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Commentary

Introduction

The care of persons with diabetes generates a large amount of 
data from devices, mobile applications, healthcare encoun-
ters, and diagnostic studies. As these tools have proliferated 
and more and more patients and providers have access to 
them, interest in applying advanced data science and analyt-
ics methods to the data generated has increased. The use of 
artificial intelligence (AI) in particular has grown exponen-
tially over the past 15 years.1 Artificial intelligence is an 
umbrella term that refers to a variety of techniques that enable 
computers to mimic human intelligence and includes various 
subdomains (e.g., machine learning and deep learning) and 
approaches (e.g., logistic regressions and random forest), as 
shown in Figure 1.2 Machine learning (ML) is a subset of AI 
focused on programs that improve over time with experience, 
and deep learning (DL) is a subset of ML that uses artificial 
neural networks and large data sets to tackle computationally 
complex problems.3,4 Depending on the ultimate goal of the 
model, different types of ML algorithms,5 such as supervised 
learning, semisupervised learning, reinforcement learning, 
and unsupervised learning can be used to achieve optimum 
outcome for the specific project.

There are several opportunities to use AI to improve or 
enhance the care of persons with diabetes along the healthcare 
continuum. Ranging from screening, predicting, and diagnosis 
to treatment and comorbidity management, researchers around 

the world are identifying novel applications of AI in diabetes 
(Figure 2). The use of AI has the potential to improve screen-
ing and diagnosis, provide earlier, more targeted therapies, 
predict complications, reduce morbidity and mortality, 
improve quality of life, and decrease healthcare costs. Reyna 
et al6 recently proposed six suggestions for developers and 
users of AI-powered algorithms, as listed in Table 1.

Within the field of endocrinology, diabetes and diabetes-
related complications are the conditions for which there is the 
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Figure 1. Conceptual map of AI and representative methods. Figure courtesy of Juan C. Espinoza.
Abbreviations: AI, artificial intelligence; DL, deep leaning; ML, machine learning.

Figure 2. Diagram of data sources and opportunities to apply AI methods to the continuum of care for persons with diabetes. Figure 
courtesy of Juan C. Espinoza.
Abbreviation: AI, artificial intelligence.
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largest body of evidence for use of AI technologies in disease 
detection, prediction, and risk assessment.5 Here we provide an 
introduction and overview of six key areas of diabetes and how 
AI is being used. We selected six common and impactful compli-
cations of diabetes which account for significant morbidity, mor-
tality, and cost including: (1) gestational diabetes mellitus 
(GDM), (2) hypoglycemia in the hospital, (3) diabetic retinopa-
thy (DR), (4) diabetic foot ulcers (DFUs), (5) diabetic peripheral 
neuropathy (DPN), and (6) diabetic nephropathy (DN). For each 
of these clinical situations, this article will focus on the impor-
tance of either predicting a complication before it occurs or mak-
ing an early diagnosis of a condition that is currently present 
based on analyzing a complex data set. This article will also 
address the current status and potential role of AI technology in 
making predictions and diagnoses, as well as the potential barri-
ers to AI applications. Although data from personal or smart 
devices collected from patients is expected to be increasingly 
integrated into clinical information systems and used for person-
alized health management in the coming decades, this review 
focuses predominantly on data collected in clinical settings.7

The Use of AI to Predict Gestational 
Diabetes

•• Accurate identification and treatment of GDM is key 
to reducing the risk of maternal and infant 
complications.

•• Artificial intelligence improves the accuracy of pre-
dicting GDM than traditional risk factors alone, but 
the optimal AI algorithm or set of factors to include is 
uncertain.

•• Incorporation of glucose data from continuous glu-
cose monitors (CGMs) and data from studies of large, 
diverse populations may improve the ability of AI to 
predict GDM development.

Current Status of AI to Predict Gestational 
Diabetes

In the last decade, AI has been increasingly used to predict 
development of GDM or the development of impaired 

glucose intolerance during pregnancy. Gestational diabetes 
mellitus is one of the most common medical complications 
affecting 7% to 18% of pregnancies.8 Gestational diabetes 
increases the risk of maternal and infant complications, 
such as pre-eclampsia, cesarean delivery, birth trauma, 
large-for-gestational age infants, and hypoglycemia at 
birth.8 While these risks can be mitigated through diagno-
sis and treatment in the third trimester, use of AI for early 
prediction of individuals who will develop GDM offers an 
opportunity for earlier intervention to prevent these 
complications.

