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Commentary

Introduction

Diabetes is a chronic medical condition that affects a signifi-
cant portion of the United States and has tremendous costs 
for patients and for the healthcare system. In 2018, there 
were approximately 34.2 million people in the United States 
(10.5% of the population) living with diabetes.1 In 2017, 
diabetes was estimated to cost the United States approxi-
mately $327 billion dollars annually, which increased by 
25% between 2012 and 2017.2 The adoption of digital tech-
nologies in healthcare compared to other industries has been 
challenging, given the need for coordination between many 
stakeholders including patients, clinicians, engineers, ethi-
cists, payers, and regulatory agencies.3,4 With the abundance 
of data available to clinicians and researchers, and new tech-
nologies being developed, digital health is emerging as a 
possible way to improve value in healthcare. Digital health 
has the power to revolutionize diabetes management.5 The 
immense amount of diabetes data generated from devices 
such as continuous glucose monitors (CGMs), insulin 
pumps, automated insulin delivery systems, and other wear-
able technologies is overwhelming to process without digi-
tal health computing assistance.6 In this article, we will 
describe six digital health technologies that will transform 

diabetes: telehealth, incorporation of diabetes digital data 
into the electronic health record (EHR), qualitative hypo-
glycemia alarms, artificial intelligence, cybersecurity of 
diabetes devices, and diabetes registries.

Telehealth

Benefits of Telehealth

Telehealth is a rapidly progressing field in healthcare deliv-
ery, with profound implications on how patients will receive 
medical care in the future.7 The US Department of Health 
and Human Services defines telehealth as the “use of elec-
tronic information and telecommunications technologies to 
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support and promote long-distance clinical health care, 
patient and professional health-related education, and public 
health and health administration.”8 Telemedicine refers to 
services delivered only by physicians whereas telehealth 
refers to health care services involving all health care profes-
sions.9 In the setting of the COVID-19 pandemic, the use of 
telehealth has grown substantially (Figure 1),10 which can be 
leveraged in management of chronic medical conditions, 
such as diabetes.

Diabetes is a condition that is well-suited to benefit from 
telehealth, given the need for patient self-management and 
the use of home medical devices, which both generate and 
capture data.11 There is currently a significant shortage of 
both adult and pediatric endocrinologists. This shortage is 
expected to worsen in the future.12 Telehealth may increase 
access to care for people with diabetes (PwD) who are not 
otherwise able to see a specialist, particularly in more rural 
settings.13,14 The use of telehealth has been shown to be sta-
tistically significant in lowering hemoglobin A1c in patients 
with type 1 diabetes (T1D) and type 2 diabetes (T2D) across 
multiple meta-analyses, although no convincing effect on 
quality of life, mortality, or hypoglycemia incidence has 
been shown.15,16 More interactive formats such as web por-
tals and text messaging appear to be effective in lowering 
hemoglobin A1c.15

Barriers to Advancing Telehealth

Philosophical and practical barriers limit adoption of tele-
health for diabetes. Philosophical barriers include a desire 
for evidence of benefit prior to implementation and clinical 
judgment on when it is appropriate to have certain discus-
sions with patients in person rather than through a telehealth 
modality. Practical barriers include hardware and software 
compatibilities, integration of telehealth workflow into 

clinics and EHRs, billing restrictions, and documentation 
practices.11 Given the recent increase in the availability of 
digital health data and telemedicine delivery systems, there 
is also an increased risk of data breaches. The novel security 
protections required to reduce the impact of data breaches 
poses another challenge to the advancement of telehealth.17

Future Applications of Telehealth

Telehealth offerings will become more widely utilized, and a 
value-based system will likely determine payment coverage, 
with focus on improving outcomes and access while limiting 
cost.18 Telehealth can implement machine learning (ML), 
decision support tools, and digital coaching to improve gly-
cemic control.19 Telehealth will eventually be able to inte-
grate sensors into the EHR.17 New formats, such as 
direct-to-consumer telehealth, may increase access and con-
venience with the potential to decrease costs, which can be 
done in a synchronous model such as through telephone or 
videoconferencing, or an asynchronous model, such as 
through secure messaging and may include audio files or 
photos.20,21

