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Abstract

Despite quantum leaps, the biomimetic regeneration of cartilage
and osteochondral regeneration remains a major challenge, ow-
ing to the complex and hierarchical nature of compositional,
structural and functional properties. In this review, an account
of the prevailing challenges in biomimicking the gradients in
porous microstructure, cells and extracellular matrix (ECM) ori-
entation is presented. Further, the spatial arrangement of the
cues in inducing vascularization in the subchondral bone region
while maintaining the avascular nature of the adjacent cartilage
layer is highlighted. With rapid advancement in biomaterials
science, biofabrication tools and strategies, the state-of-the-art
in osteochondral regeneration since the last decade has expan-
sively elaborated. This includes conventional and additive
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manufacturing of synthetic/natural/ECM-based biomaterials, tissue-specific/mesenchymal/progenitor cells, growth factors and/or
signaling biomolecules. Beyond the laboratory-based research and development, the underlying challenges in translational research
are also provided in a dedicated section. A new generation of biomaterial-based acellular scaffold systems with uncompromised bio-
compatibility and osteochondral regenerative capability is necessary to bridge the clinical demand and commercial supply.
Encompassing the basic elements of osteochondral research, this review is believed to serve as a standalone guide for early career
researchers, in expanding the research horizon to improve the quality of life of osteoarthritic patients affordably.
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Introduction

The osteochondral tissue is highly complex in terms of the spa-
tial distribution of the structural elements, biochemical composi-
tion and their individual mechanical properties at each tissue
level [1-3]. Broadly, Osteochondral tissue structure consists of ar-
ticular cartilage, middle zone, deep zone, calcified zone and sub-
chondral zone from distal to proximal direction. Osteoarthritis
(OA) is one of the most prevalent forms of arthritis caused by
osteochondral degeneration which affects 32.5 million people in
the USA [4, 5] OA affects both the articulating cartilage and the
subchondral bone, arising from a chronic partial or full thickness
osteochondral lesion. A localized imbalance between anabolic
and catabolic activities of the cartilage tissue is compromised
leading to further advancement of the tissue degradation [6].

If detected early, common palliative measures for OA include
physiotherapy coupled with non-steroidal anti-inflammatory

drugs, intra-articular injection of glucocorticoids, hyaluronic acid
(HA) etc., which do not have uniform effectiveness in the diverse
patient population [7-9]. In a comparatively progressed stage,
microfracture and micro-drilling are frequently used as clinical
treatments. Unfortunately, viscoelastic hyaline cartilage is rarely
observed in the regenerated tissue, whereas fibrocartilage compris-
ing collagen type-I dominates the microstructure. As a result, artic-
ulating capability is often compromised leading to secondary
osteochondral disease hotspots. Autografting of small sections of
the osteochondral units from a non-articulating site is often trans-
planted in the affected area, a popular clinical procedure known as
mosaicplasty [10, 11]. Unfortunately, allogenic osteochondral tis-
sue transplantation is often associated with the risks of infection
and disease transmission and inferior integration [12-14].

To address the above-described limitations, ‘Regenerative
Engineering’, coined by Dr Cato T. Laurencin [15] is believed to be
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the next-generation approach in osteochondral regeneration.
Regenerative engineering is defined as the convergence of the
knowledge and concepts from disparate fields including ad-
vanced material science, stem cell science, physics, developmen-
tal biology and clinical translation for the regeneration of
complex tissues and organ systems [16-20]. The last two decades
have seen a wide range of regenerative approaches to develop
osteochondral scaffolds employing novel biomaterials, defect-
specific design concepts, tissue-specific stem cells, biomolecules
and growth factors using conventional and advanced fabrication
methodologies. The graphical abstract illustrates the current
gamut of the highly inter-disciplined osteochondral research
footprint. In this review, a comprehensive discussion of the key
challenges, the existing state-of-the-art as well as the transla-
tional perspectives in osteochondral regeneration is presented.

Current challenges in osteochondral defect
regeneration

Hierarchical complexity of osteochondral tissue
structure and composition

Osteochondral tissue is a complex structure with multiple hierar-
chies (Fig. 1). The very first layer is the articular cartilage devoid
of blood, lymphatic vessels or nerves, instead made up of a dense
extracellular matrix (ECM) and sparsely embedded chondrocytes
[21, 22]. The load-bearing articular cartilage (hyaline) consists of
glycosaminoglycans (GAGs) including chondroitin sulfate (CS)
and keratin sulfate, attached to the proteoglycans (mostly aggre-
can) in the cartilage ECM. Being negatively charged, the GAGs at-
tract water molecules assisted by hydrogen bonding and trap
them inside the intermolecular spaces [23]. The abundance of
the water molecules enables the articular cartilage in withstand-
ing large compressive forces during the physiological loading
cycles [24-26]. The viscoelastic nature of the hyaline cartilage is
significantly contributed by the abundant collagen type II
whereas collagen types V, VI, IX and XI are also present in the
ECM microstructure [27-29].

The superficial layer has lesser thickness with a high density
of collagen fibers oriented parallel to the surface with aligned flat
chondrocytes. Being in contact with the synovial fluid, this zone
maintains lubrication and wear resistance. Next to the superficial
zone, is the middle zone consisting of columnar as well as oblique
alignment of collagen fibers and sparsely distributed chondrocyte
cells. The typical fiber orientation and the abundance of
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Figure 1. Gradient microstructure of a representative osteochondral
tissue-complex cross-section (source courtesy with publication license:
biorender.com).

proteoglycan molecules ensure efficient shock absorbance and
compressive stress resistance without eliciting any damage to
the subchondral bone. Below the middle zone, the bunch of colla-
gen fibers are perpendicularly oriented and anchored with the
subchondral bone region, known as the deep zone. The oriented
fibers contribute to the toughness of this area and the interstitial
chondrocyte cells often align with the fibers in a grouped manner
[30]. Calcified cartilage is the next tissue type below the deep
zone, having a wave-like line distinguishing it from the deep
zone, also known as the tidemark. Tidemark is believed to be a
defensive front against the articulating shear forces on the co-
lumnar fibers anchored with the subchondral bone. In this zone,
the chondrocytes also deposit collagen type X to calcify the ECM
[31,32].

Being separated from the calcified cartilaginous region by the
cement line, the subchondral bone is the terminal layer, compris-
ing trabeculae and bony lamella (subchondral bone plate) [23].
Being mechanically the strongest component in the osteochon-
dral tissue complex, this zone plays a pivotal role in the force
transmission through the joint. Reportedly, around 30% of the
applied joint load is attenuated by the subchondral bone whereas
the value for the same in the case of cartilage is nearly 1-3% [33,
34]. Furthermore, subchondral bone contains unmyelinated
nerve endings, making it susceptible to nociception during cyclic
loading on the eroded or damaged osteochondral unit. Thus, the
regeneration of the seamless gradient between the innervated,
vascularized and mineralized bone and the avascular, non-min-
eralized and aneural cartilage should be one of the most chal-
lenging tasks to preserve the articular cartilage-subchondral
bone homeostasis [35, 36].

Challenges in cell sourcing and distribution

Autologous chondrocyte harvesting, isolation, expansion in cul-
ture, seeding in scaffolds or direct implantation face significant
challenges due to limited density in the host cartilage tissue and
their proneness of dedifferentiation [23, 37]. Thus, progenitor
cells are considered as one of the popular choices in regenerative
engineering. Human mesenchymal stem cells (hMSCs), bone
marrow-derived stem cells (BMSCs) and adipose tissue-derived
stem cells (ADSCs) are primarily used to allow tissue-specific dif-
ferentiation in different zones (cartilaginous or bony). It is indeed
a challenging exercise to spatially and temporally control the os-
teogenic and chondrogenic differentiation using a set of different
matrix properties (biomaterials, scaffolds) and external factors
(growth factors, small biomolecules, physical stimulation etc.).
Although cell-free biomaterials-based scaffolds are commonly
used commercially, it has been reported that cells, protein and
growth factor-laden scaffolds exhibit better tissue regeneration
in vivo [38-40]. It is worth mentioning, there are strict regulatory
controls on cells and biological molecules laden osteochondral
scaffolds in clinical practices. Besides the different cell types,
there are also gradients in the cell population throughout the dis-
tal to the proximal length of a given osteochondral tissue com-
plex. It is noteworthy that the cell density reduces from the
superficial toward the middle and deep zones by 59% and 67%,
respectively [41, 42]. While chondrocytes are the abundant cell
types in the cartilaginous zones, the subchondral bony region
comprises a spectrum of cell types such as osteoblasts, osteo-
clasts, osteocytes, chondrocytes, endothelial and MSCs where
osteocytes comprise 90-95% population of the total bone cells
regulating the interaction between the osteoblasts and the osteo-
clasts. It is, therefore, pertinent to understand the gradient of dif-
ferent cell types and their population density to better mimic the
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host tissue microstructure during the development of the matrix/
scaffolds employing osteochondral regenerative engineering.