Technology Needed to Improve the Use of AI to 
Predict Gestational Diabetes

Compared to the traditional use of clinical risk factors, AI 
improves the accuracy of predicting GDM (pooled area 
under the receiver operating characteristic [AUROC] = 
0.85).9,10 While the optimal AI algorithm or set of factors 
to include is not clear, nonlogistic regression models have 
performed better than clinical factors alone and commonly 
include such factors as maternal age, family history of dia-
betes, body mass index, and fasting blood glucose.9 
Previous studies have demonstrated tradeoffs associated 
with including different types and numbers of factors and 
different populations, as shown in Table 2.11-18 For select-
ing factors in an AI model, one must consider incorporat-
ing numerous detailed laboratory and genetic data to 
improve AI accuracy or fewer data only available with 
routine prenatal care to improve clinical usability. For 
different populations, one must decide whether to use 
data only from high-risk populations to improve accuracy 
(but sacrifice generalizability) or nonselected popula-
tions to improve generalizability (but sacrifice accuracy). 
Incorporation of novel data from CGM, which is becom-
ing increasingly prevalent,19 may improve the predictive 
ability of AI without sacrificing usability. Additional 
studies are also needed in large multinational, diverse 
populations to further improve predictive ability and 
ensure there are no biases by race or other factors.18,20

Table 1. Suggestions for Clinicians Who Are Developing and Using AI for Delivering Care.6

1.  Clinicians should not assume that traditional metrics, such as the area under the receiver operating characteristic curve, translate to 
clinical effects because such performance metrics are usually not optimized or evaluated for specific clinical contexts.

2. Clinicians should be involved in guiding the design of metrics to ensure that the algorithms produce outputs that are clinically useful.
3.  Clinicians should prioritize the use of AI tools with well documented and understandable performance metrics to enable informed 

decisions on how best to use the algorithm.
4. Clinicians should require a prospective evaluation of algorithms in clinical settings to assess their utility for actual clinical outcomes.
5.  Adopters of AI tools should require that AI developers make available the full code for an algorithm, including the training data and 

code.
6.  Diagnostic performance metrics should account for differential performance in subgroup populations, where conditions may present 

differently based on race, ethnicity, or sex.

Abbreviation: AI, artificial intelligence.
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Expected Future Use of AI to Predict Gestational 
Diabetes

In addition to predicting a diagnosis of GDM, we expect that 
AI will be integral in predicting an individual’s most effec-
tive treatment after GDM is diagnosed,21 and ultimately in 
predicting who will develop type 2 diabetes later in life.22

The Use of AI to Predict Hypoglycemia 
in the Hospital

•• Hypoglycemia is one of the most common adverse 
drug events in hospitalized patients, but this potentially 
life-threatening outcome can be difficult for clinicians 
to predict from manual review of various dynamic clin-
ical factors in the electronic health record (EHR).

•• Machine learning models are being developed to 
incorporate multiple clinical factors in order to predict 
hypoglycemia in both intensive care unit (ICU) and 
non-ICU settings.

•• Deployment of ML models applied to EHR data to 
predict hypoglycemia, coupled with AI-derived treat-
ment recommendations for clinicians, is expected to 
improve patient outcomes in the future.

Current Status of AI to Predict Hypoglycemia in 
the Hospital

Hypoglycemia due to insulin therapy is one of the most com-
mon adverse drug events among hospitalized patients.23 

Iatrogenic hypoglycemia is linked to increased healthcare 
costs and utilization of nursing resources, patient dissatisfac-
tion, morbidity, and mortality.23 Many hospitalized patients 
with diabetes have multiple risk factors for both hyperglyce-
mia (e.g. steroids) and hypoglycemia (e.g. nil per os status, 
renal dysfunction). It can be difficult for a treating clinician 
to synthesize these dynamic and sometimes competing fac-
tors to identify patients at high risk of iatrogenic hypoglyce-
mia. Accurate early detection systems could allow clinicians 
to make proactive treatment modifications to avoid such an 
adverse event.