Incorporation of Diabetes Digital Data 
into the Electronic Health Record

Benefits of Incorporating Digital Data into the 
Electronic Health Record

The mandate to incorporate diabetes digital data into all EHRs 
has reached a major regulatory milestone. The Department of 
Health and Human Services Office of the National Coordinator 
(ONC) for Health Information Technology released the 21st 
Century Cures Act “Final Rule” implementing key provisions 
to advance interoperability, and seamless access and exchange 

Figure 1. Percentage change in the total volume of virtual visits from baseline weeks in 2019 and 2020 using the Doctor on Demand 
telehealth platform. The baseline weeks, which are not shown, were February 25 to March 3, 2019, and February 24 to March 1, 2020. 
Reproduced from Uscher-Pines L et al10 under the Creative Commons Attribution License.
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of electronic health information.22,23 The key technology that 
this ruling emphasized was the adoption of a modern industry 
standard application programming interface (API). An API is 
an interface between unrelated software programs, serving as 
a bridge and allowing them to communicate. APIs make it 
simpler and more efficient to develop digital health applica-
tions and connect them with EHRs to promote data sharing. 
This summary covers benefits, barriers, and future 
opportunities.

The number of diabetes mobile applications has been 
growing rapidly, with over 100 000 health-related applica-
tions on the iOS and Android platforms.24 However, the lack 
of a modern API standard across EHRs has limited health 
information exchange (HIE) between health systems, EHRs, 
mobile applications, and sensors. The ONC “Final Rule” 
ruling formalized Health Level 7 (HL7) Fast Healthcare 
Interoperability Resources (FHIR), a modern, web-based 
API that is developer-friendly, as the standard. Table 1 pres-
ents new developments in HIE for digital diabetes interoper-
ability with EHRs.

A recent Pew Charitable Trust survey highlighted three 
main use cases for APIs25:

1. Patient-centered access to records: On-demand access 
to discrete information within the medical records 
such as clinical notes, test results, and medications.

2. Clinical decision support (CDS): Individualized, 
computable data can be algorithmically analyzed 
through CDS allowing for actionable visualizations.

3. Provider-to-provider exchange of information: 
APIs allow diabetes data to be securely and easily 
shared between different EHRs and health systems, 
providing real-time aggregation of health data for 
comprehensive assessments by various members of 
a diabetes care team.

Barriers to Incorporating Digital Data into the 
Electronic Health Record

The “Final Rule” by the ONC addresses two major barriers 
limiting the wide adoption of FHIR-API:

1. Codifying a non-proprietary API Standard: The ONC 
support of HL7-FHIR paved the way for industry 
adoption and further development of security appli-
cations and certification kits.23

2. Information blocking: Evaluation of EHRs has dem-
onstrated that information blocking is common. In 
one study, 55% of HIEs reported that EHR vendors at 
least sometimes engage in information blocking.26 
The ONC “Final Rule” has specific regulation against 
information blocking for providers, EHR vendors, 
and health care systems.27

Future Applications of Incorporating Digital Data 
into the Electronic Health Record

API standardization will allow for “one-stop shop” markets 
with turnkey installation that will foster collections of 
aggregated patient and clinician information streams. 
Access to readily available large and complex databases 
residing in an EHR environment will drive innovation in 
health applications for diabetes patients. Big tech compa-
nies have developed FHIR-based “client” apps. For exam-
ple, Apple developed the Apple HealthKit store. Similarly, 
the Centers for Medicare & Medicaid Services (CMS) cre-
ated Blue Button 2.0. We expect that small boutique soft-
ware companies will develop firmware solutions for 
incorporating niche datasets into the EHR by directly con-
necting mobile apps with the EHR and bypassing the need 
for hospitals to purchase potentially expensive ongoing 
data-bridging services. We can anticipate rapid growth in 
the coming year of a robust FHIR-based “app economy” in 
the health industry.

