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Abstract

Biomedical Entity Linking (BEL) is the task of mapping of spans of text within biomedical 

documents to normalized, unique identifiers within an ontology. This is an important task 

in natural language processing for both translational information extraction applications and 

providing context for downstream tasks like relationship extraction. In this paper, we will survey 

the progression of BEL from its inception in the late 80s to present day state of the art systems, 

provide a comprehensive list of datasets available for training BEL systems, reference shared 

tasks focused on BEL, discuss the technical components that comprise BEL systems, and discuss 

possible directions for the future of the field.
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1. Introduction

Biomedical entity linking (BEL), also known as normalization or grounding, is a natural 

language processing (NLP) task dealing with the mapping of spans of text within biomedical 

documents to normalized, unique identifiers within an ontology. Associating these spans, 

known as mentions, with a discrete concept allows information extracted from the text to 

be easily filtered and aggregated. In this paper, we will survey the progression of BEL from 

its inception in the late 80s to present day state of the art systems, provide a comprehensive 

list of datasets available for training BEL systems, reference shared tasks focused on BEL, 

describe the technical components that comprise BEL systems, and discuss where the field 

needs to go from here.

To conduct this systematic review, we queried PubMed for all full-text articles published 

between 1980 and August 2022 which contained any of the phrases “entity linking”, “entity 

normalization”, “concept linking”, or “concept normalization” in the abstract or title. This 
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search yielded 134 results, of which, the earliest was published in 1985. We retrieved 132 of 

these for further review, excluding two results which corresponded to a book chapter and a 

corrigendum. After review, we excluded another 72 results for reasons such as the abstract or 

title incidentally containing one of the search phrases without referring to the NLP task (40), 

the primary focus of the paper being a pipeline which includes a non-novel BEL component 

(19), the paper mentioning entity linking in passing (11), the paper being a review which 

did not introduce any original contributions (3), and the paper focusing on non-biomedical 

applications of entity linking (2). A PRISMA diagram showing how we filtered the results 

of our search is shown in Figure 1. We have included some additional publications related to 

biomedical entity linking in the following sections which were not included in the PubMed 

results, but which we felt had substantively contributed to the field.

2. History

2.1. Early Work

In the late 1980’s, medical literature was expanding rapidly, but physicians were unable 

to search it effectively due to unfamiliarity with the Medical Subject Headings (MeSH) 

vocabulary used to index citations in the MEDLINE database [1]. This impediment 

motivated the initial work on BEL. To improve search efficacy for non-expert users, two 

physicians at Massachusetts General Hospital proposed MicroMeSH in 1987, an “intelligent 

search assistant” for searching the MEDLINE database, which used a synonym, acronym, 

and abbreviation dictionary to map users’ search queries to a list of possible MeSH terms 

with wildcard matching [1]. The idea was later expanded to facilitate the MeSH indexing of 

articles directly with systems such as CLARIT (1991) [2], SAPHIRE (1995) [3], OSCAR4 

(2011) [4], and MetaMap (2001) [5]. These subsequent systems used linguistic rules, 

patterns, and dictionaries to map concept mentions to MeSH terms. MetaMap became the 

backbone of the Medical Text Indexer (MTI) [6] in 2004. Today, the National Library of 

Medicine (NLM) at the National Institutes of Health (NIH) employs MTI as the automated 

first-line indexer for over 350 journals.

Application of BEL to clinical text was not far behind indexing publications. CHARTLINE 

(1992) [7] and MedLEE (1995) [8] used similar dictionary matching techniques to extract 

and link entities in clinical reports to the Unified Medical Language System (UMLS). REX 

(2006) [9], by physicians Friedlin and McDonald, linked mentions from clinical notes to 

ICD-9-CM codes to facilitate medical record coding and included the novel feature of 

negation recognition to mitigate false positives for negative mentions (i.e. patient denies 

smoking). Friedlin later adapted his REX system to identify adverse drug reactions (ADR) 

mentioned on drug labels and link them to the Medical Dictionary for Regulatory Activities 

(MedDRA) with a system called SPLICER [10]. Shortly after Friedlin’s publications, 

Savova et al. [11] also released an end-to-end clinical NLP system called cTAKES 

(2010), which included an entity linking component. QuickUMLS [12] (2016) addressed 

the computational performance limitations of its predecessors by using an approximate 

dictionary matching algorithm, CPMerge, to achieve higher F1 scores than both MetaMap 

and cTAKES while requiring only a fraction of their runtime. RysannMD [13] similarly 
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created a fast and accurate system which used a probabilistic model based on the individual 

tokens in each mention to predict concept mappings.