Technology Needed to Improve the Use of AI to 
Predict Hypoglycemia in the Hospital

Over the past decade, there has been growing interest in 
leveraging large EHR data sets to develop prediction models 
for hypoglycemia using ML algorithms.24 By including large 
numbers of predictor variables known to influence glucose 
homeostasis from very large cohorts of patients, AI technolo-
gies can fill an evidence gap by identifying and weighing 
clinical factors that affect glucose levels in ways that would 
be difficult for clinicians to recognize from clinical experi-
ence alone. Various ML techniques have been used to develop 
prediction models in both non-ICU and ICU settings, includ-
ing gradient boosting,25-30 random forest classification,31 
recurrent neural net,27 and logistic regression.28,29,32-39 For 
discrimination of hypoglycemia, studies have achieved an 
AUROC ranging from 0.60 to 0.69,36 0.70 to 0.79,27,29,33,38,39 
0.80 to 0.89,26,28,29,35,37 and ≥0.902.29,31 The top 30 predictor 

Table 2. Key Differences in Select Studies of AI to Predict Development of GDM in Pregnancy.

Authors Type of factors included
Number of factors 

in final model Population AI algorithm AUROC

Wu et al11 Demographic, clinical, and 
laboratory

73 32,190 pregnant people in 
China

Deep neural network 0.80

Wu et al12 Demographic, clinical, and 
laboratory

15 17,005 pregnant people in 
China

Random forest 0.746

Xiong et al13 Demographic, clinical, and 
laboratory

43 490 pregnant people in 
China

Light gradient boosting 
machine

0.942

Wang et al14 Demographic and clinical 
only

7 1139 pregnant people in 
China

Random forest 0.777

Artzi et al15 Medical history and 
laboratory

2,355 588,622 pregnant people in 
Israel

Gradient boosting 0.854

Zheng et al16 Demographic, clinical, and 
laboratory

4 4771 pregnant people in 
China

Multivariate Bayesian logistic 
regression

0.766

Qiu et al17 Demographic, clinical, and 
laboratory

49 33,935 pregnant people in 
China

Cost-sensitive hybrid model 
of logistic regression, 
support vector machine, 
and CHAID tree

0.847

Du et al18 Demographic, clinical, and 
laboratory

5 565 overweight or obese 
pregnant people in Ireland

Support vector machine 0.792

Source: Table adapted from Du et al18 under a Creative Commons license: https://creativecommons.org/licenses/by/4.0/.
Abbreviations: AI, artificial intelligence; AUROC, area under the receiver operating curve; CHAID, chi-square automatic interaction detection; GDM, 
gestational diabetes mellitus.

https://creativecommons.org/licenses/by/4.0/


228 Journal of Diabetes Science and Technology 17(1)

variables of hypoglycemia are shown in Figure 3. Tree-based 
models (gradient boosting and random forest) seem to out-
perform other algorithms in predicting this relatively rare 
outcome. Studies differ with respect to the prediction hori-
zon, ranging from two to seven hours,40-42 the next 24 
hours,28,29,35,43 the first few days or another period during 
an admission,38 or at any time during hospital/unit 
stay.25,26,32-34,36,37,39

Expected Future Use of AI to Predict 
Hypoglycemia in the Hospital

Despite increasing predictive accuracy, few AI-based hypo-
glycemia models have been externally validated, which lim-
its the generalizability of the findings. Many studies used 
cross-fold validation, which may over-estimate model per-
formance in the real-world because it does not respect the 
chronological ordering of data and ignores the impact of 

secular trends. In addition, while the AUROC is often 
reported as a measure of model performance, the highly 
imbalanced classification of hypoglycemic outcomes can 
result in misleading interpretations with this metric, with 
high overall accuracy but relatively low positive predictive 
value or positive likelihood ratio. The appropriate trade-off 
between increasing sensitivity (outcome detection) and false 
positives (alarm fatigue) is unknown, as ML models have not 
yet been deployed as clinical decision support tools for pre-
dicting hypoglycemia in the EHR. Moreover, given high 
rates of clinical inertia with overt hypoglycemic episodes,44 
it is unknown whether hospital-based clinicians would even 
act on early warning information.

