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ABSTRACT

Objectives: To access the accuracy of the Logical Observation Identifiers Names and Codes (LOINC) mapping to

local laboratory test codes that is crucial to data integration across time and healthcare systems.

Materials and Methods: We used software tools and manual reviews to estimate the rate of LOINC mapping

errors among 179 million mapped test results from 2 DataMarts in PCORnet. We separately reported

unweighted and weighted mapping error rates, overall and by parts of the LOINC term.

Results: Of included 179 537 986 mapped results for 3029 quantitative tests, 95.4% were mapped correctly

implying an 4.6% mapping error rate. Error rates were less than 5% for the more common tests with at least

100 000 mapped test results. Mapping errors varied across different LOINC classes. Error rates in chemistry and

hematology classes, which together accounted for 92.0% of the mapped test results, were 0.4% and 7.5%,

respectively. About 50% of mapping errors were due to errors in the property part of the LOINC name.

Discussions: Mapping errors could be detected automatically through inconsistencies in (1) qualifiers of the

analyte, (2) specimen type, (3) property, and (4) method. Among quantitative test results, which are the large

majority of reported tests, application of automatic error detection and correction algorithm could reduce the

mapping errors further.

Conclusions: Overall, the mapping error rate within the PCORnet data was 4.6%. This is nontrivial but less than

other published error rates of 20%–40%. Such error rate decreased substantially to 0.1% after the application of

automatic detection and correction algorithm.
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INTRODUCTION

In 1996, Clinical Chemistry introduced Logical Observation Identi-

fiers Names and Codes (LOINC) database1 with 6000 codes and

names for laboratory, and other clinical tests. LOINC database

now includes nearly 100 000 laboratory tests survey instruments,

clinical assessments, narrative reports, and panels most of which

are specified for use in federal United States Core Data for Intero-

perability (USCDI) guidance.2 At the beginning, the laboratory tests

were the primary content of the LOINC database and today they

still represent the plurality of today’s LOINC codes. The availabil-

ity of these standard codes in electronic result messages enables

clinical data delivered to medical records and research databases, to
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be presented as a unified whole, over time and across health care

systems.

These codes are crucial to data integration within health infor-

mation exchanges (HIEs), such as the Indiana Health Information

Exchange,3 personal health records such as Apple’s HealthKit,4

research networks such as the Patient-Centered Outcome Research

Network (PCORnet) and Observational Health Data Science Infor-

matics (OHDSI), and Informatics for Integrating Biology & the

Besides (i2b2).5 LOINC codes have been translated into 19 linguistic

variations and have been adopted in whole or part by 193 coun-

tries.6 In the United States, it is required by Food and Drug Adminis-

tration (FDA), Centers for Disease Control and Prevention (CDC),

Office of the National Coordinator for Health Information Technol-

ogy (ONC), and Centers for Medicare & Medicaid Services (CMS)

for many purposes.7

However, with increasing use, questions about the accuracy of

the mappings between local laboratory tests and LOINC codes have

arisen.

Laboratory results are often presented as matrices of tests

belonging to a panel or in time-oriented flowsheets, both of which

constrain the space available for a test name; so, contractions, acro-

nym, and the removal of the specimen type, for example, serum or

blood, from the test name, when it is the predominate specimen type

for a give test, all occur. These kinds of laboratory test name short-

enings make mapping more difficult and prone to error. One recent

paper reported error rates as high as 20% among mappings between

local laboratory tests and standard LOINC codes.8 This report

included mappings to 10 tests, mostly from the coagulation labora-

tory, and the sample was taken from a laboratory survey with a low

(5%) response rate, so the results may not be representative. A study

with an elaborate design reported a 41% mis-mapping rate,9 but it

did not make clear how their 9 different potential reasons for mis-

match related to the 136 mis-mappings, whether each of the 136

was an independent observation or they were correlated due to

errors, for example, in a master file that got propagated through

many repeated instances at a given institution. To obtain a better

estimate of mapping errors at large, and their genesis, we obtained a

large sample of mappings from a research network which included

183 million instances of mappings from 2 independent source net-

works, each of which included mappings from many institutions. Of

note, the mappings from these networks were not necessarily done

by laboratory experts. Here, we report the overall mapping error

rates and their breakdowns by multiple categories. We also report

our success with correcting mis-maps broken down in different

ways.