Qualitative Hypoglycemia Alarms

Benefits of Qualitative Hypoglycemia Alarms

Introduction. Hypoglycemia is a dangerous complication of 
many diabetes medications. FDA-cleared quantitative 
devices, such as CGMs, for alarming hypoglycemia are not 
always sufficiently accurate. Their identification of glycemic 
states tend to emphasize either sensitivity with poor specific-
ity or vice versa. Qualitative detection of a physiologic 
response to hypoglycemia is an alternate method for identi-
fying signals indicating the body’s response to hypoglyce-
mia. Since the threshold, below which hypoglycemic 
symptoms occur, varies among PwD, an individualized per-
sonal approach could be based on an individual’s physiology 
rather than a number, whose significance might vary between 
people or might not even be analytically accurate. Artificial 

Table 1. New Developments in Health Information Exchange 
(HIE) for Digital Diabetes Interoperability with EHRs.

•  New Regulations: 21st Century Cures Act “Final Rule,” is a 
set of new regulations to advance interoperability and support 
the access, exchange, and use of electronic health information 
through standardizing the application program interface (API) 
and enacting “Information blocking regulations.”

•  Modern API standard: Health Level 7 (HL7) Fast 
Healthcare Interoperability Resources (FHIR) is a web-
based standard which will allow programmers to develop 
applications with the following benefits to consumers and 
clinicians:

°  Easier access to health information from different EHR 
platforms.

°  More readily available clinical decision support due to more 
individualized computable data.

°  Faster provider-to-provider exchange of information.
•  Growth of “App Economy” by major private and 

government companies using FHIR-enabled standards: Apple 
HealthKit’s clinical record, CMS Blue Button 2.0, and Cerner 
App Gallery are a few examples.
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intelligence (AI) can assemble multiple physiologic data 
streams from sensors that measure various physiologic 
responses to hypoglycemia. Any single stream might con-
tribute little to an overall detection of hypoglycemia, but as 
an aggregated measurement, all this data can be diagnostic.

Specific Products. Currently, several classes of products are 
being developed to serve as qualitative hypoglycemia 
alarms. Physiologic responses to hypoglycemia that can be 
measured continuously by wearable sensors include altera-
tions in heart rate, electrocardiogram (EKG) patterns, 
pulse-wave patterns, electroencephalogram (EEG) pat-
terns, galvanic skin response, skin temperature, and breath 
volatile organic compounds (VOCs). Commercial galvanic 
skin response-based devices, such as the Diabalert© (Erpic, 
Montpellier, France) and Sleep Sentry© (Diabetes Sentry, 
Fort Worth, TX), claim to detect skin temperature changes, 
perspiration, and electrodermal activity to diagnose hypo-
glycemia, but unfortunately, little clinical data supports 
these claims. Noninvasive EKG wearables, such as the 
VitalPatch© (VitalConnect, San Jose, CA) not only can 

quantify changes in heart rate variability when a subject 
patient with T1D goes from normoglycemia to hypoglyce-
mia, but they can also identify changes in the QT interval 
(Figure 2A and B)28 or the amplitude of T waves (Figure 2C 
and D).28 EEG devices, such as the minimally invasive 24/7 
EEG SubQ© (UNEEG medical, Lynge, Denmark) behind-
the-ear implant, can measure brain activity and hypoglyce-
mia-induced decreased cognitive function and alert a 
wearer if patterns of inadequate glucose delivery to the 
brain are detected. In T1D, hypoglycemia-related differ-
ences in the amplitude spectra of EEG signals during nor-
moglycemia and hypoglycemia can be seen, as illustrated 
in Figure 3.29 Thus, EKG and EEG are potentially promis-
ing methods for hypoglycemia detection in future qualita-
tive hypoglycemia wearable alarms because they appear to 
identify altered signals during hypoglycemia, in both hypo-
glycemia-aware as well as hypoglycemia-unaware PwD. 
Photoplethysmography, an optical technique to measure the 
pulse wave pressure in the microvascular bed with each 
heartbeat, can be affected by sympathetic nervous system 
tone. This method has been used to qualitatively detect 