Challenges in biomaterials, biomolecules and
growth factors selection

When the repair/regeneration of the highly complex osteochon-
dral tissue is concerned, the major challenge is to determine how
perfectly the local tissue growth can be supported by either a bio-
material matrix or a scaffold, closely imitating the host tissue en-
vironment. Given the diverse material composition of the
indigenous osteochondral tissue, it is essential to select suitable
biomaterials for each layer, while designing the gradient or
multi-layered (stratified) tissue constructs. There exists four ma-
jor class of biomaterials contributing to osteochondral regenera-
tion: natural polymers, synthetic polymers and inorganic
biomaterials such as bioceramics and metallic biomaterials.
Natural polymers: cellulose, silk, polyester, polyamides, collagen,
alginate, chitosan (CS), gelatin etc. are the naturally derived poly-
meric biomaterials used for the regeneration of the cartilage
zones. Very often, they are combined with bioceramics (mostly
calcium phosphates) to provide higher mechanical stiffness to
biomimic the subchondral bone phase [43-47]. The major pros of
natural polymers are the better biocompatibility and enhanced
immune system acceptance, whereas the variability in the mo-
lecular weight, chemical composition in different samples and
batches as well as inferior mechanical strength are the notable
cons. Synthetic polymers: the synthetic polymers used in osteo-
chondral regeneration, such as polylactic acid (PLA), poly(p,.-lac-
tic acid) (PDLA), polyethylene glycol (PEG), polyglycolic acid
(PGA), polyvinyl alcohol (PVA), polypropylene fumarate (PPF), pol-
ycaprolactone (PCL), polylactic-co-glycolic acid (PLGA), polyethyl-
ene (PE), ultra-high molecular weight PE (UHMWPE) etc., are
reliable in terms of mechanical strength fidelity and composi-
tional consistencies but at the cost of hydrophilicity, biocompati-
bility and biodegradability [48, 49]. Biodegradability is a major
issue when osteochondral tissue engineering is concerned, where
most of the synthetic biomaterials perform unsatisfactorily.
Biopolymer: in recent years, new biopolymers are evolving with
enhanced biodegradability, one of which is citrate-based biopoly-
mers. Polyoctamethylene citrate is one such example demon-
strating  accelerated  osteochondral regeneration  with
commendable biodegradability [50-52]. Over the last two deca-
des, Dr Laurencin's research group contributed significantly to
polyphosphazene-based regenerative engineering to have a tune-
able control over tissue regeneration and scaffold biodegradabil-
ity [53-56]. The biodegradability is governed by the tailored
incorporation of hydrolytically active side groups such as, imid-
azole, lactate, glycolate or with amino acid ester group function-
alization. It is speculated that polyphosphazenes have great
potential in osteochondral regenerative engineering [57]. Metal
and bioceramics: for the osseous phase, mostly calcium phos-
phates are used as the inorganic biomaterial whereas metallic
biomaterials (titanium, Ti-6Al-4V, Co-Cr etc.) trabecular archi-
tectures are also reported but to a comparatively lesser extent.
Hydroxyapatite (HAp) is the major workhorse to model the sub-
chondral bone alone or in combination with other polymeric bio-
materials [58]. Apart from HAp, tricalcium phosphate (TCP),
tetracalcium phosphate, biphasic calcium phosphate, Bioglass®
etc. are also utilized to fabricate the subchondral bone phase of
an osteochondral scaffold [59, 60].

Unlike the cartilaginous zone, the bony region is characterized
by vasculatures and interconnected porosities. Very often,

porogen materials, e.g. sodium chloride (NaCl), PEG, gelatin etc.
are used as the sacrificial/leaching material to accord intercon-
nected porosities in the micro-structure [61-64]. While it is rare
to regenerate all the four intermediate zones of the cartilage indi-
vidually, there is a common trend to imitate the cartilage and the
bone as two different phases in bi-layered scaffolds, whereas
three phases in the tri-layered scaffolds are considered such as,
superficial (mostly hydrogel), intermediate (hydrogel and inor-
ganic biomaterial) and the bony phases (thermoplastic biopoly-
mers or bioceramics) [65, 66]. No distinguishable zonal
demarcation should be noted in the gradient scaffolds where
pure articular cartilage and bone mimicking biomaterials should
be prevalent at the two extremities of the gradient scaffolds [23,
67, 68].

Growth factors and small molecules/drugs are of pivotal im-
portance to strategically direct the chondrogenic and osteogenic
differentiation of the stem/progenitor cells in the bioengineered
scaffold or treatment/intervention region under interest. In the
last two decades, it has been widely reported that TGFp1, TGFf2
and TGFB3 promote cartilage regeneration whereas, BMP-2 and
BMP-7 facilitate osteogenesis [69-73]. Insulin-like growth factors
(IGF-1), recombinant human bone morphogenic protein (thBMP-
2) and recombinant human insulin-like growth factors (thIGF-1)
are also examples of highly cited growth factors to accelerate
osteochondral regeneration. To induce vascularization in the
subchondral bony region, researchers also made use of vascular
endothelial growth factors, platelet-derived growth factors
(PDGF), fibroblasts growth factors etc. Apart from the growth fac-
tor proteins, a set of biomolecules also demonstrated efficacy in
osteochondral defect regeneration. While HA is a conventional
choice to induce and direct chondrogenesis in tissue-engineered
constructs or through direct intraarticular injection in defect
sites, different peptides are also recently used to functionalize
scaffold biopolymers to augment osteochondral regeneration.
One such example is HA-binding (HAbind) PCL conjugate con-
taining the amino acid sequence as found in the HA-binding re-
gion of the anchoring protein in the aggrecan complex, the key
component of hyaline cartilage. Three glutamic acid peptides,
known to differentiate hMSCs toward osteogenic lineage were
used to modify the PCL (E3-PCL) [74]. The peptide molecules
functionalized scaffolds demonstrated efficacious chondrogene-
sis and osteogenesis excluding the application of any growth fac-
tors. In addition, it has been shown as a wise alternative to use
spatial concentration gradient of the growth factors and small
biomolecules while loading in the tissue-engineered scaffolds to
control the sustained release both in the culture media, in vitro
and in vivo. Most often, core-shell or layer-by-layer deposition of
the biochemicals is used to avoid post-implantation ‘burst’ re-
lease. Recently, in the Laurencin group, a novel artificial stem
cell mimicking system is developed (synthetic artificial stem
cells) with the capability to deliver the target-specific secretomes
to regulate chondrogenesis in the OA treatment [75]. Similarly,
extracellular vesicles (EVs) released by mesenchymal stem/stro-
mal cells, recently grabbed the attention in view of their regula-
tory capabilities in targeted bone and cartilage regeneration. EVs
mediate cell signalling, influences major biological activities such
as cell growth, migration and proliferation. Briefly, the bi-lipid
layered EVs breakdown in the extracellular space and the cargo is
instantly released to interact with the target cells. Over the last
Syears, EVs are being investigated for their therapeutic efficacies
in osseous and chondral regeneration [76-78].
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Challenges in adapting the microstructural and
mechanical property gradients

The microstructure and mechanical properties of bioengineered
scaffolds are directly related to each other, where the spatial po-
rosity distribution influences the microstructure of the osteo-
chondral scaffolds. The porosity and mechanical properties have
an inverse relationship which is important to achieve the benefits
of biological fluid exchange, cell migration, proliferation, vascu-
larization as well as physiologically relevant strength properties
to withstand the articulating loading cycles. The influence of po-
rosity on chondrogenesis and osteogenesis is well established [41,
79]. Before developing osteochondral tissue architectures, it is im-
perative to understand the porosity distribution in a typical
osteochondral tissue microstructure. The mean pore size, pore
volume fraction and the interconnectivity from the articulating
surface toward the subchondral bone vary widely. The extent
and alignment of the proteoglycans and the collagen fibers con-
trol the porosity of the articulating layer which is normally 60-
85% porous having the mean pore size in the range of 2-6nm in
diameter [41]. Being open and interconnected, the porosities en-
able the exchange of biological liquid from the synovial side to
the subchondral bone region. These interconnected pores also fa-
cilitate the migration of BMSCs to the articulating surface to aid
in chondrogenesis. Toward the calcified cartilage, the porosity
further reduces making the zone almost impermeable except for
the exchange of nutrients, signaling molecules and limited mi-
gration of stem cells which are important for the remodeling of
the underlying tissues.