For developing the first generation of BEL systems, which relied exclusively on dictionary 

matching techniques and jointly performed NER and entity linking, researchers generally 

annotated their own training data from scratch. This changed in the mid-2010s with the 

release of prominent entity linking corpora, such as the ShARe/CLEF eHealth Challenge 

corpus[14] and the NCBI dataset [15] which provided a set of linked mentions out of the 

box. For the first time, researchers could model BEL as an independent task, limiting the 

scope of their work to matching a mention assumed to be an entity to its corresponding 

concept. This allowed for more complex perturbations of pre-extracted mentions, which 

would have been combinatorially intractable when considering a document in its entirety. 

D’Souza and Ng [16] broke ground with an influential sieve-based method that attempted 

to match mentions to concepts through ten progressively fuzzy layers of morphological 

permutations. Figure 2 illustrates potential layers in a rule-based BEL pipeline. Rather than 

permuting the limited set of mentions in an attempt to match concepts in the much larger 

ontology, Liu, et al. [17] created their own semantic lexicon based on knowledge from the 

UMLS and information mined from a large clinical corpus to maximize the probability of 

extracting mentions from a corpus which correspond to concepts in their MedLEx. Leal et 

al. [18] applied a rule-based similarity approach to the ShARe/CLEF dataset by searching 

for matches by minimizing Levenshtein distance to SNOMED-CT candidates and resolving 

ties by choosing the SNOMED-CT concept with the lowest Information Content (IC) [19]. 

While these systems were more sophisticated than their predecessors, they still shared many 

of the core limitations of the earliest work. Rule-based systems are generally fast, but 

they are unable to consider semantic meaning, so they struggle when linking mentions that 

require either context (i.e. does “depression” refer to a mood disorder or a sunken area?) or 

when vernacular for describing a concept is too lexically diverse (i.e. how many ways can 

you say “inadequate oral intake”?).

2.2. Modern Era

While dictionary-based clinical NLP methods remain popular for production implementation 

because of their interpretability and configurability [20], learning-based methods have 

largely replaced them in informatics research because of their superior performance. This 

paradigm shift transitioned BEL from a matching problem to a mapping problem requiring 

successful systems to numerically represent mentions and concepts and train models to 

connect them. One of the best-known early attempts at applying machine learning to BEL 

was DNorm [21], which used TF-IDF representations of mentions and concepts to train a 

linear classifier to score pairs of mention and concept representations. DNorm demonstrated 

a nearly 10 point gain in F-measure performance over existing rule-based baselines, 

becoming the defacto baseline for subsequent systems. The author later incorporated DNorm 

into a joint NER and BEL model called TaggerOne [22], which considered the results of two 

scoring functions in semi-Markov models that determined both the mention boundaries of 

the entity and linked it to the appropriate concept.
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The first round of deep learning techniques applied to BEL represented tokens with static 

vector representations of words (such as TF-IDF and word embeddings [23]) and used 

architectures like CNN and BiLSTM to demonstrate improvement over classical machine 

learning (ML) baselines like DNorm [24, 25, 26]. The emergence of deep contextual 

embeddings, such as ELMo[27] and BERT[28], effected a sea change in natural language 

processing research, and BEL research has been no exception. While some researchers still 

investigate using static embeddings as their primary form of representation, all current state 

of the art systems use some form of deep contextualized embeddings, with BERT encoders 

pre-trained on clinical and/or biomedical text being the clear favorites [29, 30, 31]. As with 

classical ML BEL, both binary [32] and multi-class [33] classification models are popular, 

but the improved quality of representations and the ability to train the encoder has opened 

up other options as well, like similarity-based ranking [29] and clustering [31]. Figure 3 

illustrates typical steps in a machine learning-based BEL pipeline and lists some of the 

configurable options for each step.