Figure 2. Illustration of interindividual differences in EKGs during hypoglycemia (orange lines) compared to normoglycemia (green 
lines) in 4 subjects with T1D. (A) Subject 1. (B) Subject 2. (C) Subject 3. (D) Subject 4. During hypoglycemia, subjects 1 and 2 have 
a longer QT interval and subjects 3 and 4 have a higher T wave. Adapted from source: © 2021 Diouri et al28 Diabetes/Metabolism 
Research and Reviews published by John Wiley & Sons Ltd. under a CCBY-NC-ND license.
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physiological responses to hypoglycaemia.30 Finally, 
breathing into a wearable VOC detection device, such as 
the nano gas AerBetic© (AerBetic, North Birmingham, 
AL) VOC wristband sensor, can alert a user if one of seven 
VOCs related to hypoglycemia is detected.31 Each qualita-
tive detection method can be combined into an aggregate 
multi-sensor platform that assembles multiple data streams 
to more accurately predict glycemia.

Barriers to Advancing Qualitative Hypoglycemia 
Alarms

Hypoglycemia unawareness. Impaired awareness of hypogly-
cemia is defined as a diminished ability to perceive the onset 
of acute hypoglycemia.32 Many of the qualitative methods 
for detecting hypoglycemia measure a metric related to a 
sympathetic autonomic response and without it, they might 
be insensitive.33 On the other hand, there might still be some 
detectable subtle changes in various organ systems even dur-
ing apparent hypoglycemia unawareness.

Lack of accuracy. Calibration algorithms are required to con-
vert sensor output to a blood glucose value.28 Improvements 
in speed and accuracy for the detection of hypoglycemia val-
ues are still needed because the algorithms are not easily 
implemented in real-time with wearables. Currently avail-
able noninvasive qualitative devices do not attain the same 
accuracy as their quantitative sensor counterparts.28

Future Applications of Qualitative Hypoglycemia 
Alarms

The signal for any one qualitative method may be small. AI 
can combine data streams which, individually, are weakly 
correlated but in combination might be strongly correlated. 
This is speculated because the data streams related to hypo-
glycemia determined from wearables are only now being 

identified. We can expect new wearable devices to accurately 
integrate qualitative hypoglycemia detection features in 
future wearable devices.34,35

Artificial Intelligence

Whether we know it or not, many aspects of our daily lives 
already depend on AI. Defined as the capability of a machine 
to imitate intelligent human behavior, AI has enabled many 
of the conveniences we enjoy today.36 Companies like 
Facebook and Netflix utilize AI to personalize our news 
feeds and video recommendations. AI is what checks our 
spelling when we write messages and powers our interac-
tions with digital voice assistants like Siri, Google Assistant, 
and Amazon Alexa.

Benefits of Artificial Intelligence

AI-based innovations will become a critical tool for medi-
cine and healthcare. A widely used form of AI is ML. This 
form of data analysis refers to the development of algorithms 
that can learn over time to recognize patterns and make pre-
dictions without being explicitly programmed.37,38

ML is particularly suitable for clinical applications to dia-
betes, where it will increasingly be used to predict the risk of 
developing diabetes, optimize treatments for PwD, and diag-
nose diabetic complications in their early, treatable stages. 
ML algorithms have already been used to predict a person’s 
risk of developing diabetes by analyzing lifestyle activities, 
physiologic sensor data, and genomic data.38 ML algorithms 
have also been developed to assist PwD in their self-manage-
ment of this disease. ML can be used to individualize glucose 
targets and insulin-sensitivity calculations for automated 
insulin delivery systems. ML can predict changes in blood 
glucose following various glycemic perturbation events, 
adjust insulin delivery accordingly, and learn from these 
adjustments to understand which treatments are most effec-
tive for their unique users.39

