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ABSTRACT

Objective: Patient phenotype definitions based on terminologies are required for the computational use of elec-

tronic health records. Within UK primary care research databases, such definitions have typically been repre-

sented as flat lists of Read terms, but Systematized Nomenclature of Medicine—Clinical Terms (SNOMED CT) (a

widely employed international reference terminology) enables the use of relationships between concepts,

which could facilitate the phenotyping process. We implemented SNOMED CT-based phenotyping approaches

and investigated their performance in the CPRD Aurum primary care database.

Materials and Methods: We developed SNOMED CT phenotype definitions for 3 exemplar diseases: diabetes

mellitus, asthma, and heart failure, using 3 methods: “primary” (primary concept and its descendants),

“extended” (primary concept, descendants, and additional relations), and “value set” (based on text searches

of term descriptions). We also derived SNOMED CT codelists in a semiautomated manner for 276 disease phe-

notypes used in a study of health across the lifecourse. Cohorts selected using each codelist were compared to

“gold standard” manually curated Read codelists in a sample of 500 000 patients from CPRD Aurum.

Results: SNOMED CT codelists selected a similar set of patients to Read, with F1 scores exceeding 0.93, and

age and sex distributions were similar. The “value set” and “extended” codelists had slightly greater recall but

lower precision than “primary” codelists. We were able to represent 257 of the 276 phenotypes by a single con-

cept hierarchy, and for 135 phenotypes, the F1 score was greater than 0.9.

Conclusions: SNOMED CT provides an efficient way to define disease phenotypes, resulting in similar patient

populations to manually curated codelists.
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INTRODUCTION

Computational use of electronic health records (EHRs) for individ-

ual patient care (eg, clinical decision support, risk prediction mod-

els) or improving health services (eg, audit, service evaluation,

research) requires patient phenotypes and outcomes to be defined

based on data contained within the EHR.1–3 Many EHR systems

record diagnoses using clinical terminologies, for example, the Clini-

cal Modification of the International Classification of Diseases is
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used in the United States for coding encounter diagnoses for billing,

and the Read Clinical Terminology (Read terms) has been used by

GPs in the United Kingdom since 1985.4 Thus, definition of pheno-

types often involves the creation of lists of clinical terms (often

called “codelists,” “code sets,” or “value sets”). However, a single

clinical meaning may be represented by more than 1 term, which

may be in different parts of the terminology hierarchy. As a result,

codelist generation can be an onerous task requiring the identifica-

tion of all codes of potential relevance to a concept followed by

manual adjudication.5

Systematized Nomenclature of Medicine—Clinical Terms

(SNOMED CT) is a newer terminology6 which is becoming more

commonly used in EHR data worldwide,7 and in the United States

has been required for representing patient problems since 2013 in

order for an EHR to receive government certification.6 The

SNOMED CT ontology includes multiple hierarchies and concept

attributes which may enable simpler, more efficient, and more

reproducible phenotype definitions.8 However, these special features

of SNOMED CT are currently under-used by researchers, particu-

larly when using EHR data from UK primary care, which was his-

torically coded using Read terms.