3. Applications

The Apache Unstructured Information Management Architecture™ (UIMA) framework [34] 

is an interoperability platform developed to handle software systems that process large 

amounts of text. Its advantage is the plug-and-play aspect allowing different components to 

be pipelined together. The framework has been ported from general English to process large 

amounts of clinical and biomedical text. CLAMP [35], cTAKES [11], Leo [36], MedTagger 

[37], and NOBLE Coder [38] all utilize the UIMA framework. One key component to 

each of these frameworks with respect to this review is the addition of a BEL component 

into their information extraction pipelines. A typical pipeline includes components that 1) 

initially extract specific entity types (e.g., Diseases, Drugs) from the text, 2) determine 

the relationship between the entities (e.g., Treats, Reason), and 3) link the entities to 

their respective concept in an ontology (e.g., the UMLS). The BEL component normalizes 

synonymous terms (e.g., Heart Attack and Myocardial Infarction) allowing information 

across documents to be analyzed regardless of their lexical diversity. However, as with 

relation extraction, error propagation [39] becomes a challenge in real-world environments 

where any error that occurs when identifying the entities is propagated to downstream tasks 

including both the identification of the relations between the entities and the linking of those 

entities to their respective concepts.

These system have been used to develop information extraction pipelines to address use 

cases centered around the extraction of specific types of information from clinical notes 

[20]. For example, mapping clinical entities in notes to Fast Healthcare Interoperability 

Resources (FHIR) standards [40] to supplement discrete electronic health record data for 

purposes such as cohort identification and clinical monitoring. Another example includes 

automatically assigning International Codes for Diseases (ICD-9-CM/ICD-10-CM) to 

clinical records for automated billing [41, 42]. These codes are typically utilized for billing 

purposes but can also provide salient disease or symptom information about the patient [42].
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4. Datasets

The set of biomedical corpora annotated for BEL continues to increase every year and this 

task continues to become a prominent research interest. Important dimensions for diversity 

of these datasets are the domain of the text corpus, target ontology for linking, and the types 

of entities being linked. Scientific literature, the original BEL domain, remains popular, 

with corpora often annotating broad ranges of biomedical concepts mapped to MeSH 

terms or UMLS concepts. Several BioCreative challenges have published corpora in this 

domain focused on niche entities like genes or chemicals, which sometimes map to smaller 

ontologies. Clinical domain datasets are often targeted to entities which provide clinical 

utility such as disorders, problems, tests, and treatments. These are generally mapped to 

either the UMLS or ICD codes. Other sources for datasets include online social media such 

as Tweets and discussion forum posts, as well as drug packaging labels, and Wikipedia. 

There is a particular research interest in using BEL to link adverse drug events (ADE) 

to either MedDRA or the UMLS. We identified at least seven datasets that have been 

curated for the sole purpose of linking drugs and ADEs. Table 1 shows for each dataset, the 

document type, entity types, the target ontology, the number of documents in the dataset, the 

number of mentions, and number of unique mentions (when provided).

5. Performance Comparison

In Table 2, we compare the performance of various extant systems on six BEL datasets 

(BC5CDR Disease [47], BC5CDR Chemical [47], CADEC [64], NCBI Disease [15], n2c2 

2019 [56], and ShARe/CLEF [14]) in terms of accuracy. These datasets were chosen 

because of their relative popularity and the number of authors choosing to evaluate their 

systems using accuracy. We chose accuracy as our common metric because it is reported 

for a plurality of systems. All results were reported by the respective authors, so it’s 

important to note that results may not be directly comparable due to differences in evaluation 

techniques. For example, Miftahutdinov and Tutubalina [67] evaluated their system using 

cross validation on the entire corpus rather than only the test partition. Some authors choose 

to remove conceptless annotations [68, 67]. Also, some systems [29] only require their 

systems to map mentions to a correct synonym for predictions to be considered correct, 

whereas other systems require the more stringent criteria of mapping to the correct concept 

ID [68, 69]. The latter specification generally results in lower accuracy because systems 

must solve the additional challenge of disambiguation.