Deep learning (DL) is a subset of ML, which compared to 
classical ML, relies on more complex algorithms called arti-
ficial neural networks (ANNs) to imitate the way a human 
brain processes data and recognizes patterns. DL is more 
powerful than ML and has been adapted to diagnose long-
term, resource-intensive complications of diabetes, such as 
diabetic retinopathy (DR) and diabetic macular edema 
(DME). The ANNs used in DL methods can screen images 
provided by PwD for abnormal retinal morphology (eg, hem-
orrhages, microaneurysms, exudates, and neovasculariza-
tion) and diagnose DR and DME.39 ANNs self-learn from 
inputted data without the need for specific decision criteria. 
Therefore, current limitations in our understanding of 
DR-related retinal abnormalities will not restrict the ability 
of DL algorithms to predict outcomes and suggest interven-
tions before the opthalmic disorders advance to vision loss.40 
By detecting patterns that may indicate development of DR 

Figure 3. The amplitude spectra of EEG signals during 
normoglycemia (green line) and hypoglycemia (orange line). 
Adapted from source: Remvig et al.29
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or DME, DL-based retinal screening can expedite referrals 
for specialized opthalmic care and improve patient quality-
of-life through timely intervention of DR, which is the lead-
ing cause of blindness in PwD.40 The steps in applying AI in 
the form of ML and DL to achieve data-driven actions and 
improved outcomes are illustrated in Figure 4.

Barriers to Advancing Artificial Intelligence

Despite the potential for AI-based technologies to revolu-
tionize diabetes care, three main barriers must be overcome. 
First, the high technical ability and clinical expertise required 
to develop and periodically refine AI used in diabetes care 
may discourage developers from including the advanced fea-
tures that may be most useful for physicians and patients 
alike. Second, developers will have to ensure that AI tech-
nologies are affordable and equally accessible before the 
technology becomes widespread among PwD.39 Third, the 
data required for ML-algorithm function is not easily acces-
sible. Many medical devices and mobile apps today record 
different measurements (eg, blood glucose, and blood 
ketones) required for ML-algorithms to function, however, 
they each typically record their measurements in proprietary 
formats that cannot be used by AI. The lack of a common 
format or data standards for each parameter makes it difficult 
to incorporate this information into the EHR, where it can 
then be accessed by AI.41 Much information is lost this way, 
making it difficult to build up a substantial database where 
ML-algorithms can train and refine their prediction accuracy 

and decision support.41 This siloing effect may jeopardize the 
potential development of ML-algorithms.

Future Applications of Artificial Intelligence

As current AI-based technologies become more widely used 
and the infrastructure around AI develops along with it, the 
wealth of input data available to ML algorithms will further 
develop and improve both the accuracy and range of predic-
tions and decision support they can provide. While the cur-
rent use of this technology for analysis of images is limited 
to diabetic foot ulcers, DR, and DME, ML algorithms will be 
able to learn from expanded data sets to diagnose many of 
the other complications of diabetes, such as muscle wasting, 
skin rashes, and other physical changes from images and 
databanks. As more and more wearable sensors are deployed 
and better ML algorithms are developed with improved com-
puting power, the wealth of information about each person 
will be increasingly understood through data analysis by AI. 
In the close future, AI-based technologies will revolutionize 
diabetes care. AI could potentially be used to make every 
diagnosis of, every prognostic prediction about, and every 
treatment decision for diabetes.