MATERIALS AND METHODS

Content obtained from PCORnet
PCORnet10 is a large research consortium which currently includes

60þ contributing organizations, called DataMarts. Each contribu-

ting organization holds and controls its own data, but the content

from all DataMarts is organized and coded the same way to enable

research questions to be asked across DataMarts. In early 2016, a

PCORnet survey of their 34 DataMarts fed by 12 different EMR

system revealed huge numbers of distinct measurement names in the

DataMarts; 32% counted between 5000 and 10 000 distinct meas-

urement names and 36% carried more than 10 000, per mart.11

However, many of the names were variations on the name of one

measurement. LOINC code was needed to link a given test within,

and across, the different DataMarts. We had access to their map-

pings from only 2 Data Marts at the start of our study. Taken

together, the 2 marts included 183 million mapped test results for

4651 distinct measurements. PCORnet provided us with the local

test name and local code. For privacy protection, they did not pro-

vide full data on specific mapped test results. Instead, they provided

us with 1 example for each unique combination of source’s dummy

DataMart ID, source laboratory’s test name, unit string, occasion-

ally a separate specimen identifier, the test results’ calendar year, the

median value of each quantitative result in each combination and

the LOINC code to which this combination was mapped. They also

provided us with the count of records in each combination with

which we derived error rates weighted by testing volume. They pro-

vided null counts for attributes of combinations based on fewer than

11 mapped test results to protect against possible reidentification.

We imputed a value of 5 for these null counts assuming they were

between 1 and 10.

We received a compressed set of tests mappings by taking only

unique combinations of the attributes mentioned above. We

removed duplicate records that differed only by calendar year and

added their counts to the appropriate surviving record. No record

that we received included any Personal Identifiable Information or

individual test result value.

We converted all the raw unit of measure strings we obtained to

formal Unified Code for Units of Measures (UCUM)12 codes using

tables that linked raw unit of measure strings to their correct UCUM

code. Two kinds of raw unit of measure strings required extra work.

Some raw unit of measure strings contain “U” alone or “U” as the

numerator. “U” per IUPAC13 represents the amount of enzyme that

will convert 1 mm of substrate per minute. However, some laborato-

ries use “U,” to mean arbitrary units. We changed UCUM unit for

tests that were really measured in arbitrary units rather than the

enzyme unit to [arb’U] the correct UCUM code. The second problem

was the mislabeling of the units for some enzyme measures as Inter-

national Units (IU). We could identify analytes that were real

enzyme measures by their name which, with few exceptions, ended

in “ase.” We reviewed all analyte names to find enzymes that lacked

a terminal “ase” (eg, renin) and to distinguish tests which were anti-

bodies to enzymes rather than the enzymes per se.

Rules for detecting errors and correcting mis-mappings
LOINC observation terms are constructed from atoms called

Parts.14 Mapping errors were usually due to an inconsistency

between the content of the local test name and a single part of the

LOINC term, and we classify such errors based on that part type. A

few were due inconsistencies with 2 parts of a LOINC name. To

simplify the classification of these, we treated them as a single part

error and used the first of the 2 to classify it.

Some local terms represented test concepts for which no corre-

sponding LOINC term yet existed.

We counted them separately in Table 1 and reported mis-

mapped error rates without them because no correct mapping

existed.

We used manual review supplemented by automated review to

define mapping errors. We could automatically detect mis-mapping

through 4 processes listed below:
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Inconsistencies between qualifiers of the analyte in the local test

name and qualifiers of the analyte in the mapped to LOINC term

Local name and LOINC analyte names often included qualifiers

such as bound, unbound and others (see Supplementary Table S1 for

the list we used). If local lab name included a given qualifier and the

mapped to LOINC name did not or vice versa, the mapping was

wrong, and we flagged it as such.

Inconsistencies between specimen type in the local test name and the

specimen type in the mapped to LOINC term (in LOINC term, the

part that carries the specimen type is called the system)

The specimen’s name was embedded in the local test name, for

example, creatinine, dialysis fluid. We created a list of specimen

names that we found embedded in the local test names (see Supple-

mentary Table S2) and assumed this name was the correct one when

it disagreed with the specimen part of the mapped to LOINC term.