6. Shared Tasks

There have been a number of shared tasks focused on BEL, starting with the inaugural 

BioCreative challenge in 2004 [84]. Table 2 shows the different tasks that have been 

organized over the years. We classify these tasks into three categories based on the type 

of text that was annotated as outlined in the previous section. Within each category, the tasks 

are ordered based on their date. The table also includes the document source, entities and the 

associated ontology.

French and Mclnnes Page 5

J Biomed Inform. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The majority of shared tasks focus on scientific literature with the early BioCreative tasks 

mapping a broad class of biomedical entities to concepts in the MeSH ontology[84]. Since 

that time, new shared tasks have been developed every four years or so, expanding from 

abstracts to full text, and incorporating new entity types. The clinical shared tasks began in 

2013 [14] focusing on disorders with the most recent task [56] expanding to include both 

treatments and tests. The social media shared tasks both happened in 2017 and focused on 

adverse drug reactions(ADR).

7. Technical Discussion

All BEL systems are a pipeline of various components and techniques which can be mix 

and matched to fit a practitioner’s data and use case. Some potential applications of BEL are 

discussed in Section 3. In this section we will discuss the major categories of techniques, 

how they work, and where they’ve been applied.

7.1. Preprocessing

Many BEL publications make no mention of any pre-processing of the input corpus prior to 

training. Whether this step is implied or simply omitted is not entirely clear, but where 

mentioned, many systems follow standard pre-processing steps such as converting all 

text to lowercase and removing punctuation. Authors frequently correct spelling on the 

NCBI Disease dataset, for which D’Souza, et al. [16] curated a corpus-specific dictionary 

to this end, but we have not seen a generalizable tool in use for other datasets. Two 

additional common steps are expanding abbreviations to full form using the Abbreviation 

Plus Pseudo-Precision (Ab3P)[89] tool and separating composite mentions into distinct parts 

(i.e. “BRCA1/2” into “BRCA1” and “BRCA2”) using the SimConcept[90] tool. Finally, it 

is common practice to append the mentions from the training set to the synonym dictionary 

when evaluating performance on the test set [16, 29]. However, some have questioned 

whether this results in an unfair evaluation given the frequent overlap of mentions between 

training and test datasets [91].

7.2. Mention/Concept Representation

Rule-based systems represent mentions using tokens[5, 16], in other words, actual 

human-readable words and phrases. These representations can do fairly well given that 

many mentions are morphologically similar to known synonyms of their corresponding 

concept, but this technique has a real upper bound when mentions differ significantly 

from documented synonyms, and as Blair, et al. [92] note, synonym coverage for 

biomedical entities is far from complete. Representing mentions numerically opens up a 

world of possibilities for choosing sophisticated learning algorithms. The simplest such 

representation is Term Frequency-Inverse Document Frequency (TF-IDF) vectors, used in 

the first machine learning-based BEL system, DNorm[21]. This technique scores tokens 

with a ratio its frequency in a mention by its overall frequency in the set of concept 

synonyms. While this technique is intuitive, it fails to capture semantic meaning and 

shares many shortcomings with token representation. Word embeddings, which project 

tokens into a latent semantic vector space, do address the problem capturing semantic 

meaning. The first iteration of such techniques, led by Word2Vec[23], created static vector 
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representations of tokens which effectively aggregated the contextual usage of a given 

token within a corpus and embedded it in the semantic space. For the first time, word 

embeddings allowed us to mathematically compare the similarity of two given tokens 

without requiring any additional knowledge. The improved quality of these representations 

correlated with a higher quality output from the systems which incorporated them. The 

primary downside to these static representations is that they cannot capture the nuance of 

words that have different meanings in different contexts. Deep contextualized embeddings 

such as ELMo[27] and BERT[28] capture not only aggregate semantic meaning, but also 

take into account a token’s context within a specific sentence. These techniques provide 

unquestionably state of the art embedding quality embeddings, which are the foundation of 

all the current top performing BEL systems. However, quality comes at a computational cost 

and generating deep contextualized embeddings at any practical scale requires access to a 

GPU. The final major category of representations is graph-based techniques, such as concept 

vectors. Node2Vec [93], as employed by Ferré, et al. [94] in their CONTES system, models 

concepts in an ontology as nodes in a graph and relationships between concepts as edges, 

it then generates a vector space which embeds concepts such that connected nodes in the 

graph correspond to closeness within the vector space. CONTES used these concept vectors 

only to represent concepts, and learned a mapping between the semantic space representing 

mentions and the ontology space generated by Node2Vec. They also note that this technique 

may not scale well to large ontologies.