Cybersecurity of Diabetes Devices

Benefits of Cybersecurity of Diabetes Devices

After COVID-19, the next pandemic the world will face is 
cybercrime, according to many cybersecurity experts.42 

Figure 4. Steps to clinical application of AI-based technologies and how they result in data-driven actions and improved outcomes.
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Monitoring and treatment of diabetes often involves a variety 
of connected devices such as blood glucose monitors, CGMs, 
insulin pumps, and other wearable sensors.43 These devices 
contain personal patient information that may be transmitted 
to other devices and execute commands related to medication 
dosage. Any security threat to these devices could therefore 
result in device malfunction (such as lack of data integrity or 
data availability or failure to accurately transmit commands) 
resulting in potential health risks to the patient.

At various security conferences, researchers have been 
able to hack nearby insulin pumps, with and even without 
knowledge of the pump’s ID number, to administer large 
doses of insulin.43 Lax cybersecurity of diabetes devices may 
also be exploited by patients themselves through a method 
known as do-it-yourself (DIY) hacking in an effort to access 
additional data stored in their device or visualize data in a 
different format than the manufacturer provides.43 Whether 
the benefits of hacking into one’s own device to expand its 
capabilities outweigh the risks of potentially degrading its 
function is a topic of debate. The development and applica-
tion of cybersecurity standards specific for diabetes devices 
will foil many hacking attempts and improve safety.

Barriers to Advancing Cybersecurity of Diabetes 
Devices

Until recently, there has not been a single standard for cyber-
security of wirelessly connected diabetes devices. This may 
be in part because there has not been much demand from 
consumers for security measures. Additionally, strengthen-
ing cybersecurity may increase the manufacturing costs of 
products, which is especially pertinent because of the rela-
tively low cost of many diabetes devices. Even if developers 
want to incorporate secure features into their products after 
they are already on the market, they face technical challenges 
of implementing these features. Many of the current diabetes 
devices are not equipped for firmware or software patches, 
which can remotely upgrade devices through downloaded 
updates. Additionally, many diabetes devices function best 
when they are (as the expression states) “built-in and not 
bolted on.” This means that cybersecurity measures need to 
be planned together with other design features when a device 
is initially developed and not attached onto devices as 
updates after they have already been deployed.

Future Applications of Cybersecurity of Diabetes 
Devices

To fill the gap in cybersecurity standards for diabetes devices, 
Diabetes Technology Society (DTS) developed the DTS 
Cybersecurity Standard for Connected Diabetes Devices 
(DTSec) and the DTS Mobile Platform Controlling a 
Diabetes Device Security and Safety Standard (DTMoSt).44,45 
These two standards, whose logos are shown in Figure 5,44,45 
together aim to establish performance and assurance 

recommendations for dedicated controllers and mobile 
devices that can control diabetes devices.44,45 However, since 
DTS is not an official standards-developing organization 
(SDO), DTSec and DTMoSt cannot be recognized by the 
FDA. Thus, Diabetes Technology Society is now working 
with two official SDOs, Institute of Electrical and Electronics 
Engineers (IEEE) Standards Association and Underwriters 
Laboratories (UL), who are co-managing a project to refor-
mat DTSec and DTMoSt into a standard which will be 
known as IEEE 2621.46 The logos of IEEE Standards 
Association and UL are shown in Figure 6.

IEEE 2621 consists of three sections: 2621.1, 2621.2, 
and 2621.3. 2621.1 provides a framework for security eval-
uation programs for connected diabetes devices, 2621.2 
outlines the security functional recommendations for these 
devices, and 2621.3 contains recommendations specific for 
mobile devices.49 This standard is being developed along 
with a conformity assessment program that allows 

Figure 5. Logos of DTSec and DTMoSt.
Reproduced with permission from Diabetes Technology Society.44,45

Figure 6. Logos of Institute of Electrical and Electronics 
Engineers (IEEE) and Underwriters Laboratories (UL).
Reproduced with permission from IEEE47 and UL.48
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manufacturers to demonstrate that their devices adhere to 
the P2621 standard.50

Diabetes Registries

Benefits of Diabetes Registries

The value of technology is to help individuals living with 
diabetes reduce their personal risk of developing the serious, 
acute, and chronic complications associated with the condi-
tion and to improve their quality of life. To achieve this, 
evidence-based technologies must be equally accessible to 
and able to capture the outcomes that matter to individuals, 
their families, and their caregivers. Measuring and compar-
ing outcomes and determining where variation exists is fun-
damental to eliminating health disparities.