We anticipate the next phase of investigation in this area 
will involve deployment of ML models within EHR systems 
and prospective evaluation of impact on clinical outcomes. 
Two large EHR vendors in the United States (US) have plat-
forms to directly embed ML models within their systems 

Figure 3. Variable importance plot of top 30 predictor variables of hypoglycemia.
Source: Reproduced from Mathioudakis et al.29

Abbreviations: BG, blood glucose; BMI, body mass index; CV, coefficient of variation; eGFR, estimated glomerular filtration rate; WBC, white blood cell 
count.
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(Epic cognitive computing platform and Cerner Apollo), but 
there are no guiding procedures or framework for translating 
developed ML algorithms into an informatics alert using 
these platforms. Furthermore, investigators would need 
approval at institutional levels before deploying such models 
in their EHR systems. Hypoglycemia informatics alerts are 
likely to have the greatest impact when coupled with action-
able treatment recommendations for clinicians,45 another 
potential area where AI technology can contribute to evi-
dence gaps. Given recent interest in using CGMs in hospital-
ized patients in a telemetry-based care model,46,47 we 
anticipate that CGM data will eventually be another source 
of glucose data for ML prediction models. Inclusion of a 
larger number of glucose data points from CGM, coupled 
with clinical data from the EHR, is likely to yield even 
greater predictive accuracy. As multiple data sources are 
incorporated into ML models, widespread dissemination will 
require careful mapping of data elements across different 
EHR systems.

The Use of AI to Diagnose Diabetic 
Retinopathy

•• Artificial intelligence for diagnosing DR has greatly 
advanced in the past decades as numerous algorithms 
are being developed from the publicly available 
Kaggle data set containing 100,000 retinal images.

•• Commercial algorithms for diagnosing DR include: 
the IDx-DR (Digital Diagnostics, Coralville, Iowa) 
and the EyeArt (Eyenuk, Inc, Woodland Hills, 
California).

•• Adapting the workflow for diagnosing DR in health-
care systems is expected to greatly improve screening 
results and ultimately patient outcome.

Current Status of AI to Diagnose Diabetic 
Retinopathy

Diabetic retinopathy continues to be the main cause of irre-
versible blindness among working-age adults in the world.48 
Artificial intelligence promises to facilitate prevention of 
blindness from DR with instantaneous point-of-care detec-
tion in diverse settings, such as primary care, endocrinology, 
and diabetes clinics, as well as pharmacies, hospitals, and 
community centers.49 Development of AI for DR began more 
than 20 years ago and greatly accelerated during the past 
decade with increased computer power, the application of 
convolutional neural networks, and other DL techniques.

Kaggle is an online community of data scientists. The 
Kaggle data science competition in 201550 generated thou-
sands of different algorithms that outperformed human grad-
ing of a retinal image data set consisting of 100,000 retinal 
images from primary-care screenings. This public data set is 
still available today, assisting many research groups world-
wide to develop novel algorithms.51

Technology Needed to Improve the Use of AI to 
Diagnose Diabetic Retinopathy

In 2018, the US Food and Drug Administration (FDA) 
granted clearance to IDx, an AI diagnostic system that auton-
omously diagnoses patients with DR using DL. This was the 
first system in any field of medicine to receive FDA authori-
zation for an autonomous AI. In 2020, the EyeArt AI diag-
nostic system was also granted FDA clearance for 
autonomous diagnosis of DR. Clinical trials of various com-
mercial programs, including IDx and EyeArt as well as the 
Automated Retinal Disease Assessment (ARDA) (Google 
Health Palo Alto, California), the AEYE AI algorithm 
(AEYE Health, New York, New York), and others have 
shown high sensitivities and specificities above 90% for the 
detection of referable DR (defined as greater than mild 
DR).52,53 Recent studies, however, have shown poorer per-
formance of these algorithms in real-world settings.54 
Researchers have also expressed reservations because of a 
lack of (1) detail in grading,55 (2) grading of nondiabetic reti-
nal conditions and glaucoma, and (3) an explanation of how 
the algorithm determines the retinal grade, which often 
incorporates multiple features from fundus imaging. This 
technique produces a two-dimensional image that represents 
the three-dimensional structure of the retina. Multiple fea-
tures of a fundus image can aid an algorithm to reach a diag-
nosis of DR. One such feature can be a model of the 
vasculature of a retina which can be recognized by the AI 
diagnostic system, as shown in Figure 4. However, because 
of the black box nature of DL algorithms, it can be difficult 
to understand which specific features of a fundus image con-
tributed to the determination of a retinal grade. In addition, 
concerns over health equity have emerged because of a lack 
of representation of some populations in the ground truth 
data that is used to train the AI.56