7.3. Linking Algorithms

The crux of any BEL system is the algorithm which links the representation of a mention 

to a concept in the target ontology. The most basic implementation of this mapping is a 

dictionary lookup, which checks if the mention is an exact match of some known concept 

synonym. To increase recall, systems [16] may create morphological permutations of the 

mention and check if the permutations match any known synonyms, but the expression of 

natural language is diverse and any system which generates enough blind permutations to 

achieve respectable recall will inevitably generate a huge number of false positives. But 

there is still a place for morphological feature extraction in sophisticated BEL systems, some 

have used Lucene search to select a small set of candidate concepts prior to using deep 

learning techniques to make a final prediction [95].

Learning algorithms train systems find mappings between mentions and concepts in a 

vector space, which allows them to achieve both higher recall and precision. BEL systems 

incorporating classical machine learning started with linear classifiers to learn positive and 

negative correlations between tokens in mentions and concept synonyms [21]. As the quality 

of word representations improved and access to GPUs became widespread in the 2010s, 

deep learning techniques such as CNN [63], RNN [63], GRU [25], and BiLSTM [96] came 

into vogue. Other systems have trained lesser known learning algorithms such as RankSVM 

[33] and TreeLSTM [97], but neither of these have achieved widespread adoption.

As expected, using a BERT for BEL performs quite well. Typically, researchers use BERT 

classifiers [30], but sequence-to-sequence translation models have been explored as well 

[98]. Other models have leveraged the high quality of BERT embeddings to rely on simple 
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similarity measures to perform their mapping [29], training only the encoder and omitting 

a secondary neural architecture entirely. PageRank, an algorithm originally designed for 

scoring the relevance of search engine results, has been used to link entities when using 

graph-based representations [99].

One technique uncommon in BEL that deserves more attention is clustering, which Angell, 

et al. [31] employed following candidate generation by creating an affinity graph with 

mention-mention and mention-concept connections for all mentions and candidates in a 

given document. They iteratively pruned connections in the graph to create clusters until 

each cluster contained exactly one concept linked one or more mentions. This approach is 

especially helpful for disambiguating mentions of generic phrases which corresponded to 

entities described more specifically elsewhere in the document and yielded the current state 

of the art performance for few-shot entity linking.

7.4. Training Techniques

In addition to the building blocks described in the previous sections, we noted several 

training techniques commonly employed by successful BEL systems. The most common 

of these is a two step process in which a system first uses a high-recall technique to 

select a small pool of candidate concepts from the target ontology, followed by a higher 

precision technique to select a single concept for prediction out of the pool of candidates. 

The algorithms used for candidate generation vary widely, but recurring solutions include 

search engine-style algorithms like bag-of-words retrieval function BM25 [33] or lucene 

[95], similarity of mention representations [76, 29], and edit distance [99]. A related strategy 

for narrowing the range of possible candidates is to predict the semantic type of the mention 

and only consider candidates of the predicted semantic type. The MedType [45] system was 

created to perform this type of semantic type prediction in entity linking pipelines. Another 

way that semantic types have been used to augment BEL pipelines is to train the prediction 

step to rank all candidates with the correct semantic type over those with the wrong semantic 

type [95, 81], as opposed to loss functions which only consider the top-ranked candidate. 

External knowledge bases such as Wikipedia [100, 30] have also shown promise as valuable 

sources of information for inclusion in BEL systems.

The state of the art SAPBERT model [30] attributed its success to a self-alignment pre-

training strategy in which only difficult positive and negative examples for a given gold 

concept in each mini-batch are used for training. The subsequent multi-similarity loss 

function simultaneously pushes negative examples away from the gold concept, while 

pulling the positive examples closer. Finally, it is also common to perform entity linking 

jointly with other NLP tasks, in particular, named entity recognition [83, 101, 22].