PCORnet also provided a column for specimen that carried a speci-

men identifier for 40% of the tests and 19% of the mapped test

results. When either the embedded specimen name or the name in

the PCORnet specimen column disagreed with the specimen in the

mapped to LOINC term, we assumed the former represented the

correct specimen and labeled it a mis-mapping. In the case that no

specimen was asserted in either the local test name or the PCORnet

specimen column, and the LOINC class was chemistry, toxicology,

or drug/tox or serology, we assumed the specimen was serum or

plasma, and when the class was heme/BldCt (blood count) or flow

cytometry, we assumed the specimen was blood (whole blood). And

when the class was urinalysis, we assumed it was urine sediment.

These are the same assumptions that laboratory systems tend to

make in order to minimize the test name length for tests in these

classes.

Inconstancies between the property implied by the local Units of

Measure (UoM) and the property of the LOINC term to which it

was mapped

We had already converted all local UoM to UCUM as mentioned

above. We used a preexisting large set of mappings between raw

local units and properties and UCUM validator converter to find

inconsistencies between the properties of the local test UoM and the

property of the mapped to LOINC term.

Most UoM were one to one with a LOINC property, but local

terms with UoM of percent had many to one mapping with LOINC

properties. Units of percent could be used for ratio, and fraction

properties, for example. Our algorithm for these could find the cor-

rect mapping by identifying terms with the same numerator as the

mapped to LOINC term, then finding a term that matches all but

the denominator in the mapped to LOINC term. The denominator

was never a deciding factor given all of the other parts that matched

with parts in the mapped to LOINC term.

Inconsistencies between the method of the local test name and the

method in the mapped to LOINC term

Mix-ups between counts per high power field (HPF) and per low

powered field (LPF) in urinalysis measurement were the only exam-

ple of this problem. Local names would carry HPF or LPF in their

local name and/or in their UoM, we would compare this unit with

the HPF or LPF embedded in the method part of the mapped to

LOINC term.

Error correction
In general, error corrections were aligned with one of the four detec-

tion process. We assumed that the content of the local test name

that disagreed with a LOINC part was the correct content, and we

replaced that LOINC part with that content in the mapped to

LOINC term to define a hypothetical LOINC term. For example, if

the local test name had a unit mg/dL implying a LOINC property of

mass concentration (MCnc) and it had been mapped to a term with

substance (molar) concentration (SCnc) as property, we replaced

SCnc with MCnc in the LOINC term to which it had been mapped

and then looked for a LOINC term that matched all of the parts of

this hypothetical LOINC. If it found one, it submitted it as the cor-

rection and classed the previous mapping as an error. If not, it was

also classed the mapping as an error, but could not propose a

LOINC term with which to correct the mapping. When the algo-

rithm found more than 1 match, we applied rules to find the best

match. The JavaScript code for the detection and correction process

can be found in GitHub.15

For qualifiers and specimens, the algorithm depended on lists of

specimen strings and qualifier strings derived from the PCORnet

content (Supplementary Tables S1 and S2). Users who wished to

apply our algorithms to their local set of mapped test results would

have to create their own sets of specimen names and qualifiers based

on specimen, or qualifiers, strings found in the local test names of

their local data set. The tables used to detect and correct property

errors came from a broad set of independent sources, not the PCOR-

net data set, so should be applicable to the detection and correction

of property errors in any arbitrary set of mapped test results.

Note, however that we could not declare an error when no

LOINC term that corresponded to the local test term existed. Map-

pers tended always to assert a mapping, typically on close to the

local term. So, we tallied them separately in Table 1 but did not

count such mappings as errors per se.

STATISTICAL ANALYSIS

Our aim was to find the mapping error rates overall and how they

varied with other factors such as the class, and the frequency of a

given test in the database.

Nonquantitative results were a small fraction, less than 20%, of

the tests results in the full sample of 7 billion PCORnet mapped test

Table 1. Counts and percent of records included and excluded from

analysis because they are not quantitative value measures

N (%) unique

tests

N (%) mapped test

results

Total included 3029 (65.1) 179 569 051 (94.8)

Total excluded 1622 (34.9) 9 836 382 (5.2)

Breakdown of excluded

Nonquantitative 1486 (32.0) 9 723 848 (5.1)

Reference ranges, not test

results

3 (0.1) 1622 (0.0009)

Local tests name has

no corresponding term

in the LOINC data base

45 (1.0) 36 044 (0.02)

Local test name all digits 86 (1.8) 74 799 (0.04)

Contradiction between local

test name and local UoM

2 (0.0) 69 (0.00004)

Grand total 4651 189 405 433
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results (we obtained this full set after we had manually identified

errors in the smaller 180 million mapped test results). For quantita-

tive tests, the supplied UoM provided an independent indicator of

the property of the LOINC term which greatly narrowed the search

space for the correct mapping. Due to privacy concerns about possi-

bility of identifiers lurking in answers, PCORnet did not provide us

answer lists for nonquantitative tests, which information would

have allowed us to verify the correctness of such tests, so, we

decided to focus the study solely on quantitative tests, which were in

the large majority and for which the units of measures could provide

some independent validating information.