Similar to all osseous structures, the subchondral bone is also
divided into two gradient zones, such as cortical and cancellous/
spongy bone. The cortical bone interfaces with the calcified carti-
lage while the cancellous bone interacts with the bone marrow.
The cortical bone is compact and mechanically strongest, having
a pore volume fraction in the range of 5-30% and a mean pore
size of 0.1-250 pm. The porosity increases gradually toward the
cancellous site, having the pore volume fraction ranging from
30% even up to 90% depending on the anatomical site and the
age. The mean pore size can vary in a broad range from 5 to
2000 um (1.5-2mm). Apart from the less densely packed trabec-
ula, these areas contain plenty of blood vessels and unmyelin-
ated nerve fiber terminals. Mechanical properties (Young's
modulus, compression/tensile/flexural strengths) directly rely on
the porosity content in the microstructure [80-84]. It is recom-
mended to conceive the ‘processing-structure—property’ (P-S-P)
linkage of a novel architecture to endorse its efficacy in real-life
osteochondral defect regeneration [85, 86]. The processing path-
ways generate the microstructure, whether the microstructure
governs the end-properties of the scaffold/implant. Although it is
not straightforward to imitate all the individual mechanical prop-
erties of the subsequent zones of an osteochondral site, it has
been recognized as a consensus to simulate the average mechan-
ical properties of the cartilage phase and the subchondral bone
phase in the tissue-engineered constructs. Being a viscoelastic
material (due to the presence of proteoglycans and water mole-
cules), the hyaline cartilage also expresses frequency-dependent
storage and loss modulus. The subchondral successive layers of
the cortical and the trabecular bones exhibit similar mechanical
properties to other bones found in different anatomical locations.
Similar to cartilage, due to the anisotropic orientation of the col-
lagen fibers and the minerals, the mechanical properties of bone
depend on the direction of the force application. For example, the
elastic modulus, compressive and tensile strength of cortical

bone in the transverse direction are 10.1 + 2.4 GPa, 131 + 20.7 and
53 +10.7 MPa, respectively, while the values of the same parame-
ters in the longitudinal direction are 17.9 +3.9GPa, 205+ 17.3
and 135 = 15.6 MPa, respectively [41, 87, 88]. In general, mechani-
cal properties of cancellous bone are direction independent due
to the high porosity and random orientation of the trabecula; the
elastic modulus and compressive strength vary in the range of 1-
900 and 1-10 MPa, respectively [89, 90].

The gamut of conventional and advanced fabrication/process-
ing methodologies should be adapted to manufacture osteochon-
dral tissue-engineered constructs for strategic regeneration/
repair. The selection of the zone-specific biomaterials, cells,
growth proteins along with tailoring the processing-induced mi-
crostructure to achieve the local and global mechanical proper-
ties of the developed scaffolds are the need of the hour.
Directional freezing followed by lyophilization, solvent casting,
gas foaming, melt molding, injection molding, compression
molding, sacrificial material leaching, phase separation process
and polymeric microspheres sintering are a few examples of con-
ventional fabrication methodologies.

Current state-of-'the-art in osteochondral
defect regeneration

In compliance with the definition of Regenerative Engineering, it
is essential to provide the host-mimicking microenvironment to
the embedded cells to regenerate/replace the implanted scaffold
with the newly developed tissues. To achieve this, the smart de-
ployment of suitable fabrication methodologies is required to
process or deliver the biomaterials, cells and growth factors with
very high precision and controllability. In the last two decades, a
significant number of studies have been reported to regenerate/
repair osteochondral defects using both conventional and ad-
vanced processing technologies.

Injectable and microsphere-based biomaterials in
cartilage and osteochondral regeneration

In the early stage of OA, intra-articular knee injection using HA,
pain suppressing corticosteroids, local anesthetics, analgesics as
well as relatively newer regenerative approaches, such as
platelet-rich plasma and autologous MSC injections are consid-
ered as the ‘first-line’ treatment modules (minimally invasive).
Microsphere-based drug delivery captured major attention both
in laboratory-based in vivo experiments as well as in clinical prac-
tices [91-93]. In this approach, the drugs or stem cells are encap-
sulated in biodegradable polymeric/hydrogel-based hollow
microspheres and injected intra-articularly. The biodegradability
is tailored to achieve control over the sustained release of the
molecules for enhanced and long-term regenerative results. For
example, recently, a novel biomimetic injectable amniotic hydro-
gel (AM) encapsulated ADSCs was delivered intra-articularly in a
collagenase-induced osteoarthritic rat model to prevent inflam-
mation and cartilage degeneration [94]. The efficiency of the in-
flammation prevention and cartilage regeneration was evaluated
by qualitatively assessing the gross appearance of the regener-
ated tissue, and joint swelling as well as quantitative probing of
the serum cytokine profiling and histology. It was found that at
each time point (14, 21 and 28days) of the post-treatment, the
joint swelling was significantly decreased (0.05 < P) in the AM en-
capsulated ADSCs treated groups compared to the control dem-
onstrating its anti-inflammatory effects in the osteoarthritic
joint. The AM-ADSCs system also showed a significant reduction
in the level of intercellular adhesion molecule 1 (ICAM-1), leptin,
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selectin and monocyte chemoattractant protein-1 (MCP-1)
expressions both at 21 and 28days post-treatment, along with
the significant increment in TIMP-1 compared to the control
groups at the same experimental time-points [94]. From the gross
morphology and the histological analysis, it was found that the
AM-ADSC treated joints demonstrated a significant reduction in
synovial inflammation, and lesions-free smooth cartilage surfa-
ces endorsed by the strong Safranin O staining.

Xu et al. [95] developed an injectable supramolecular gelatin-
based host-guest macromer (HGM) system to deliver encapsu-
lated growth factor (TGF-B1), small molecule (kartogenin, KGN)
and stem cells (hBMSCs, rMSCs), to study their sustained release
to mediate osteochondral tissue regeneration. The complex mo-
lecular assembly was developed and injected into the drilled fem-
oral groove of the rat knee joint. From the biocompatibility
perspective of the HGM supramolecular system, a prior subcuta-
neous implantation study showed 95% viability of the encapsu-
lated hBMSCs. From the immunohistochemical staining results,
it was observed that the deposition of type II Collagen (Col II) and
CS, which are believed to be the two key components of the carti-
lage matrix [96-98], is higher in the HGM hydrogels than in the
GelMA hydrogels. GAG quantification and histological staining
results demonstrated the KGN/TGF-B1 injected HGM hydrogels
as superior to KGN/TGF-B1 hydrogel, while both of them demon-
strated better cartilage regeneration efficacies compared to
unmodified control, in vivo [95]. Thus, injectable biomaterials
along with cells, proteins and growth factors have promising
therapeutic potential in the articular cartilage and osteochondral
regenerative engineering.

Conventional dual and multi-layered scaffold
systems

In an attempt to mimic the layered native osteochondral tissue
complex, the field of regenerative engineering significantly
strived to develop an expansive variety of stratified scaffold sys-
tems having diverse structural and compositional combinations.
The basic variant of the stratified scaffolds is bi-layered scaffolds
where the two components resemble the cartilage and the sub-
chondral bony layers, respectively. Albeit, it seems to be less rig-
orous to fabricate the bi-layered scaffolds, the risk of layer
delamination persists in case of inferior interfacial interaction/
bonding. The probability of failure is higher if the simulated
layers are fabricated individually and joined subsequently. This
remains applicable for multi-layered constructs as well [99, 100].
Notwithstanding, a good practice is to allow a common phase/
overlapping zone/interface to reinforce both the layers together
and simultaneously during fabrication. In the following sub-
sections, we will highlight the bi-phasic and multi-phasic scaffold
systems to regenerate osteochondral defects with an emphasis
on both in vitro and in vivo results.

Dual layered/bi-phasic osteochondral scaffold system

Liu et al. [101] developed a biomimetic biphasic osteochondral
scaffold with HA-hydrogel mimicking the articular cartilage, fur-
ther strengthened by host—guest supramolecular units for sus-
tained release of kartogenin (KGN, chondrogenic promoter).
Alendronate (ALN—inducing osteogenesis) laden HAp scaffold
was fabricated as the bone mimicking zone and combined with
the cartilage layer with a semi-immersion technique. Post-
fabrication micro-computed tomography revealed efficient pene-
tration and integration of the successive layers. In the KGN-laden
cartilage phase, the expression levels of the chondrogenic marker
genes (aggrecan, collagen II and proteoglycan 4 precursor) of the

hydrogel encapsulated hBMSCs upregulated after 21days of
in vitro culture. Similarly, the expression levels of the osteogenic
marker genes (alkaline phosphatase, RunX2 and collagen I) in the
ALN-laden HAp phase were upregulated multifold compared to
the ALN-free HAp phase [101]. Taken together, the hydrogel-
ceramic bi-phasic scaffolds demonstrated superior chondrogenic
and osteogenic properties in vitro, which was further validated
in vivo by implanting subcutaneously in a rat model. rMSCs were
loaded in the scaffolds and the explants were characterized after
2months of the implantation. Conformed to the in vitro results,
the expression levels of all the chondrogenic and osteogenic
marker genes were significantly higher in the KGN-ALN-laden
scaffolds compared to the drug-free scaffolds [101].