Active research is being conducted to address these con-
cerns, such as explainable AI programs that annotate the 
lesions and regions of interest58 and AI programs that detect 
comorbidities from retinal images, such as cardiovascular 
disease, nephropathy, and neuropathy.59 Artificial intelli-
gence that predicts likelihood of disease progression40 is also 
being developed for risk stratification that can be used in 
patient care and in clinical trial recruitment.

Expected Future Use of AI to Diagnose Diabetic 
Retinopathy

Health systems will need to adapt workflows to maximize 
the benefit of this new tool. For example, immediate triage of 
patients with sight-threatening DR has demonstrated sub-
stantial increases in adherence to follow-up care.60 Ultimately, 
the greatest measure of success of this new technology will 
not be the number of patients screened, but rather the number 
of patients who avert blindness.
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The Use of AI to Diagnose Diabetic 
Foot Ulcers

•• Current ML algorithms can (1) detect whether images 
contain diabetic foot wounds, (2) localize the region 
of the image containing the wound, and (3) segment 
wound borders.

•• The ultimate goal is for ML algorithms to predict 
whether a patient will develop a wound before clinical 
signs are present.

•• Larger, clinically annotated data sets and improved 
algorithms are necessary to achieve this goal.

Current Status of AI to Diagnose Diabetic Foot 
Ulcers

In the last decade, ML algorithms have been applied to DFU 
management.61 Currently, advanced ML algorithms are able 
to detect, localize, and segment DFUs in images.41 Yap et al42 
created an app that allows users to determine whether an 
image contains a DFU, which is an especially useful tool for 
clinicians in regions where little training for DFU manage-
ment exists or for use by vision-impaired patients. 
Stefanopoulos et al62 used ML to retrospectively determine 
which patients in the Nationwide Inpatient Sample (a data-
base which contains approximately 20% of all US hospital 
admissions) with active DFUs were noted to have a variety 
of risk factors. Using six risk factors incorporating both 
physical parameters and demographic information (cellulitis, 
Charcot joint, peripheral arterial disease, uncontrolled diabe-
tes mellitus, peripheral vascular disease, and male gender), 
they developed an algorithm that can predict the likelihood 

of developing a DFU with 79.8% accuracy. The performance 
evaluation of this algorithm is shown in Figure 5.

Technology Needed to Improve the Use of AI to 
Diagnose Diabetic Foot Ulcers

Although we can determine which patient images currently 
show DFUs, the ultimate goal is to identify patients who will 
develop DFUs before clinical signs, such as skin breakdown, 
are present. This type of advanced warning has been made 
possible with other technologies, like thermography and 
multispectral imaging.63,64 However, to be able to achieve 
accurate prediction while imaging in the visible light spec-
trum, a massive, clinically annotated data set will be required 
to train a new algorithm.

Expected Future Use of AI to Diagnose Diabetic 
Foot Ulcers

A central DFU repository does not yet exist. Even the largest 
repository, publicly available from Manchester Metropolitan 
University in the United Kingdom (UK), consists of 11,000 
images with ground truth labeling of DFUs, and is, at pres-
ent, at least an order of magnitude too small to achieve the 
goal of predicting DFUs before clinical signs are present.65 
In addition, most existing DFU images are taken during 
healthcare visits and are thus sequestered in medical 
records, although new tools are making it easier for 
patients to image their feet themselves.66 This type of 
technology could allow them to opt in to share their 
images for research purposes. Finally, improved algo-
rithms will be needed, because even the best algorithms 