7.5. Multilingual-based Approaches

Entity linking in non-English corpora presents additional challenges and several non-

English corpora[52, 58, 50] exist to train systems to tackle these challenges. The most 

straightforward approach is to link directly from the source documents to an ontology in 

the same language. This can work well if the ontology has good coverage, but in the 

UMLS, there are many times more English synonyms available than those in non-English 
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target language, even in the best cases (Spanish and French with more than six times and 

twenty-four times respectively[102]). Non-uniform distribution of non-English synonyms 

does allow that there are cases in which this strategy could still work for specific languages 

and problems, such as identifying disorders in Italian clinical notes[103], but for other 

languages and use cases, the scarcity of target language synonyms can be a insurmountable 

obstacle for this strategy. A naive approach for overcoming these challenges is to simply 

translate the non-English mentions into English using standard translation software and 

perform BEL on the translations. This works reasonably well, but is limited by the quality 

of the translation, which may struggle to properly translate medical jargon[103]. Roller, 

et al., 2018[104] combined these two approaches sequentially, first looking for a match 

for a given mention in the target language UMLS, then English language UMLS, and 

finally searching English UMLS for the translation of the mention. Deep learning-based 

approaches[26] favoring encoder models learning a direct mapping from non- English 

mentions to English synonyms[105] have performed well. The current best performing 

model for multilingual BEL adapts the SAPBERT[30] system to map mentions in any 

language to language-agnostic CUIs in the UMLS. This system augments the cross-lingual 

links between CUIs by leveraging the titles of Wikipedia articles available in multiple 

languages where the article title can be mapped to the UMLS for at least one language. The 

authors found that performance for a given language generally correlated with its similarity 

to English, likely because more general translation knowledge could be incorporated into the 

model[102].

8. Discussion

A fundamental limitation of BEL is that treating the task as a classification problem with 

a learning-based approach requires the output space to be at minimum equal to the number 

of concepts to be predicted. While this works well when the output space tends to be small 

[63], these approaches struggle as the size of the taxonomy increases [95], particularly 

with concepts that have only a few example mentions in the training data. While current 

state of the art accuracies greater than 90% on many of the most common BEL datsets 

would seem to indicate that the problem is largely solved, Tutubalina, et al. [91] found 

that approximately 80% of entity mentions in the test datasets they analyzed were either 

duplicated within the test set or replicated exactly in the training dataset. Because many 

systems [16, 95] add training mentions to their synonym dictionaries used for inference 

against test data, this unrealistically inflates the actual abilities of a system to link mentions 

in a corpus with higher variability. They supported this hypothesis by creating a “refined” 

version of five popular BEL datasets, removing all duplication of mentions in the test sets, 

and comparing a state of the art BEL system’s performance on the original and refined 

test sets. Their results showed a substantial performance impact from the de-duplication, 

indicating that developing effective solutions to BEL as a zero or few-shot learning problem 

is an area ripe for future improvements. Developing effective techniques for distant [77] and 

self-supervision [69] will be crucial to scaling BEL systems to perform well when linking 

mentions to concepts which are dissimilar to annotated data.

The development of non-English BEL corpora [52, 58, 50] and recent multilingual systems 

[105, 102] are a great start for expanding BEL to be a truly multilingual task, but BEL 
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performance on non-English texts trails far behind the state of the art performance on 

English texts, especially for languages which are absent or severely underrepresented in the 

UMLS. More work is needed specifically to develop more non-English BEL corpora and to 

find new strategies for overcoming the difficulties of mapping underrepresented languages to 

the UMLS.

Newman-Griffis, et al. [106], demonstrate that existing BEL datasets do not sufficiently 

capture the ambiguity resulting from unique strings mapping to multiple possible CUIs in 

the UMLS. Polysemy, where a word can have multiple senses, can harm the generalizability 

of models when the training data exposes models to only one sense a word, erroneously 

causing it to appear unambiguous. This phenomenon can be especially prevalent in datasets 

which annotate only narrow slices of clinical entities, such as diseases. In such a case, 

“cold” may be annotated several times in reference to a viral infection, but never as 

a relative perception of temperature, though both senses of the word may appear in 

actual notes. Another source of ambiguity common to telegraphic clinical language is 

metonymy, in which one concept is used as shorthand for a related concept. Without 

properly understanding context, BEL systems can easily conflate devices for procedures (i.e. 