More recently, Cao et al. [102] put a step forward to prepare
ECM-specific dual-phase osteochondral scaffolds. It is known
that decellularized ECM-based scaffolds provide natural chon-
drogenic and osteogenic microenvironments for stem cells [102—
104]. In this study, the individual ECMs were stacked on top of
each other in a cylindrical mold, followed by lyophilizing to ob-
tain the bi-phasic osteochondral scaffold. BMSCs were seeded in
the bi-phasic scaffolds and a significantly higher expression of
the chondrogenic (aggrecan, collagen II and SOX9) and osteogenic
marker genes (collagen I, OCN, RUNX2 and a higher ALP deposi-
tion) were recorded in case of the ECM based scaffolds compared
to the untreated control groups. The osteochondral tissue regen-
eration was investigated in the trochlear grooves of rabbit femurs
by histological analysis and immunohistochemistry. It was found
that the ECM-based scaffolds significantly outperformed the
untreated controls in osteochondral defects regeneration [102]. In
a consensus, the cartilage layer is commonly engineered using a
hydrogel material considering the higher water molecules up-
taking capabilities to enhance the articulation and wear resis-
tance resembling the native proteoglycan-rich articular cartilage.
There is a spectrum of biomaterials available to simulate the
bone layer, ranging from bioceramics to biopolymers [105-107].

Multi-phasic osteochondral scaffold system

With the concurrent evolution of host tissue-mimicking novel
biomaterials and rapid advancement in tissue engineering strate-
gies, the next generation of osteochondral regenerative engineer-
ing is spearheading toward a more biomimetic and
architecturally complex scaffold system. In addition to the base
bi-layers of cartilage and bone, the importance to regenerate the
calcified cartilage interface in osteochondral tissue engineering is
recently realized [31, 108, 109]. This interface is believed to be a
diffusion barrier minimizing the fluid flow between cartilage and
the subchondral layer, thereby preventing the blood vessel inva-
sion from the bone phase.

In an early study, a multiphasic stratified scaffold system was
developed using PLGA-Bioglass® (BG) composite microsphere for
the bone region and agarose gel as the cartilage layer with differ-
ent cell types confined in different zones [110]. Chondrocytes
were laden both in the agarose phase (first phase) mimicking
functionalities and mechanical properties of the cartilage layer
as well as in the transition phase of agarose and PLGA-BG (second
phase) to simulate the calcified cartilage layer. In the PLGA-BG
composite bony layer, osteoblasts were seeded to engineer the
subchondral bone (third phase). It was found that the relatively
stiffer matrix of the interfacial region facilitated the chondro-
cytes to be mineralized and form the calcified region. During the
in vitro co-culture, the individual phenotypes of both chondro-
cytes and osteoblasts were maintained, where chondrocytes pro-
duce proteoglycans and type II collagen while osteoblasts
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deposited type [ collagen and maintained the ALP activity.
Although the calcified interface generation was observed in the
transition zone, chondrocyte hypertrophy in the particular region
was not determined [110].

In the recent year, a multi-layered bionic scaffold consisting of
porous HAD (bone layer), 20% silk fibroin (SF, intermediate layer)
and 5% SF (cartilage layer) using a repeated freeze-thaw method
was developed [111]. The scaffolds were modified using polydop-
amine (PDA) and the cartilage layer was loaded with PDGF.
Synovial MSCs (SMSCs) were seeded in the scaffolds and the ca-
pability of osteochondral regeneration was assessed in the troch-
lear zone of the rabbit knee joint [111]. The in vitro PDGF release
in the PDA-modified scaffolds increased gradually with time. In
line with the MRI and gross morphological assessment, the histo-
logical staining (H&E, Safranin O/fast green) and immunohisto-
chemistry (collagen I, collagen II, aggrecan) analysis also
showcased significantly higher regeneration capability of the
PDA-PDGF scaffolds, in vivo [111].

Ding et al. [112] employed a modified temperature gradient-
guided thermal-induced phase separation (TIPS) technique to de-
velop a unique osteochondral scaffold. The biomimetic chondral
layer was composed of longitudinally oriented tubular SF and the
bone layer was made up of spherical microporous HAp and SF
composite [112]. In brief, HAp and SF composite solution was in-
filtrated in partially sintered paraffin microspheres in a mold and
frozen followed by pouring of SF solution to allow rapid direc-
tional solidification. After lyophilization, the columnar SF phase
was crystallized with methanol solution, and the partially sin-
tered paraffin microspheres were leached out with hexane leav-
ing interconnected spherical microporosities in the HAp-SF bone
layer. The scaffolds were seeded with ADSCs tagged with phyco-
erythrin (PE)-conjugated anti-rabbit monoclonal antibodies
(CD44-PE, CD105-PE and CD34-PE) to quantitatively probe the
expressions in flow cytometry [112]. A cell-free compact region in

between the cartilage and subchondral bone was observed
closely resembling the intermediate calcified cartilage. In the
chondral region, toluidine blue, Safranin O and immunohisto-
chemical staining disclosed that GAG deposition and collagen II
expression increased with incremental time. Similarly, in the
bone region, alizarin red, von Kossa and immunohistochemical
staining revealed higher matrix mineralization and collagen I ex-
pression over time. Figure 2 represents the scaffold preparation
methodology and the histological and immunohistochemical
results demonstrating the capability of the tri-layered bionic
scaffolds in the regeneration of osteochondral defects [112].

Gradient osteochondral scaffold system

Gradient osteochondral scaffolds are the most reliable and con-
sistent performers under physiological loading cycles due to the
absence of an abrupt transition between dissimilar material
properties/structural elements [1, 41, 68]. In normal native tissue
also, a significant overlap and seamless transition between the
adjacent zones of different tissue hierarchies are observed. There
exists a broad gamut of technology varieties to develop gradient
osteochondral tissue constructs encompassing both traditional
and advanced methodologies. In this section, we will discuss the
traditional methodologies while the advanced approaches will be
discussed in upcoming sections.

Dorcemus et al. [68] developed a gradient PLGA-HAp-HA
hydrogel-based scaffold system, where PLGA microspheres with
a graded pore volume distribution were sintered to achieve gradi-
ent porosity distribution. In brief, the HAp-modified PLGA micro-
spheres were mixed with varying quantities of NaCl porogen and
stacked on top of each other followed by sintering. Next, the
porogen was leached in water and the higher porosity end of the
graded porous PLGA-HApD scaffolds was infiltrated with HA hy-
drogel to simulate the cartilage phase. Before infiltration, the
PLGA-HAp scaffolds were dip-coated with BMP-2 growth factor
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and the hydrogel contained TGF-B1 along with hMSCs. Finally,
the scaffolds were cultured in hMSCs laden co-differentiation
media and the chondrogenic (DMMB assay) and osteogenic (aliza-
rin red staining) potential were evaluated in the distal and proxi-
mal end of the gradient porous scaffolds, respectively [68]. Higher
GAG deposition was observed in the distal cartilage end whereas
there was no significant difference in the osteogenesis at the two
ends of the scaffolds. In this study, the synergistic effect of BMP-2
and TGF-B1 in chondrogenesis was established where it was
noted that Col II, Sox9, GAGs and aggrecan expressions increased
with BMP-2 in a dose-dependent manner [68].

In another study, Mohan et al. [113] also fabricated PLGA-
based scaffolds having opposing gradients of CS and B-TCP.
Chondrogenic (PLGA-CS) and osteogenic (PLGA-TCP) monodis-
persed microspheres were separately prepared, and the micro-
sphere suspensions were injected from mutually opposite
directions in a cylindrical mold. The gradient chondrogenic and
osteogenic scaffold was sintered at ambient temperature using a
‘solvent/non-solvent’ sintering technique using ethanol-acetone
and lyophilized. The cylindrical scaffolds were infiltrated with ei-
ther TGF-B3 or IGF-1 and implanted in the femoral condyles of
skeletally mature sheep models [113]. After the single end-point
at 52 weeks, the scaffolds were explanted and the tissue sections
were stained using H&E and Safranin-O to probe the chondrogen-
esis. It was found that the regenerated hyaline cartilage in the an-
imal group that received the scaffolds with TGF-p3, was
significantly higher compared to the group who received IGF-1
modified PLGA-CS-TCP scaffolds. Surprisingly, no assessment for
the osteogenesis was carried out in this study which may be due
to regeneration of cartilage is more challenging compared to the
bone counterpart [113]. In the authors’ group, microsphere-based
biodegradable polymeric scaffolds are well established in bone
regenerative engineering [114, 115].