We classified all local tests with no associated UoM and no

median value, as nonquantitative. We excluded from analysis all

local tests whose name, inexplicably, consisted of all digits, those

whose corresponding LOINC terms did not exist and those which

had contradictions between their local name and their local UoM,

for example, local test name ¼NOREPINEPHRINE MCG/DAY,

local test units (a mass rate)¼mg/L (a mass concentration), assuming

they were transcription errors by the original mappers.

These PCORnet test results were pulled from a local medical

record and subjected to a number of manipulations including,

extraction from the medical and aggregated, but these do not

account for the some of the weird content such as local test names

represented as all digits.

We provided simple counts of included unique tests and mapped

test results. We also provided the count and percentage of correctly

mapped unique tests and the same information weighted by mapped

test results. Further, we present the number and percent of wrong

mappings, that our algorithm could correct, before and after

weighted by mapped test results. We provided similar statistics for

breakdowns by logarithmic ranges, for example: 1–10, 10þ–100,

100þ–1000, and so on up to 107. We also provide breakdown by 2

DataMarts, by class, property, and specimen and by grouped issues

that characterized the mis-mapping.

RESULTS

We refer to each of the 4651 records carrying a unique combination

of dimensions as a “test” to simplify the discourse and refer to the

189 405 433 discrete mappings, as mapped test results.

We presented unweighted mis-mapping rates for tests and

weighted rates for mapped test results.

We excluded 34.9% of the tests and 5.2% of the mapped test

results from our analyses for reasons given in the method section

(Table 1). Table 1 also presents the breakdown of the excluded

records, including 45 unique tests (or 36 004 mapped test results)

for which the LOINC database included no matching terms.

Proportion of correct/corrected mappings by test and

by mapping instance
Of included tests, 91.3% were mapped correctly (unweighted) imply-

ing an 8.7% incorrect mapping rate. Of mapped test results

(weighted), 95.4% were mapped correctly (4.6% incorrectly). Impor-

tantly, our correction algorithm fixed 5.1% of the mis-mapped tests

(unweighted) and 4.5% of the mapped test results (weighted). The

sum of correct and corrected test mappings reached 96.4% and com-

parable figure for mapped test results reached 99.9% (Table 2). We

hasten to add that the correction algorithm was tuned to the PCOR-

net content for specimen and, qualifiers. So, we should not expect the

same success for specimens and qualifiers with different data set.

However, our correction algorithm for properties did not depend on

the PCORnet data set; so is likely to be as successful with a different

data set. Importantly, the LOINC part that accounted for the greatest

proportion of mis-mappings was the property.

Proportion of unweighted and weighted correct

mappings by logarithmic ranges of mapped test results
Table 3 shows the proportion correctly mapped tests (unweighted)

and correctly mapped test results (weighted) by ranges from 1–10

Table 2. Among included mapping, unweighted and weighted counts and percent of right and corrected wrongs

N (%*) unique tests N (%) correctly

mapped tests

N (%*) mapped

test results

N (%) correctly mapped

test results

N (%) of corrected

test mappings

N (%) of corrected mapped

test results

3029 (65.1) 2766 (91.3) 179 569 051 (94.8) 171 294 723 (95.4) 153 (5.1) 8 092 964 (4.5)

Note: % * : percentage among all tests (instances).

Table 3. Weighted counts and percent of right and fixable wrong by the number of records

N mapped test

results

N (%*)

unique tests

N (%) correctly

mapped tests

N (%*) mapped

test results

N (%) correctly mapped

test results

N (%) corrected test

mappings

N (%) corrected mapped

test results

(1) 1–10 780 (25.8) 704 (90.3) 3900 (0.0) 3520 (90.3) 39 (5.0) 190 (4.9)

(2) 10–100 596 (19.7) 538 (90.3) 25 836 (0.0) 23 314 (90.2) 34 (5.7) 1490 (5.8)

(3) 100–1000 749 (24.7) 692 (92.4) 312 424 (0.2) 287 028 (91.9) 26 (3.5) 12 263 (3.9)