Figure 4. Examples of the outputs of the proposed computer-aided diagnosis system. (a) An original fundus image from the Messidor 
database (filename: 20051020 57566 0100 PP.tif), kindly provided by the Messidor program partners (https://www.adcis.net/en/third-
party/messidor/). The quality-verification module automatically assigned a probability of 0.98 that the image would have good quality. (b) 
Output of the automatic vessel segmentation module. The image shows the obtained pixel probability map indicating the likelihood of 
the pixel to belong to a vessel. White: higher probability.
Source: Reproduced with permission from Sánchez et al.57

https://www.adcis.net/en/third-party/messidor/
https://www.adcis.net/en/third-party/messidor/
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today suffer from significant false-positive results and  
difficulty discriminating between DFUs and other skin 
conditions.67

The Use of AI to Diagnose Diabetic 
Peripheral Neuropathy

•• Current diagnostic tests for DPN are largely ineffi-
cient because of their time-consuming nature and lack 
of specificity.

•• Various emerging technologies that use ML algo-
rithms can diagnose DPN noninvasively and quickly 
with great accuracy and specificity.

•• Corneal confocal microscopy (CCM) is expected to 
be used as a screening tool for early detection of DPN 
at the population level in the near future.

Current Status of AI to Diagnose Diabetic 
Peripheral Neuropathy

The diagnosis of DPN, a major long-term complication of 
diabetes mellitus, has become the target of ML algorithms. 
Diabetic peripheral neuropathy can be painful or nonpain-
ful.68 It is important to make this diagnose early to begin 
intensive metabolic management for preventing progression 
of this disease. However, current diagnostic tests, such as a 
nerve conduction velocity test, a quantitative sensory test, 
and a skin biopsy are not only time consuming and laborious 
but are also lacking in specificity.69 As a result, large-scale 
screening of DPN is difficult to achieve, which results in 

poor patient outcomes because an early diagnosis cannot be 
accurately made.69,70 In order to improve the accuracy and 
efficiency of diagnosing DPN, several ML algorithms have 
been developed, including one that incorporates phenotypic 
variables from the Michigan Neuropathy Screening 
Instrument.71 However, these early studies were only inter-
nally validated or contained a small sample size.71-73

Technology Needed to Improve the Use of AI to 
Diagnose Diabetic Peripheral Neuropathy

Three types of tests can use AI to diagnose DPN: qualitative, 
quantitative physiological, and anatomical. To better distin-
guish subsets of DPN, an ML algorithm has been developed 
that uses major clinical factors, such as the EuroQol- 5 
Dimension (EQ5D) health-related quality of life test which 
is a qualitative test to classify painful DPN and nonpainful 
DPN.68 There is a need for a standardized scoring scale of 
nerve function tests to classify the severity of disease. 
Artificial intelligence methods can be used to quantify physi-
ological responses for severity stratification across multiple 
anatomical sites and across time for the same site.74 For 
example, vibration perception threshold (VPT), a quantita-
tive physiological variable, is operator-dependent. However, 
a novel operator-independent system, which connects a VPT 
sensor to an ML algorithm, is currently being developed.71 
Besides quantitative data, anatomical data such as magnetic 
resonance imaging scans, are collected as biomarkers to 
diagnose painful DPN based on functional connectivity75 
and blood flow76 in the central nervous system. Similarly, 
ultrasound images of the peripheral nerves can be utilized as 
anatomical inputs to a convolutional neural network capable 
of identifying peripheral nerve patterns indicative of DPN. 
When the images are processed by an AI algorithm, the diag-
nostic accuracy for peripheral neuropathy improves.69,77 
However, these AI systems have low throughput compared 
to another approach utilizing CCM. Loss of corneal nerves, 
which can be detected by CCM, can predict the onset of dia-
betic neuropathy and correlates with the severity of neuropa-
thy.69,77 Corneal confocal microscopy is a rapid and 
noninvasive imaging technique that uses DL algorithms to 
automatically classify nerve fiber images of the cornea 
(where nerves are not covered by skin) to diagnose DPN.69 
Corneal confocal microscopy images of healthy patients and 
patients with DPN are shown in Figure 6. Preliminary clini-
cal trials with CCM are promising and demonstrate higher 
sensitivity, faster results, and less invasiveness, compared to 
a conventional skin biopsy.69,77 These advantages of CCM 
demonstrate its promise for population-scale screening, 
which can lead to early detection and intervention for DPN.