In a recent study, a high throughput methodology was devel-
oped to create seamless gradient osteochondral scaffolds using a
novel buoyancy-driven approach [116]. Polysaccharide Ficoll was
added with GelMA (gelatin methacryloyl) as the denser base solu-
tion. Another solution of GelMA and HepMA (heparin methacry-
loyl) was added to the base solution with a controlled injection
rate. The HepMA phase was pre-laden with BMP-2 and both the
phases (base and injected) were pre-loaded with hMSCs and
photoinitiator. After the formation of the stable buoyancy-driven
gradient solution, the entire system was immobilized using UV
light-mediated crosslinking [116]. The novel osteochondral con-
struct was cultured in a common media for 28 days. Alizarin red
S staining exhibited the formation of an osseous layer in the
BMP-2 rich phase (HepMA side) while alcian blue revealed the
sulfated GAGs throughout the length of the scaffolds. The same
trend was endorsed by immunohistochemical analysis as well,
where collagen type II was expressed throughout the scaffold
and the bone marker protein osteopontin was found in the
mineralized cap on the bony side. Table 1 summarizes the results
of the studies discussed in this division.

Advanced manufacturing strategies in
developing biomimetic osteochondral scaffolds

Although the traditional fabrication technologies were deployed
in a handful of successful osteochondral regenerative research,
with the rapid advancement of the manufacturing schemes,
osteochondral regenerative engineering also benefited largely to
develop more bionic scaffolds with tuneable structural and func-
tional properties. This section will review the progress of a few
broadly used advanced manufacturing methodologies in

osteochondral regeneration, e.g. electrospinning, different addi-
tive manufacturing (AM) and their combinations, and organoid
and microfluidics-based regeneration modeling.

Electrospinning-based manufacturing of osteochondral
scaffolds

Electrospinning, formerly known as electrostatic spinning, was
first studied by Zeleny in the year 1914 whereas Formhals filed
the first patent on the electrospinning process in producing poly-
meric nanofibres in 1934 [118-121]. Although the basic concept
was established long before (1902) when Cooley [122] and Morton
[123] patented the methodology and tools for electrically dispers-
ing fluids, it was Laurencin et al. [124, 125] who established this
technique for the tissue engineering purpose in the year 2002.
The detailed electrospinning technology and the process physics
can be found elsewhere [118, 126, 127]. Electrospinning is known
for its multimodal capability to generate uniaxial, co-axial or
multiaxial polymeric nanofibers which are collected on sub-
strates to have highly interconnected micro- to nanoporous scaf-
folds having a very high surface area, one of the major
prerequisites for enhanced cell-material interaction. Owing to
the provision of multicore production, electrospun fibers are an
excellent medium for target-specific controlled drug delivery
[128].

Hejazi et al. [129], in a very recent study, prepared a five-
layered osteochondral scaffold using a specially designed electro-
spinning set up. Bone and cartilage phases at the two extreme
ends were deposited using PCL/gelatin + nano-HAp (nHA) and
PCL/gelatin + CS/PVA-based nanofibers, respectively. In between
these two layers, three intermediate layers were having continu-
ously varying compositions of PCL, gelatin, CS and PVA to mimic
the continuous compositional and mechanical gradient from
bone toward the cartilage. Due to the interconnected porosity dis-
tribution and presence of gelatin, water uptake was boosted, fa-
cilitating the body fluids and nutrients transport from the host
tissues. The Hap-based mineral nanoparticles enhanced the me-
chanical properties of the multi-layered electrospun scaffolds
[129].

Most often electrospinning is combined with other fabrication
tools to achieve better hybridized properties compared to the in-
dividual techniques. Zhang et al. [130] fabricated a composite bi-
layered scaffold integrating electrospinning and freeze-drying.
PLA nanofibers were deposited layer-by-layer fashion to prepare
the bone layer followed by the addition of collagen solutions on
top of it to form an interface and the collagenous cartilage layer,
followed by freeze drying (COL-nanofiber scaffold). hBMSCs were
cultured and the COL-nanofiber scaffolds exhibited higher osteo-
genesis with almost 2-fold higher expression levels of osteocalcin
(OCN) and RUNX2 compared to the control. After 12 weeks of
transplantation in the rabbit femoral condyle in vivo, a combina-
tion of articular cartilage and fibrocartilage was observed in the
COL-nanofiber groups, which may be attributed to the better
overall osteochondral regeneration owing to a better quality of
the subchondral bone repair. It is known that enhanced subchon-
dral bone remodeling positively influences the regeneration of ar-
ticular cartilage [131]. The enhanced chondrogenesis was also
endorsed by the histological staining analysis (H&E and Safranin
O) [130]. Figure 3 demonstrates the manufacturing schemes and
the key results depicting the effectiveness of the electrospun
nanofibrous phase in subchondral bone remodeling, in turn
influencing better articular cartilage regeneration.
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Figure 3. Collagen and electrospun PLA based biphasic scaffold in regeneration of osteochondral defects in rabbit model. (a) ‘All collagen’-based
scaffold manufacturing method; (b) hybrid biphasic scaffolds fabrication of electrospun PLA and freeze-dried collagen; (c-h) gross morphology of the
non-treated, all collagen (COL) and collagen-electrospun PLA fiber (COL-nanofiber) scaffolds; (i-j) ICRS scoring for the repair qualities (reprinted with

permission from Elsevier).

Liverani et al. [132] also developed a composite multi-layered
scaffold integrating three techniques, sponge replication,
freeze-drying and electrospinning. 45S5 Bioglass® was used to
fabricate the subchondral region, CS and alginate-based poly-
meric phase were chosen for the interfacial zone between the
bioglass-based scaffold and the articular cartilage side. Finally,
CS-based electrospun nanofibrous sheets were deposited as the

superficial layer to mimic the cartilage phase. Other research
groups also explored the beneficial aspects of electrospinning in
osteochondral research as a customizable tool to deposit both
bone and cartilage mimicking biomaterials with controlled spa-
tial distribution and thickness [133-135]. Because of the nanofi-
brous nature, the sequentially deposited phases have ample
scopes to interact or significantly overlap during the fabrication,
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facilitating a smoother interface generation in the osteochon-
dral scaffolds.

AM of osteochondral tissue analogs

AM and bioprinting (a subclass of AM) is the concurrent work-
horse in bio-manufacturing related research worldwide [136-
138]. It is evident when the search string ‘osteochondral scaffold’
in google scholar (year sorted ‘since 2018 to present’) returns with
more than 80% of scholarly articles, employing AM to fabricate
anatomy/disease-specific complex scaffold systems for superior
tissue integration and regeneration. Three-dimensional printing
and bioprinting brought a paradigm shift in biofabrication where
all classes of biomaterials (polymer, ceramics, metal, composites
etc.) along with diverse cell types, protein, hormones, growth fac-
tors, small molecules etc. can be precisely deposited in a spatially
controlled manner. Stereolithography (SLA), binderjetting, direct
inkjetting, microextrusion (fused deposition modeling (FDM), bio-
plotting), selective laser sintering, electron beam melting and la-
ser engineered net shaping, two-photon polymerization are the
leading examples of advanced AM techniques. The best part of
these next-generation manufacturing approaches is that they
can be combined with other fabrication schemes (traditional or
advanced) to achieve hybrid and/or superior properties. In this
section, we will exert our endeavor to review the recent progress
of AM in osteochondral regenerative engineering.

SLA-based 3D printing was deployed to fabricate bi-layered
osteochondral scaffolds using two different nano-particles laden
bioinks dedicated to the cartilage and bone regions [139]. TGF-B1
laden PLGA nanoparticles were suspended in the combined hy-
drogel solution of gelatin methacrylate (GelMA) and poly-
ethylene glycol diacrylate (PEGDA) as the cartilage bioink.
Separately, nano-HAp was suspended in the same combined

- - ~, L L X J =
ra — I
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P

hydrogel medium of GelMA and PEGDA to be considered as the
bone bioink. Figure 4 schematically represents the tissue-specific
bioinks development and the printing process [139]. hMSCs were
cultured in the 3D printed osteochondral scaffolds and the osteo-
chondrogenesis were quantified using a set of histochemical
staining (Alizarin red-S, Alcian Blue and Safranin O). After 2 and
4weeks of culture, the expression levels of osteogenesis and
chondrogenesis-related genes were analyzed using RT-PCR. The
most intense histological staining was observed in the scaffolds
with TGF-B1 encapsulated PLGA-based scaffolds (GelMA-PEGDA-
nHAp/TGF-B1 PLGA NPs) implicating higher GAG deposition,
which was consistent with the expression levels of the collagen
I, SOX-9 and aggrecan. As expected, there was a significant im-
provement in the osteogenesis in the scaffolds having nano-HAp
in the bone layer compared to the control [139].

