due to insects only partially 
entering the field of view of the sensors, resulting in an 
underestimation of the mass of the insect. Between July and 
December 2021, the average dry mass of insects observed 
was 17.1 mg and the median value was 3.4 mg. Moreover, 
the distribution of the transit time and wingbeat frequency 
of the insect events are presented in Fig. 10B and C, respec-
tively. Finally, in Fig. 10D, the distribution of the kurto-
sis value of every event is presented, which informs on the 
shape of the event, a kurtosis value of three corresponding 
to a Gaussian shape.

3.3 � Daily variation of flying insect biomass density

The eBoss allows for the study of biomass density on a much 
shorter time resolution than the weekly average, down to the 
minute range, as shown in Figs. 11 and 12. This allows for 
the refined study of insect activity and the observation of 
how biomass density varies during a single day as well as 
seasonal variation.

The biomass density of flying insects varies through-
out the day and is overall greater during sunrise and sunset 
where an increase in biomass density can be observed. As 
shown in Fig. 11, the biomass density goes to higher values 
than when considered over longer periods of time (Fig. 8), 
above 1.6 mg/m3, in particular around sunset and sunrise 
time. The civil sunset and sunrise times are indicated by 
the semi-transparent lines in Fig. 11. These results were 
expected as the behavior of several insect species is driven 
by sunlight [56–58], furthermore it is coherent with previous 
observations done at this location [50].

Fig. 9   In figure A, the solid blue line represents the daily flying insect 
biomass density per meter cube of air and the red dashed line its 
2-week rolling average. The biomass density, expressed in mg/m3, is 
the dry biomass of the insect. In figure B the solid red line represents 
the daily average temperature and the dashed red line its 2-week roll-
ing average. The solid blue line represents the daily precipitation
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The daily biomass density distribution over 24 h is pre-
sented in Fig. 12 for both the month of August (blue) and 
October (red). In August, there are two peaks of activity 
around 5:30 am and 9 pm, corresponding to sunrise and 
sunset time respectively, with strong residual activity at 
night. On the contrary, during the typical day of October, 
the dominant period of biomass density is no longer centered 
around sunset and sunrise but around noon with much less 
activity at night. This can be the consequence of a change in 
insect populations or behavior between August and October. 
Insects being cold blooded, their mobility can be reduced 
with colder temperatures, favorizing activity during the day, 
as observed in October. Such information can be helpful for 
entomologists to infer the presence or absence of some insect 
species by comparing those results to known insect circadian 
rhythms. This can also be combined with the observed mass 
of the insects, and their wingbeat frequency, providing sev-
eral parameters for species identification purposes.

4 � Discussion and conclusion

This study presents continuous measurements of the fly-
ing insect biomass density using an Entomological Bistatic 
Optical Sensor System (eBoss) and obtained during a five-
month-long campaign. The strength of this approach mainly 
lies in its ability to estimate the body masses of insects trans-
iting through the field of view of the sensor from which 
quantitative estimates of aerial biomass densities can be 
retrieved in SI units (mg/m3). The data are collected with 
a temporal resolution in the minute range, allowing to 
study daily variations in biomass density as well offering 
an alternative to traps with much lower temporal resolu-
tion. Because the system was designed to require only lim-
ited supervision and manageable amount of data (about 4 
GByte/day), it can operate for extended periods of time, 
making the monitoring of aerial biomass density possible 
over months, like presented here, and possibly years for a 

Fig. 10   Figure A displays the distribution of the retrieved mass of 
insects, using Eq.  (8). The median and mean value are displayed in 
red and magenta, respectively. Figure B shows the distribution of 
the transit times of insets, i.e., the duration of their transit through 
the probe volume, which is related to the insect flight velocity. The 
median and mean value are displayed in red and magenta, respec-
tively. Every event with a transit time lower than 10  ms were sys-

tematically removed (hard cut-off at 10 ms). Figure C illustrates the 
wingbeat frequency distribution of insects. The median and mean 
value are displayed in red and magenta, respectively. Figure D dis-
plays the kurtosis value distribution of every event, which provides 
information on the shape of the signal. A kurtosis value equal to 
three, displayed in red, correspond to a Gaussian shape
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low price and with limited manpower. We believe that such 
features could potentially provide a solution to increase the 
very low number of long-term studies about insect biomass 
currently available. Finally, these measurements are obtained 
without capturing and killing insects, which may be a crucial 
aspect when targeted at endangered species.

This experiment also reveals some of the weakness of this 
approach. Because insects can sometimes only partially enter 
the field of view of the sensor, the retrieved insect mass can 

possibly be underestimated, see Fig. 10A, especially for large 
insects that are more likely to enter only partially the laser 
beam. Increasing the laser beam diameter would reduce the 
probability of underestimating insect masses, on top of pro-
viding a larger volume of probed air, but at the cost of lower 
sensitivity to small insects that could become undetected due 
to low SNR. Although, we believe that significant improve-
ments in SNR can be achieved with a new updated sensor 
design that is currently being tested. In addition, the identifica-
tion of the insect species remains much more difficult, as the 
insect is never captured. However, this issue may be solved as 
more and more progress are made toward the identification of 
insects using machine learning classifiers from their retrieved 
wingbeat frequencies, wing and body optical cross-sections, 
or the timber of the wing signal using Mel-frequency cepstral 
coefficients [57].

This field experiment followed one done in 2020 and pre-
sented by Genoud et al. [50]. In this experiment, the optical 
sensor used a backscattered configuration, similar to a lidar, 
as opposed to the extinction configuration here. While it is 
beyond the scope of this article to provide a thorough com-
parison between the two systems, we can briefly note that the 
eBoss has the great advantage of being eye-safe as it requires 
only a few milliwatts of optical power, compared to the few 
watts necessary in backscattered configuration, making it 
cheaper as well. This may be key for long-term and unsuper-
vised deployments of multiple sensors in the future. However, 
the eBoss is a bistatic sensor with an emitter and receiver, 
which make its deployment more complex and limits where 
the instrument can be deployed: it can hardly be pointing ver-
tically or above inaccessible terrains or bodies of water, as 
opposed to the backscattered configuration that is much more 
versatile in that respect.
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Fig. 11   Dry biomass density estimation in function of the time-of-
day with a 1-min resolution and over the entire measurement cam-
paign of the eBoss. Maximal values of biomass density were artifi-
cially capped at 1.6  mg/m3 to improve the color plot contrast. The 
white lines indicate periods during which the system was offline. The 
semi-transparent lines indicate the civil sunrise and sunset time at the 
field location

Fig. 12   Dry biomass density over 24  h. Blue and red line represent 
the average daily variation of the dry biomass density for the month 
of August and October, respectively. The presented results are the 
sixty minutes rolling average of the biomass density, averaged over 
the entire month
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