Randomized clinical trials (RCTs) are no longer the sole 
source of data that is used to inform decisions while estab-
lishing guidelines, regulations, and policies. Real-world data 
collected from EHRs, insurance claims, pharmacy records, 
social media, and sensor outputs from devices form real-
world evidence (RWE), to supplement RCT-derived infor-
mation. Benefits of using RWE include the ability to capture 
additional information usually absent from RCTs, such as 
data on the social determinants of health which have a major 
impact on diabetes outcomes.51 Registries are a valuable 
source of data that can inform real-world decisions.52

Barriers to Advancing Diabetes Registries

Although the number of national diabetes registries has 
increased over recent years, their datasets are often incom-
plete, with variations in the outcomes collected. The impact 
of registry data on shaping national policies related to diabe-
tes is also often unclear.53 In the United States, the T1D 
exchange provides data from a geographically diverse num-
ber of children and adults with T1D across the life span. 
However, uninsured individuals and adults, who are more 

likely to be treated in primary care settings are underrepre-
sented in diabetes registries, which limits their potential 
power.54 The Diabetes Collaborative Registry, created by a 
consortium of professional societies, has data on a large 
number of people with T2D, many of whom are managed in 
primary care, and includes processes to measure data quality 
assurance.55 However, patient-reported outcome measures 
(PROMs) are not captured. Standardization outcomes to 
reflect those that matter to PwD and can be used in routine 
clinical practice to monitor, benchmark, and improve diabe-
tes care have been proposed. Such outcomes include PROMs 
related to mental well-being, diabetes distress and depression 
as key domains that should be monitored on a regular basis.56

Future Applications of Diabetes Registries

For registries focusing on technologies to support diabetes 
care, there is a need to agree on processes and outcomes 
that can help to remove disparities and achieve health 
equity. At a population level, this requires building infra-
structure to create trust in the system, ensure equitable 
access and enhance self-efficacy for participants providing 
their personal health information (Figure 7). Traditionally 
diabetes registries have been clinic-based. The advantage 
of an online registry related to diabetes technology is that it 
offers membership to individuals not known to specialist 
clinics. On the other hand, online registries have the disad-
vantage of requiring reliable connectivity to the internet 
with potential bias against older people and individuals 
from underserved minorities.57 For underserved communi-
ties, concerns over privacy may also be a barrier to engag-
ing with digital tools for capturing registry data requiring 
community-based initiatives.

Population-based registries are good at locating prob-
lems by finding where in a causal network the trouble truly 
lies and deciding what actions will work. Thereby, networks 
can narrow the gap between what is and what ought to be, 
especially for those facing a disproportionate burden of 

Figure 7. Structure of a Diabetes Technology Registry to develop and maintain trust, improve access, and enhance self-efficacy for 
participants.
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diabetes in all forms.58 The diabetes technology community 
should lead the way.

Conclusion

Many emerging digital software and hardware technolo-
gies are being applied to diabetes monitoring and data 
analysis. The challenge is identifying those technologies 
which are likely to be successful in the long-term. For any 
new technology there must be a clear understanding of (a) 
who the target population is, (b) what success looks like, 
and (c) who is going to pay for the technology. Further, 
these three considerations will vary between the different 
stakeholders involved in diabetes care. The new technolo-
gies listed here have great potential to be game-changing, 
but as always, care needs to be taken to ensure that they are 
accessible and affordable across different heath systems 
and populations.
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