In a recent research, PCL and PCL/HAp-based osteochondral
scaffolds were developed along with GelMA hydrogel having car-
tilage and vascularized bone phase using a specially designed AM
approach [140]. The 3D printed osteochondral scaffolds were 3D
cultured in a specially designed dual-chamber bioreactor (micro-
physiological system, MPS). In brief, PCL and PCL/HAp solution
was printed using a microextrusion nozzle directly in a non-
solvent to create the bone phase (Fig. Sa and b, A). Next, the bone
scaffolds were kept in the lower half of the dual-chamber biore-
actor, seeded with hMSCs and cultured in osteogenic differentia-
tion media for 2weeks. A mixture of hMSCs and HUVECs was
suspended in GelMA and infiltrated the precultured bone scaf-
folds. The infiltrated gel was cured using UV radiation (for vascu-
larization). After this, hMSCs laden GelMA was poured on the top
of the osseous construct and photocured to obtain the cartilage
phase. Two separate media flows in the MPS system were
retained, although slight mixing at the interface was beneficial to
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Figure 4. Schematic representation of the SLA-based 3D printing of osteochondral scaffolds using different nano-particles laden tissue specific bioinks.
TPNPs, TGF-B1 laden PLGA nanoparticles (reprinted with permission from Elsevier).
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Figure 5. (A) PCL-based 3D printed bone scaffold along with GelMA layers as cartilage phase, in situ fabrication and maturation in dual-chamber
bioreactor (reprinted with permission from Elsevier). (B) Fabrication of defect specific biphasic osteochondral architecture regenerated from patient MRI
scan data of osteochondral lesion (source article published under open access, CC by license).

generate the biomimicking calcified interface (Fig. 5c and d, A).
The endothelial cells enhanced the efficacies of osteogenic differ-
entiation of the hMSCs in the bioreactor system. The hMSCs
laden gelMA region exhibited upregulation in the cartilage-
related genes and intense staining of alcian blue implicated
chondrogenesis and GAG deposition. This study emphasized the
3D culture in bioreactors to accelerate the regeneration of osteo-
chondral tissues [140].

In the same year, another group developed a unique concept
of defect-specific reconstruction of osteochondral lesions using
advanced magnetic resonance imaging (MRI) data processing
combined with micro-extrusion-based 3D bioplotting [141]. In
brief, MRI scan data of a multi-zonal osteochondral defect in
an osteochondritis dissecans (OCD) patient were obtained and the
data were processed using a set of 3D image processing algo-
rithms, followed by the generation of the 3D printable CAD file
(*.stl) (Fig. 5i-iv, B). Three-dimensional printing strategy was
developed by using multi-materials for different zones. A blend
of alginic acid sodium salt and methylcellulose (algMC) was
used as the extrudable cartilage phase, which after crosslink-
ing with CaCl, solution formed the articular-cartilage-like zone
[141].

A sacrificial biomaterial methylcellulose (MC) was used as the
supporting media for the overhanging structures during printing
and calcium phosphate cement (CPC) paste was used as the bone
phase (Fig. 5a—f, B). MRI scan is useful to capture the osteochondral
defect geometry, because of the significant difference in density be-
tween bone and the cartilage, normal density attenuation-based X-
ray CT is not capable to distinguish the cartilage tissue. On the
other hand, osteochondral lesions and defects are patient-specific
[141]. Taken together, it is imperative to realize that 3D printing and
bioprinting are the current and next-generation fabrication tools in
osteochondral regenerative engineering, having unparalleled effica-
cies in addressing heterogeneous and complex tissue regeneration
in an anatomy/patient-specific manner. Table 2 summarizes the

comprehensive landscape of AM in osteochondral regenerative en-
gineering.

Chen et al. [142] developed cartilage ECM-GelMA-exosome-
based 3D printed osteochondral scaffolds with radially oriented
channels using a desktop SLA-based 3D printer. The restorative
efficacy of the MSC derived exosome loaded scaffolds in shielding
the mitochondrial dysfunction and chondrocyte degeneration
were evidenced in vitro. It was also found that the EVs (exosomes),
loaded in the 3D printed scaffolds, could enhance chondrocyte
migration as well as assisted in polarizing the synovial macro-
phage response toward an M2 phenotype. The 3D printed scaf-
folds were surgically implanted in the patellar groove of rabbit
limbs, while the contralateral limbs were considered as untreated
controls. Formation of hyaline like cartilage in the exosome con-
taining scaffold groups was observed, followed by securing signif-
icantly higher ICRS score in the same group when compared with
the untreated controls. Using a quantitative micro-CT analysis
and HE staining approach, enhanced subchondral osteogenesis
was also observed in the EVs laden scaffolds [142].

Scaffold-free organoid assemblage and microfluidics-based
approaches

Since the inception of tissue engineering, biomaterials-based tis-
sue-specific architectures/3D simulated organs engaged the re-
generative research areas where the population of individual
cells played a major role, irrespective of the fabrication method-
ologies. Nowadays organoid-based tissue engineering is nascent
in the community where apart from single cells, miniature
organs mimicking cellular aggregates, capable to perform specific
biological functions like organs, are considered the building block
for tissue-engineered architectures [147-149]. Most often, the tis-
sue spheroids/organoids are prepared and cultured in vitro, before
their use in tissue/regenerative engineering applications. With
the recent advancements in developmental biology, it is known
that in vitro simulation of biological processes during real skeletal
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Table 2. Current progress in the design/defect-specific fabrication of osteochondral scaffolds using different AM approaches

AM methodology Biomaterials and bioinks Cell lines used (co-printing Key results Refs
used or post-printing seeding)
SLA 1. GeIMA + PEGDA + nHA hMSCs seeding after . Intense histological [139]
as bone phase printing, in vitro staining in the scaffolds
differentiation with TGF-B1 encapsu-
lated PLGA and nano-
HAp based scaffolds
(GeIMA—PEGDA—
nHAp/TGF-B1 PLGA
NPs)

2. GelMA+PEGDA+TGE- . Higher expression lev-
B1 encapsulated PLGA els of collagen II, SOX-9
as chondral phase and aggrecan in the

cartilage layer
Microextrusion 1. PCL/HAp as bone phase hMSCs in both phases. . In vitro vascularization [140]
printing followed by Osteogenic and chon- . Endothelial cells en-
hMSCs and HUVECs drogenic media flow in hanced osteogenic dif-
laden GelMA dual chamber ferentiation of hMSCs

2. hMSCs laden GelMA as bioreactor . A higher expression of

cartilage layer collagen I and OPN as
well as alizarin red
staining

. collagen 1I, SOX9 and
aggrecan upregulation
and intense staining of
alcian blue in the chon-
dral region

3D plotting 1. Alginic acid sodium — . Defect specific multi- [141]
salt and methyl- zonal reconstruction of
cellulose (algMC) as osteochondral lesion
cartilage phase using advanced MRI
data from patients

2. Calcium phosphate . High clinical implica-
cement (CPC) as bone tion: osteochondral
phase lesions and defects are

patient-specific and
should be treated per-
sonalized manner
FDM 1. 3D printed networks of MSCs, FPSCs and chon- . Vascularised bone for- [143]
PLA, PLGA and PCL drocytes seeding during mation along with phe-
fibers with (MSCs) manufacturing. notypically stable
laden alginate hydrogel cartilage formed on the
as bone phase surface, subcutane-
ously in mice model

2. Same fibers with FPSCs . Superior hyaline carti-
and chondrocytes lage formation in cap-
laden hydrogel on rine femoral condyle
cartilage layer while compared with

commercial control
Microextrusion Gradient porous PCL- Post-printing culture with . Higher amount of sGAG [144]
PLGA fiber network. adipose-derived MSCs in the cartilage layer of
Higher porous cartilage (ADMSCs) PCL/PLGA/CS scaffolds
side: CS modified PCL along with increased
and lower porous bone expression level of col-
side: B-TCP modified lagen II, SOX9 and
PLGA fibers aggrecan when com-
pared to PCL/PLGA
scaffolds.