“stent”), substances for lab measurements (i.e. “potassium”), and diagnoses for symptoms. 

A final source of ambiguity can result from the level of specificity in the annotation, such 

as whether an instance was noted to be a sequela, whether multiple were specified (i.e. 

“injuries” vs. “injury”), or hierarchical specificity (i.e. “hemiplegia” vs. “left hemiplegia”). 

They recommend developing ambiguity-focused datasets to train systems to capture a more 

nuanced contextual understanding of ambiguous mentions.

A subsequent paper by Newman-Griffis [107] introduces the research paradigm of 

“translational NLP”, in which basic and applied NLP research inform one another. Under 

this paradigm, we can see a potential way to mitigate at least one class of ambiguity. 

When researchers query structured clinical data, which may include the discretized results 

of a BEL algorithm, they rarely search for a single concept in isolation, rather they curate 

a set of concepts [108], often hierarchically related, which correspond to a more general 

clinical phenotype. In such cases, hierarchical classification errors could in many cases be 

close enough to the gold concept to still be included in the correct phenotype. Evaluating 

performance with respect to ontological similarity rather than solely considering a binary 

measure of whether a prediction exactly matches the gold concept could be a productive line 

of inquiry for future BEL research.

9. Conclusions

In this paper, we reviewed previous work on BEL providing an overview of the progression 

of historical approaches (Section 2) and providing a reference for the BEL datasets (Section 

4) and shared tasks (Section 6) that have been developed. We then discussed salient 

challenges and opportunities for future work, highlighting four areas specifically:

• Reported results are inflated by overlap between training and test mentions and 

duplication within test datasets. Evaluating systems performance on datasets 
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without the benefit of overlap and duplication makes it clear that there is much 

work to be done with BEL as a zero or few-shot learning problem.

• BEL performance on non-English mentions is significantly lower than on 

English, especially for those languages absent or severely underrepresented in 

the UMLS.

• Current BEL datasets do not sufficiently capture the ambiguity resulting from 

unique strings mapping to multiple distinct concepts.

• Alternative performance metrics like ontological similarity should be explored in 

order to develop systems which best meet real world use cases.
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Figure 1: 
PRISMA flow diagram of publications returned from a PubMed search for full-text articles 

published between 1980 and August 2022 which contained any of the phrases “entity 

linking”, “entity normalization”, “concept linking”, or “concept normalization” in the 

abstract or title.
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Figure 2: 
Possible steps in a rule-based BEL pipeline where the system attempts to match 

progressively more permuted versions of the initial mention.
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Figure 3: 
Typical steps in a machine learning-based BEL pipeline.
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Table 1:

Biomedical Entity Linking Datasets

Domain Doc Type Citation Date Entity(ies) Ontology Doc 
Count Mentions Unique 

Concepts

Scientific 
Literature

Biomedical 
Abstract

GENIA [43] 2003 Biomedical (broad) MeSH 2,000 93,293 –

NCBI Disease 
[15] 2014 Disorder MeSH 793 6,892 790

MedMentions 
[44] 2019 Biomedical (broad) UMLS 4,392 352,496 34,724

MM-ST21pv 
[44] 2019 Biomedical (broad) UMLS 4,392 203,282 25,419

PubMedDS [45] 2021 Biomedical (broad) MeSH 13,197,430 57,943,354 44,881

RegEl [46] 2022 DNA Regulatory 
Elements Various 419 8,369 2,947

Biomedical 
Article

BC5CDR [47] 2016 Chemical, Disorder MeSH 1,500 10,227 –

CRAFT [48] 2016 Biomedical (broad) Many– 97 – –

BioNLP-2019 
[49] 2019 Bacteria Biotope NCBI 392 7,232 1,072

PhaarmaCoNER 
[50] (ESP) 2019 Chemical, Drug UMLS 1,000 7,624 –

BC7NLMCHEM 
[51] 2021 Chemical MeSH 150 38,342 2,064

Multi 
Source

Quaero [52] 
(FRA) 2014 Biomedical (broad) UMLS 2,538 26,407 5,796

Mantra [53] 2014 Biomedical (broad) UMLS 1,450 5,530 3,780

Figure 
Caption BC6BioID [54] 2017 Gene,Chemical ChEBI,UniProt 17,883 133,003 7,652