Expected Future Use of AI to Diagnose Diabetic 
Peripheral Neuropathy

Machine learning algorithms will provide numerous benefits in 
the diagnosis of DPN. Ensembles of diverse data sets and 

Figure 5. The receiver operating characteristic (ROC) curve for 
the six-variable model of predicting DFU is shown in blue. The 
area under the curve (AUC) is shown at the bottom right.
Source: Reproduced from Stephanopoulos et al.62

Abbreviations: AUC, area under the curve; DFU, diabetic foot ulcer; 
ROC, receiver operating characteristic.
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algorithms can result in the optimal accuracy and outcome.68 
Continued development of these AI-based algorithms is pre-
dicted to play a central role in DPN diagnosis as clinical diagnos-
tic aids for clinicians or as an online risk or diagnosis calculator 
for patients.68 The data input to algorithms are also expected to 
diversify and include increasingly specific qualitative biomark-
ers and quantitative data from high-definition imaging to avoid 
qualitative fallacies (where incorrect decisions are made based 
exclusively on quantitative metrics without regard for qualitative 
factors).78 In addition, rapid CCM is expected to precede clinical 
diagnoses and become widely adopted as a screening tool to 
enable early intervention for DPN.

The Use of AI to Diagnose Diabetic 
Nephropathy

•• Untreated and long-term diabetes can lead to DN, 
which can lead to renal failure and eventually to dialy-
sis, renal transplantation, or death; early intervention 
and new predictive models are crucial to improving 
patient outcomes.

•• Artificial intelligence combines information from 
demographic data, vital signs, and laboratory tests to 
make predictions about DN risk that have outper-
formed other algorithms.

•• Because the risk and rate of DN progression is higher 
in some populations than others, ML algorithms must 

be trained using data that are representative of the 
recipients of the AI-derived treatment.

Current Status of AI to Diagnose Diabetic 
Nephropathy

Diabetic nephropathy is a clinical syndrome characterized by 
albuminuria and a progressive decline in renal function. 
Kidney complications of diabetes are the leading cause of 
end-stage renal disease (ESRD)79 and account for approxi-
mately 50% of ESRD cases in developed countries.80 
Diabetic nephropathy, when resulting in ESRD, can progress 
to dialysis, renal transplantation, or death. Diabetic nephrop-
athy occurs in up to 50% of persons with diabetes and is 
associated with increased cardiovascular morbidity and mor-
tality.81 Early detection of DN can prompt protective inter-
ventions to prevent its progression and improve outcomes. 
Traditional risk scores for DN have been established using 
demographic information about pre-existing conditions and 
clinical data. For example, a widely used risk matrix, devel-
oped by Kidney Disease: Improving Global Outcomes 
(KDIGO),82 is presented in Figure 7. While traditional risk 
scores may be useful, there is still an opportunity and a need 
to identify patients who are at high risk of having DN based 
on their clinical features. Since many patients with diabetes 
do not undergo regular urinary albumin screening,83 models 
that can make predictions without this piece of information 

Figure 6. (a-b) Example CCM images from healthy individuals. (c-d) Example CCM images from individuals with diabetic neuropathy. 
(e) An example of a CCM image. (f) Manual annotation of the previous image in 5e with red lines representing manual tracing of the 
nerve. (g) Manual annotation of 5e indicating branch and terminal points with green triangles denoting tail points and blue squares 
denoting branching points.
Source: Reproduced from Williams et al69 under a Creative Commons license: http://creativecommons.org/licenses/by/4.0/.
Abbreviation: CCM, corneal confocal microscopy.

http://creativecommons.org/licenses/by/4.0/
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would allow for early intervention and improvement of 
patient outcomes.

Technology Needed to Improve the Use of AI to 
Diagnose Diabetic Nephropathy

AI has been applied to ten populations of patients with type 
2 diabetes to predict development of DN using various com-
binations of demographics, vital signs, and laboratory 
tests.83-92 The predictions were compared with modified 
databases in a sensitivity analysis comparison in two of these 
reports84,87 and outperformed algorithms derived exclusively 
from clinical data in four of these reports.83,85,86,91 In addition 
to standard data extraction, one study used natural language 
processing to identify data from the EHR.87