. PCL/PLGA/BTCP bone
region of the osteo-
chondral scaffolds also
exhibited enhanced
ALP activity and miner-
alization when com-
pared to the control
counterpart

SLA 1.20% n-HAp as bone hMSCs post-printing . Highly interconnected [145]
phase seeding in vitro porosity with nano-to-
micro structure and
spatiotemporal growth
factor gradients
2.10% n-HAp as an . TGF-B1 encapsulated

intermediate phase

PLGA scaffold

(continued)
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Table 2. (continued)

AM methodology Biomaterials and bioinks Cell lines used (co-printing Key results Refs
used or post-printing seeding)
outperformed all con-
trol samples in GAG de-
position
3. TGF-p1 encapsulated 3. Osteochondral scaffold
PLGA as cartilage phase with nHA and TGF-p1
showed the highest
mineral deposition in
the bone phase
Microextrusion 1. 15% GelMA hydrogel BMSCs seeding and in vivo 1. H&E staining shows a [146]

for cartilage zone

2.20% GelMA and 3% n-
HApD as intermediate
zone

3.30% GelMA and 3% n-
HApD as bone zone

Digital light processing Monophasic radially ori-
(DLP) ented osteochondral
scaffold with GelMA,
MSCs exosomes and

cartilage-derived ECM

implantation in rabbit
osteochondral model

clear tidemark in the
neo-tissue in the tri-
layered scaffold group

2. From gross-morphol-
ogy, the tri-layered
scaffold surpassed
other groups in carti-
lage regeneration

3. The most intense or-
ange color in the
Safranin-O stained tri-
layered scaffold dem-
onstrates enhanced
cartilage regeneration,
in vivo

In vivo implantation in 1. Complete healing of [142]
rabbit femoral condyle

cartilage from gross
morphology analysis.
Higher GAG deposition

2. Enhanced subchondral
ossification: higher ra-
tio of bone volume to
tissue volume (BV/TV)
and trabecular thick-
ness in the ECM/
GelMA/exosome scaf-
folds

development is potent to generate functional intermediate tis-
sues which are capable to mature into full organs when
implanted in vivo [150-152]. For example, to regenerate osteo-
chondral cartilage in a biomimetic manner, the developmental
pathway can be wisely followed where, the articulating long
bones with articular cartilage terminals develop via a cartilage in-
termediate route, which is governed by mesenchymal condensa-
tion followed by chondrogenic maturation [153]. Induced
pluripotent stem cells (iPSCs) have recently gained major interest
in microtissue-spheroid-based cartilage tissue engineering given
the unreliability of mesenchymal stem/stromal cells in regener-
ating hyaline cartilage, where in most cases fibrocartilage, rich in
collagen Iis formed. Albeit, autologous chondrocytes are the gold
standard in repairing/regenerating hyaline/articular cartilage but
the challenges in isolation and dedifferentiation hinder the large
osteochondral defect treatment. The hyaline cartilage formed
from iPSCs shows phenotypical stability after implantation in
both rat and minipig osteochondral defect model [153, 154].
Recently, Hall et al. [153] prepared iPSC-derived chondrocytes
(iChon) along with bone-forming ‘callus organoids’ (COs) from
human periosteum-derived cells (hPDCs) to develop chondral
and osseous microspheroids. The hPDCs were cultured at differ-
ent time points to achieve different intermediate tissues. For ex-
ample, hPDSc micro-tissues cultured for 7 and 14days
represented the cartilaginous component while after 21 days, the
microtissue system became ‘callus organoids (Cos)’ representing
the hypertrophic part which would undergo endochondral

ossification in vivo. Human induced pluripotent stem cells
(hiPSCs) were cultured for 3 weeks in agarose-based micro-molds
to form the induced cartilage microtissues (ICMT). Briefly, the
mixture of ‘iChons’ and ‘iCMTs’ was used as the cartilage tissue
precursor and the mixture of ‘hPDCs’ and ‘Cos’ was considered as
the hypertrophied tissue precursor for endochondral ossification
in vivo. The tissues were allowed to ‘fuse’ in vitro and implanted
subcutaneously in immune-compromised mice. After 4weeks,
H&E and Safranin O/fast green staining showed two zones of
bone and cartilage in the dual-layered construct. The mineraliza-
tion was confirmed form human OCN immunostaining. The cor-
tical bone along with bone marrow was also observed in the
explanted COs zone of the dual-layered osteochondral construct.
Figure 6a schematically represents the organoid-based assem-
blage of microtissue spheroids in developing bionic osteochon-
dral graft [153].

In another recent study, a comprehensive work-flow to bio-
print ADSC-derived chondrogenic and osteogenic tissue sphe-
roids layer-by-layer was reported to construct osteochondral
tissue complex [155]. After the bioprinting, the zonal interfaces
fused and the tissue phenotypes in both regions remained unal-
tered. In brief, ADSCs spheroids were prepared for 5 days followed
by the addition of chondrogenic and osteogenic differentiation
media in selected well plates. The spheroids were allowed to dif-
ferentiate for another 21 days. The osteogenic spheroids were bio-
printed first, followed by the chondrogenic spheroids which were
directly deposited on the last layer of the osseous phase and the
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Figure 6. Organoid based biofabrication of osteochondral tissue complex using different manufacturing approaches. (a) iCMT and COs micro-tissue
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subcutaneously implanted; (b) Aspiration-assisted bioprinting of tissue spheroids. Osteogenic spheroids were first layered followed by deposition of
chondrogenic spheroids along with interfacial fusion (A: reprinted with permission from Elsevier; B: source article published open access, CC-by

license).

entire bi-phasic construct remained sheltered in the alginate ma-
trix, crosslinked using CaCl, aerosol spray. The construct was
cultured in co-differentiation media for 1week to ensure the
complete fusion of the interfacial region of the chondro- and os-
seous phases, followed by citrate-mediated dissolution of the
protective alginate phase. H&E staining showed the compactness
of the osteochondral tissue complex having a distinguishable in-
terfacial region. Alizarin red and toluidine blue staining assay
demonstrated GAG formation throughout the cartilage phase
and mineral deposition in the osseous region [155]. The ‘scaffold-
free’ method of complex tissue bioprinting broadened the scopes
of clinical research in autologous stem cells-based patient-spe-
cific osteochondral regenerative treatments (Fig. 6b).

Since the last decade, organ-on-a-chip based research ex-
panded significantly in drug screening, modeling several diseases
comprising complex tissues and interfaces [156-158]. It is not al-
ways feasible to involve animal models in first-generation experi-
ments where the concepts and methodologies are still evolving
[159]. Hence, it is necessary to have a simulated physical

platform where different biofluid flow along with the influences
of multiple tissues can be investigated. Microfluidics-based or-
gan-on-a-chip models facilitate such customized in vivo mimick-
ing platforms. The individual and synergistic effects of surface
area, biomaterial-based matrix properties, growth factors, hor-
mones, small biomolecules and novel drugs are investigated on
different cellular and tissue behaviors. Against this backdrop,
several attempts to model osteochondral tissue regeneration in
different hydrogel matrices along with OA disease modeling and
OA drug screening are reported [159-161].

Lin et al. [160] developed a proof-of-concept of osteochondral
tissue on chip, employing modified iPSCs cells. iPSCs were further
induced in ‘induced mesenchymal progenitor cells (iMPCs)’ fol-
lowed by encapsulation in photo-crosslinked gelatin hydrogel
and 3D cultured in a dual flow chip system. The bottom part of
the cell encapsulated hydrogel was exposed to the flow of osteo-
genic media whereas the top part directly interacted with chon-
drogenic media. After 28days of in vitro simulated culture, the
generation of cartilage and bone tissues were confirmed from
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histology and PCR-based osteogenic and chondrogenic gene ex-
pression analyses. Alcian blue and alizarin red staining con-
firmed the cartilage and bone formation in the bottom and top
components of the hydrogel construct. Gene-expression studies
also confirmed the multi-fold increment in the aggrecan and col-
lagen II expression level on the top cartilage part compared to the
bottom bony region, while the bone marker protein expressions
(OCN and BSP) showcased the counter trend as expected [160].