Clinical Clinical 
Note

ShARe/CLEF 
[14] 2013 Disorder UMLS 431 19,557 1,871

CUILESS2016 
[55] 2018 Disorder UMLS 431 5,397 1,738

n2c2 2019 [56] 
(Luo, 2019) 2019 Problem, Test, 

Treatment UMLS 100 10,919 3,792

MADE [57] 2019 ADE, Drug, 
Indication MedDRA 1,089 43,000 –

Cantemist [58] 
(ESP) 2020 Oncology ICD-O 1,301 16,030 850

BRONCO [59] 
(DE) 2021 Oncology ICD-10, OPS, ATC 200 11,124 4,027

Social 
Media/
Online 

Literature

Drug Label TAC2017 [60] 2017 ADE MedDRA 200 26,488 –

Tweets

Twitter ADR 
[61] 2015 ADE, Indication UMLS 1,784 1,693 –

SMM4H-17 [62] 2017 ADE MedDRA 25,678 – –

TwADR-L [63] 2016 ADE SIDER? 1,436 – 273

Drug 
Forum

DailyStrength 
ADR [61] 2015 ADE, Indication UMLS 6,279 4,929 –

CADEC [64] 2015 ADE,Disorder,Drug AMT,MedDRA,SNOMED 1,253 9,111 3,591

PsyTAR [65] 2019 ADE,Disorder UMLS 891 7,414 1,671

COMETA [66] 2020 Biomedical (broad) UMLS – 20,000 3,645
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Domain Doc Type Citation Date Entity(ies) Ontology Doc 
Count Mentions Unique 

Concepts

Wikipedia WikiMed [45] 2021 Biomedical (broad) UMLS 393,618 1,067,083 57,739

International Classification of Diseases for Oncology (ICD-O); Operationen und Prozedurenschlüssel (OPS); Anatomical Therapeutic Chemical 
Classification System (ATC);
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Table 2:

Performance Comparison of Extant Systems

BC5CDR (d) BC5CDR (c) CADEC NCBI Disease n2c2 2019 ShARe/CLEF

Chen, et al. [70] - - - - 82.1 -

D’Souza, et al. [16] - - - 84.7 - 90.8

Ji, et al. [71] - - - 89.1 - 91.1

Lee, et al. [72] - - 65.0 - - -

Li, et al. [73] - - - 86.1 - 90.3

Liu, et al. (SAPBERT) [30] 93.5 96.5 - 92.3 - -

Limsopatham and Collier [63] - - 81.41 - - -

Kalyan, et al. [74] - - 82.6 - - -

Miftahutdinov and Tutubalina (2018) [67] - - 88.8 - - -

Miftahutdinov, et al. (2021) [75] 75.8 83.8 - - - -

Mondal, et al. [76] - - - 90.0 - -

Niu, et al. [26] - - 84.7 - - -

Pattisapu, et al. [77] - - 76.7 - - -

Phan, et al. [78] 90.6 95.8 - 87.7 - -

Schumacher, et al. [68] - - - - - 62

Silva, et al. [79] - - - - 80.6 -

Sung, et al. [29] 93.2 96.6 - 91.1 - -

Tutubalina, et al. (2018) [25] - - 70.1 - - -

Wright, et al. [80] 88 - - 87.8 - -

Xu, et al. (2020) [81] - - 87.5 - 83.6 -

Xu and Miller (2022) [82] - - - - 85.3 91.3

Zhang, et al. (KRISSBERT) [69] 90.7 96.9 - 89.9 80.2 90.4

Zhao, et al. [83] - - - 88.2 - -

Comparison of reported accuracies on six popular BEL datasets. The BC5CDR dataset contains partitions corresponding to disease (d) and 
chemical (c) normalization, which are often evaluated separately.
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