(4) 1000–10 000 527 (17.4) 483 (91.7) 1 780 626 (1.0) 1 584 829 (89.0) 30 (5.7) 92 456 (5.2)

(5) 10 000–

100 000

198 (6.5) 180 (90.9) 7 690 738 (4.3) 7 152 090 (93.0) 14 (7.1) 402 975 (5.2)

(6) 100 000–

1 000 000

138 (4.6) 130 (94.2) 49 904 905 (27.8) 48 109 187 (96.4) 8 (5.8) 1 795 718 (3.6)

(7) 1 000 000–

10 000 000

41 (1.4) 39 (95.1) 119 922 622 (66.8) 114 134 755 (95.2) 2 (4.9) 5 787 867 (4.8)

Total 3029 2766 (91.3) 179 569 051 171 294 723 (95.4) 153 (5.1) 8 092 964 (4.5)

Notes: % *: column percentage; %: row percentage.
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up to 1 million to 10 million mapped test results. The mapping accu-

racy was highly skewed toward the more common test and the accu-

racy for the more common tests (ie, mapped test results �100 000)

became almost 100% when mapping errors were corrected (ie, pro-

portion of correct and corrected mapped test results).

Mapping success by data mart
Weighted mapping error rate of DataMart 62 was 3 times better

than that of Datamart 102 (1.7% vs 5.2%, Table 4), suggesting

important differences between 2 DataMarts in either expertise, or

care, applied to the mapping effort. These differences were not

explained by differences in class content of the 2 DataMarts in

Table 5 (P value <.001).

Breakdown by LOINC class
Nine classes carry more than 90 unique tests (Table 5).16 Chemistry

was the dominant class with 47.3% of all mapped test results

(weighted), with hematology a close second with 44.7% of the

mapped test results. Though microbiology carried more than 100

unique tests, it represents the tiny proportion (0.2%) of all mapped

test results, at least as observed within in the PCORnet data set. The

mapping accuracy varied importantly by class. The mapping accu-

racy by mapped test results was above 90% for most classes. For

microbiology and hematology/blood counts, it was 97.5% and

92.5%, respectively. By mapped test results, the mapping accuracy

of flowcytometry tests (Class CellMark) and urinalysis were poor,

85.1% and 82.1%, respectively. In general, the names of cell

markers are poorly standardized in clinical labs and laboratory

records. Their test names rarely indicate the many possible dimen-

sions of a flow cytometry cell marker, such as the initial gating, stem

cell versus mature cell, the type of cells blasts, monocytes, etc. So,

with a few exceptions, cell markers are very difficult to map and are

likely to be unreliable until laboratories apply more formal stand-

ardization to their names. The urinalysis testing had similar error

rates to cell markers. However, they were easy to detect and correct.

All of the urinalysis errors were mix-ups between HPF and LPF.

Breakdown of incorrectly mapped tests and instances

by part that was wrong in mapping
Table 6 provides the breakdown of wrong mapping according to the

part in the mapped to LOINC name that was wrong. The property

part of the LOINC name was responsible for the majority, 50.2%,

of LOINC mapping errors. This is good news, because mis-maps

due to wrong properties are “easy” to correct and our mapping

algorithm is likely to function well for property errors on any map-

ping data set.

DISCUSSION

Recently published 20%8 and 40%9 mapping error rates might not

be representative of the error rates of a typical local code to LOINC

code mapping effort. The 20% error rate was based on a small sam-

ple of underpowered survey results. The second paper reported 40%

error rate, because they did not exclude special categories, such as,

mapping to nonquantitative tests as we did.

Table 5. Unweighted and weighted counts and percent of right and fixable wrong by LOINC Class (table includes only the 9 classes with

more than 90 tests)

Class N (%*) unique

tests

N (%) correctly

mapped tests

N (%*) mapped test

results

N (%) correctly mapped

test results

N (%) of cor-

rected

test mappings

N (%) of corrected mapped

test results

Chemistry 1263 (41.7) 1192 (94.4) 84 894 593 (47.3) 84 539 305 (99.6) 50 (4.0) 348 275 (0.4)

Drugs and

toxicology

420 (13.9) 395 (94.0) 727 149 (0.4) 661 483 (91.0) 16 (3.8) 45 439 (6.2)

Microbiology 244 (8.1) 216 (88.5) 352 074 (0.2) 343 220 (97.5) 20 (8.2) 6586 (1.9)