Besides laboratory tests, historical information, and a 
chart review, another way to diagnose DN in the presence of 
microscopic hematuria or a rapid decline in renal function is 
through a renal biopsy. This procedure can distinguish DN 
from other types of glomerular diseases. In one series, immu-
nofluorescent images revealed no characteristic findings, but 
AI was able to diagnose DN from these types of images, 
which pathologists rarely examine.93

Expected Future Use of AI to Diagnose Diabetic 
Nephropathy

More research is needed in two areas that incorporate AI into 
making DN diagnoses. First, these algorithms must be rele-
vant to the individuals for whom they are to be used. This is 
because the risk and rate of DN progression is higher in some 
populations than others, and the predictions, which deter-
mine further actions, must be derived from data representing 
the recipients of the AI-based treatment.94 Second, it will be 
necessary for clinicians to trust a decision from an AI model, 
which is often referred to as a black box. They must identify 
the inputs and outputs and reinforce the accuracy of these 
long-term predictions with additional outcomes data.95 Data 
used for the ML algorithm will eventually be routinely 
extracted from the EHR to enable improved identification, 
followed by the use of modern renoprotective medications 
for patients at high risk of DN.96

Discussion

It is highly evident that AI can be incorporated into the process 
of predicting and diagnosing the progression of major compli-
cations associated with diabetes. Furthermore, advances in AI 

Figure 7. Current chronic kidney disease (CKD) risk factors used by KDIGO: CKD is defined as abnormalities of kidney structure or 
function, present for at least 3 months. CKD prognosis is currently classified into risk categories by a combination of clinical features, 
such as persistent albuminuria category (A1-A3) and glomerular filtration rate (GFR) category (G1-G5). Green = low or no risk; Yellow 
= moderately increased risk; Orange = high risk; Red = very high risk.
Source: Reproduced with permission from de Boer et al.82

Abbreviations: CKD, chronic kidney disease; GFR, glomerular filtration rate; KDIGO, Kidney Disease: Improving Global Outcomes risk matrix.
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technology can be integrated into the personalized manage-
ment of diabetes and its complications, leading to better treat-
ment plans and improved patient outcomes. An important 
input for any AI software intended to predict, diagnose, treat, 
or prevent virtually every complication of diabetes will be 
CGM data. Activity monitors and apps to track nutrition may 
also prove to be useful.97 Donated data from the OpenAPS 
Data Commons,98 which include hundreds of individuals and 
thousands of days of data, have enabled more accurate blood 
glucose forecasting.99 Challenges to creating trustworthy AI 
for diagnosis and treatment include the need for standardized 
aggregation of clinical data, maintenance of patient privacy, 
de-emphasis of outlier data and noise, and the use of advanced 
statistical learning methods and ML algorithms. The value of 
an AI model would be degraded if contributing data sets had 
different sample sizes or dissimilar methods for feature extrac-
tion. Furthermore, data set can be modeled with AI in a variety 
of configurations.

Artificial intelligence can support a precision medicine 
paradigm for diabetes. This will be possible if multiple types 
of genetic, genomic, physiological, biomarker, environmen-
tal, and behavioral data can be collected, assembled, and 
analyzed with methods that ordinarily require human intelli-
gence (artificial intelligence) or with methods that can iden-
tify patterns without being specifically programmed to find 
them (machine learning).

Six complications of diabetes are particularly common, 
debilitating, and costly for society, including (1) gestational 
diabetes, (2) hypoglycemia in the hospital, (3) retinopathy, 
(4) foot ulcers, (5) neuropathy, and (6) nephropathy. The use 
of larger data sets from real world data sources like EHRs 
will help improve the predictive accuracy of AI-powered 
software. The next decade promises to be one of great 
advances in precision medicine for predicting and diagnos-
ing complications of diabetes powered by AI.

Conclusion

Artificial intelligence can be applied to predict and diagnose 
complications of diabetes, including (1) gestational diabetes, 
(2) hypoglycemia in the hospital, (3) retinopathy, (4) foot 
ulcers, (5) neuropathy, and (6) nephropathy. As data sets con-
taining risk factor and outcomes data become larger and 
more detailed, the accuracy of these predictive programs is 
expected to improve. Artificial intelligence–powered algo-
rithms for predicting and diagnosing various diabetic com-
plications are expected to eventually be widely applied.
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