Off-the-shelf osteochondral scaffolds:
recommendations in a translational
perspective

In laboratory-scale investigations, it is common to combine live
cells, growth factors, biomolecules etc. to enhance the regenera-
tive efficiency of osteochondral scaffolds. However, in transla-
tional aspects, it is difficult to consider the scaffolds having live
cells, growth factors proteins etc., due to strict federal regulations
on cellular and/or biomolecule-loaded scaffolds where they are
considered ‘high-risk devices’ [162-164]. In some cases, surgeons
collect the biopsy of the patient containing autologous chondro-
cytes and send it to approved companies. The autologous cells
are cultured and grown on a porcine collagen matrix and shipped
to the surgeon back for the implantation in defect site (two-step
procedure). This is not always straight forward and affordable
therapeutic approach. Now it is apparent why most of the com-
mercial scaffolds [Chondromimetic (Tigenix NV), MaioRegen
(Finceramica), TruFit (Smith & Nephew), Biomatrix CRD, MACI
(Vericel), Chondro3 (Locate-Bio), MaioRegen, Agili-C etc.] are off-
the-shelf, acellular and not modified with any protein or growth
factors. They often fail to compete with the cellular scaffolds in-
vestigated in a laboratory environment.

A preclinical study is the first step for the translation of a
novel osteochondral scaffold toward market [108, 165, 166]. In
this context, we will use market and clinic in an overlapping
manner as both are interdependent. At first, the biocompatibility
of the novel scaffold should be assessed subcutaneously in a
mouse or rat model. On the achievement of satisfactory out-
comes through tissue inspection (histology, immunostaining
etc.), one should plan the proof-of-principle study in rabbit or
similar animal models. In all animal trials, institutional and/or
federal animal study-related ethical committee/board approval is
a must. After the successful establishment of the proof of princi-
ple results, pilot studies in small ruminants (goats, sheep etc.),
dogs, pigs or horses should be designed conforming with the ‘3R’
principle (replacement, reduction and refinement) [167-169]. In
most of the practices, the osteochondral scaffolds are implanted
in the condyle or trochlear sites of the knee joints of the hind
limbs. For example, for osteochondral scaffolds for implantation
in the rabbit model, the scaffold diameter should not exceed
3.5mm with 3mm height. Whereas in the minipig model, the di-
ameter should be in the range of 5-8 mm along with the height of
7-10mm, which should be decided based on the available carti-
lage and subchondral bone thickness [170-172]. The total period
and the intermediate study intervals of the preclinical studies are
important to record the dynamic progress of osteochondral heal-
ing and regeneration. While the proof-of-principle studies in
small animals should be followed up for 8-12 weeks, 6-12 months
follow-up studies are generally preferred for the pilot studies in
larger animals. As the preclinical studies should endeavor to
mimic the clinical procedures as closely as possible, animal age,
cartilage maturity and thickness, calcified cartilage and subchon-
dral bone plate anatomy should be considered in the study design

[166, 173]. Others (Mohan et al., ‘Gradient osteochondral scaffold
system’ section) explored the effectiveness of the osteochondral
scaffold-based therapeutic approach in larger-size animals while
comparing the results with the clinically practiced procedures.
For example, critical-sized gradient osteochondral scaffolds were
used in skeletally mature sheep models for long-term regenera-
tion where microfracture, a ‘clinical standard of care’ was used
as the control. The surgical operative procedure (unilateral or bi-
lateral) and the defect model (acute or chronic) should also be
considered to achieve the suitable performance of the scaffold
system in the clinical environment. Once the results are satisfac-
tory through histological and immunohistochemical staining,
micro-CT, gross morphology and cartilage repair scoring, biodeg-
radation and release kinetics, mechanical properties etc., the
next step is to proceed for the Food and Drug Administration
(FDA) approval/clearance for commercialization.

All cartilage and osteochondral devices are Class III devices
(‘high risk’, implantable device) irrespective of their cellular or
acellular nature [174]. Apart from osteochondral scaffolds, this
also covers collagenous matrices, HA injection etc. Class II devi-
ces are mostly non-invasive or can be used around the periph-
erals of the body. If a device is Class II categorized, a clinical trial
may not be required and in this case, a post-review 510(k) ‘clear-
ance’ can be issued by the FDA to bring the device to market. As
there is no Class II device capable to treat articular cartilage and
osteochondral defect, 510(k) is not straightforward for the osteo-
chondral device. As the category of cartilage/osteochondral re-
generative devices falls under Class III device (FDA product
code—'NCO’), before commercialization a Premarket Approval
(PMA) by the FDA would be necessary. To obtain a PMA, the
osteochondral device has to go through a systematic clinical trial
involving human subjects. If the in vitro and preclinical trial per-
formances are convincing after review, FDA may permit the clini-
cal trial, known as Investigational Device Exemption (IDE). The
detailed guidelines for the human clinical trial of osteochondral
implantable devices are beyond the scope of this article and can
be found elsewhere [174-177].

At any developmental stage between the in vitro and proof-
of-principle studies, a patent can be filed if the features of the
osteochondral scaffolds are novel and not reported in the prior
art. Institutional intellectual property departments or indepen-
dent patent lawyers can be consulted to submit the disclosure
to the federal office for the grant. During this process, the tech-
nology readiness level (TRL, Level 1-9) and manufacturing
readiness level (MRL, Level 1-10) should be critically evaluated
[178, 179]. Although strict adherence to all the technology
readiness levels (up to 9) is mandatory for the strategic sectors
(defense, aerospace etc.), achievement up to TRL 6 is sufficient
in biomaterials and biomedical engineering as a consensus, to
initiate the commercialization procedures (large animal trial,
IDE approval, PMA application) [178]. Good Laboratory Practice
(GLP) is another important aspect to consider during the pre-
clinical trial. Whether during the proof-of-principle studies
GLP is not strictly required by the FDA, in the pivotal studies in
larger animals, it is recommended to follow GLP guidelines for
a satisfactory review outcome for the approval of IDE [180].
After the PMA is approved and the technology is commercial-
ized by industry or collaborative start-up, Good Manufacturing
Practice (GMP) is an essential aspect to be considered for all
biomedical devices. FDA published the GMP guidelines (21 CFR
Part 820) which are very similar to the ISO 13485 depicting the
EU GMP in the Europe [181]. At this stage, the device business
model such as B2B (business to business), B2C (business to
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consumer) along with the recent conversion toward B2H (busi-
ness to human) should be structured.

Finally, we return to our initial argument to reiterate that,
the successful off-the-shelf commercial osteochondral scaffolds
are acellular and their intrinsic biocompatibility and the efficacy
of host tissue integration should be at the highest level. The ma-
jor challenge is to select the most suitable osseous and chondro-
genic biomaterial combination, having the bone and cartilage
mimicking gradient microstructure (porosity volume and shape
distribution for example) and mechanical properties. An
uncompromised adherence to these attributes will enable the
acellular and unmodified devices to compete very closely with
the live cells, growth factor and biomolecules-loaded osteochon-
dral scaffolds, mostly investigated for research and develop-
ment purposes. The inherent challenges, comprehensive state-
of-the-art and systematic recommendations outlined in this ar-
ticle should be able to guide the early career researchers to pro-
mote scaffolds/implants/devices in the
healthcare market. This will potentially address the availability
and affordability of osteochondral scaffolds/implants to the
economically challenged and elderly population in the country
and beyond.

osteochondral

Conclusion

In this review, a significant endeavor has been made to highlight
the key challenges in osteochondral regenerative engineering.
There are numerous structural as well as functional inhomoge-
neities in the tissue interface and inherent difficulties in the bi-
onic regeneration/modeling of the underlying transitions in the
tissue complex. Global attempts have been reported where the
researchers successfully designed and demonstrated novel scaf-
fold systems in the efficacious regeneration of hyaline cartilage
and subchondral bone phases. The hierarchical zones in both the
cartilage and subchondral bones have been modeled using suit-
able ceramic, polymer and hydrogel-based biomaterials along
with various growth factors, EVs, biomolecules etc. A wide range
of biofabrication approaches ranging from conventional, ad-
vanced and/or hybrid routes was discussed comprehensively
along with the key results, to portray the state-of-the-art of
osteochondral regenerative engineering. Despite the decades-
long endeavors to address this crucial healthcare segment, there
exist outstanding ‘death valleys’ that are yet to be bridged. One
such lacuna is the poor performance of the commercially avail-
able acellular, unmodified osteochondral scaffolds in comparison
with the live cells, growth factors laden scaffolds, which cannot
be used ‘on demand’ due to regulatory restrictions. Development
and the federal approval of more biocompatible matrices along
with biomimicking microstructures are the calls of the hour.
These new generation bionic scaffolds should be able to regener-
ate/repair osteochondral lesions/defects, even without the use of
live cells and growth proteins. To this end, significant efforts are
invested in this review to provide a concise but comprehensive
recommendation set of various regulatory aspects, intermediate
procedures along with their interrelations and overall progressive
stages. This endeavor should promote the current laboratory-
scale developments of osteochondral scaffolds toward more ad-
vanced ‘bench to bedside’ and/or ‘bedside to bench to bedside’-
based research.
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