Hematology/blood

counts

240 (7.9) 215 (89.6) 80 314 529 (44.7) 74 316 442 (92.5) 14 (5.8) 5 927 369 (7.4)

Allergen testing 223 (7.4) 216 (96.9) 110 508 (0.1) 101 993 (92.3) 2 (0.9) 5811 (5.3)

Coagulation 160 (5.3) 139 (86.9) 2 628 943 (1.5) 2 622 925 (99.8) 4 (2.5) 381 (0.0)

Serology 121 (4.0) 110 (90.9) 185 912 (0.1) 180 856 (97.3) 7 (5.8) 603 (0.3)

Urinalysis 100 (3.3) 72 (72.0) 9 669 455 (5.4) 7 934 630 (82.1) 27 (27.0) 1 734 757 (17.9)

Cell markers (Flow

cytometry

95 (3.1) 77 (81.1) 60 463 (0.0) 51 471 (85.1) 3 (3.2) 3537 (5.8)

Miscellaneous

(count< 90)

163 (5.4) 134 (82.2) 625 425 (0.3) 542 398 (86.7) 10 (6.1) 20 206 (3.2)

Grand total 3029 2766 (91.3) 179 569 051 171 294 723 (95.4) 153 (5.5) 8 092 964 (4.5)

Notes: % *: column percentage; %: row percentage.

Table 4. Unweighted and weighted counts and percent of right and fixable wrong by DataMart

DataMart N (%*)

unique tests

N (%) correctly

mapped tests

N (%*) mapped

test results

N (%) correctly mapped

test results

N (%) corrected

test mappings

N (%) corrected mapped

test results

DM102 1825 (60.3) 1710 (93.7) 149 391 626 (83.2) 141 622 427 (94.8) 74 (4.1) 7 707 125 (5.2)

DM62 1204 (39.7) 1056 (87.7) 30 177 425 (16.8) 29 672 296 (98.3) 79 (6.6) 385 839 (1.3)

Notes: % *: column percentage; %: row percentage.
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We agree with most of Cholan et al’s conclusion about mapping

problems and their thoughtful recommendations. But we believe

stronger requirements or encouragement from ONC, CLIA, or CMS

might be needed to solve the problem of mapping errors. Regardless,

automatic detection and correction algorithms, applied as exempli-

fied in this report, could shrink the error rates substantially. Our

algorithm certainly performed well on the PCORnet data. Starting

with data that had been mapped by humans and fixing their map-

ping errors is an easier task than automatic mapping without human

involvement as other investigators have tried.17,18

One might quibble with our decision to exclude mappings that

had no valid mapped to term in the LOINC database. However,

they represent less than 1% of the test mappings and its inclusion in

the analysis has little effect on our results.

Finally, both papers suggested possible safety concerns assuming

that the results would be displayed to provider labeled with a wrong

LOINC name. However, as it turns out neither of the 2 major

EMRs show any LOINC content in their test displays. Indeed, my

researcher friends have a tough time finding LOINC codes within

these systems. EMR vendors should store the standard codes with

the results and allow users to review them as needed, for example,

with click on an icon. Apple Health’s personal health record4 allows

users to see the full FHIR structure and all of the standard codes

with one click.

CONCLUSIONS

We found that the overall test mis-mapping rate in the PCORnet

data set was 4.6%. This is an important error rate but much less

than other published rates of 20%–40%. Importantly, mapping

errors can be reduced substantially by using automatic error detec-

tion and correction algorithms, as we have shown in this study. We

cannot be certain such the corrections will be absolutely correct in

all cases, however for those based on property mix-ups, the reported

UoM provide point strongly to the correct LOINC term. Further-

more, users would not have to accept the corrections as certain but

could use them to identify the mappings that require further review.

Clinical users do not see LOINC names, and/or, codes on the

result displays of the 2 major EMR systems in the US. Indeed,

researcher friends describe challenge in even finding the mapping

though they are present in such systems. However, EMR vendors

should make the standard codes available to routine administrative

and clinical users, through mouse-over or click, so that interested

users and administrators could identify inconsistencies between the

local name and the LOINC name and correct them to the benefit of

researchers and administrators who may collect such data across

multiple system. The mantra of opensource software is, when a

thousand eyes can see the source code, they will see all errors. If

mappings are always hidden in EMRS, no eyes will see the errors.
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