SNOMED CT
SNOMED CT6 was initially developed in 1964 as the Systematized

Nomenclature of Pathology,9 and merged with the Read Clinical

Terminology to create SNOMED CT. It is now maintained by

SNOMED International, formerly the International Health Termi-

nology Standards Development Organisation10 and is mapped to

multiple other terminologies.11 In the United Kingdom, SNOMED

CT is replacing Read terms used for coding diagnoses in primary

care.4

In SNOMED CT, alternative descriptions with the same mean-

ing (eg, “Cardiac Insufficiency” and “Weak Heart”) are modeled as

synonyms which belong to the same concept (“Heart failure [disor-

der]”), minimizing the need for extensive text searches. SNOMED

CT contains a “relationship” table encoding attributes of concepts

and links between concepts, such as parent–child “is a” relation-

ships which link a concept to its subtypes. This makes it simple to

define a codelist based on a small number of ancestor concepts. The

polyhierarchical structure allows concepts to be linked to more than

1 ancestor, for example “Acute diastolic heart failure (disorder)” is

a descendant of both “Acute heart failure (disorder)” and “Diastolic

heart failure (disorder).” As well as parent–child relationships,

SNOMED CT defines over 100 potential attributes for each con-

cept,12 such as procedures associated with a body site, and enables

new concepts to be defined by linking concepts using SNOMED CT

expressions (also known as “post-coordination”).13 SNOMED CT

has a mechanism for recording changes to concepts and their rela-

tionships over time.14 The NHS Digital SNOMED CT release

includes a Query Table which allows inactive terms to be searched

according to their original location in the SNOMED CT hier-

archy.15

Related work
The SNOMED CT “is a” relationships have been widely used to

define groups of conditions for clinical and research purposes, par-

ticularly by the Observational Health Data Sciences and Informatics

(OHDSI) community. OHDSI curate a set of vocabulary resources

including SNOMED CT for the Observational Medical Outcomes

Partnership (OMOP) Common Data Model. OMOP phenotypes

can be defined using SNOMED CT hierarchies16 as has been used in

the eMERGE network.17 SNOMED CT value sets used in Health

Level 7 Fast Healthcare Interoperability Resources (HL7 FHIR) Val-

ueSet resources for sending messages between EHR systems can also

be defined using SNOMED CT expressions (“Content Logical Defi-

nition”) and expanded into a simple list of concepts.18

Chu et al compared the process of creation of hierarchy and list-

based SNOMED CT value set creation for 10 conditions, and found

that the hierarchy-based value sets were simpler (median 3 vs 78

concepts) and faster to construct.8 Willett et al found that 125 diag-

nosis value sets could be created using SNOMED CT hierarchies,

requiring a median of only 2 concept hierarchies per value set, and

were easy to understand and share.19 Winnenburg and Bodenreider

derived metrics to quantify the completeness, correctness, and non-

redundancy of published value sets compared to the hierarchy from

the source terminology that has the same intended meaning.20

A number of software packages have been developed to assist in

navigating SNOMED CT,21 interpreting SNOMED CT Expression

Constraint Language22,23 and enabling fast evaluation of SNOMED

CT expressions using graph-oriented databases.24

Rationale and aim for the present study
EHR research databases from the UK primary care, such as the Clin-

ical Practice Research Datalink,25,26 the Health Improvement Net-

work,27 and UK Biobank,28 have been extensively used for research.

Researchers using these databases have previously used Read term

value sets to define phenotypes, as general practice data were previ-

ously recorded using Read terms. Hundreds of Read-based research

phenotype definitions have been deposited in repositories such as

ClinicalCodes.org,29 the CALIBER phenotype portal,30 and the new

Health Data Research UK Phenotype Library.31

There is a lack of prior studies on the use of SNOMED CT with

UK primary care research databases. We hypothesize that

SNOMED CT can simplify the process of creating accurate and par-

simonious definitions of disease diagnoses for use in Read or

SNOMED CT-based EHR research databases.

In this study, we investigate the phenotyping process in detail for

3 exemplar diseases: diabetes mellitus, asthma, and heart failure,

comparing patient cohorts derived using different phenotype defini-

tions in the CPRD Aurum primary care database. Building on these

findings and our previous semisupervised approach to phenotype

definition,28 we also develop a semiautomated method for convert-

ing existing Read Version 2 phenotype definitions published by the

CALIBER program30,32,33 to SNOMED CT. We apply this method

to several hundred existing phenotype definitions to evaluate how

well the method performs across a wide range of phenotypes. We

also present a new package (Rdiagnosislist)34 for the R statistical

system to make SNOMED CT convenient to use for researchers

familiar with R.

METHODS

Overview
This study has 2 parts. First, we evaluated different methods of using

SNOMED CT to create codelists for defining a small number of

phenotypes, ranging from a simple hierarchy-based method to a

more detailed, time-consuming but potentially more thorough

method. Second, we chose a method that can be used semiautomati-

cally at scale. We applied this method to the phenotyping task of

identifying prevalent or historic medical conditions, which is
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commonly required for epidemiological studies using EHR. For

both parts, we used as our reference Read V2 codelists which have

been manually curated, validated, and previously used for EHR

health research.

Data source
We used a random sample of 500 000 patients from CPRD

Aurum,24 a longitudinal database of routinely-collected EHR from

UK primary care practices using the Egton Medical Information Sys-

tems EHR. CPRD Aurum was chosen because it contains data

recorded using both Read and SNOMED CT.

The study period was from January 1, 2013 to December 31,

2018. We included patients aged over 18 years registered at practi-

ces contributing data of acceptable quality for research, and a mini-

mum of 1 year of follow-up after the start date. In CPRD Aurum, all

clinical concepts are denoted by a CPRD-specific identifier

(“medcode”), and CPRD provides a dictionary linking each med-

code with equivalent Read and SNOMED CT concepts. In order to

provide a valid comparison between methods, we excluded CPRD

data rows with observations that lacked Read V2 maps. We mapped

all codelists to CPRD Aurum medcodes and excluded those that

were not present in CPRD Aurum.

Phenotype development using Read
We used Read version 2 codelists previously created by researchers

for a range of EHR studies using the CALIBER data platform (based

on the CPRD Gold primary care EHR database).30 These codelists

had been created by keyword searches of term descriptions and by

browsing the Read code hierarchy32 and were used in a study of 308

diseases across the lifecourse (“chronological map of human

health”).33

SNOMED CT terminology
We used the August 2020 SNOMED CT UK Edition (which

includes the international release and the UK clinical and drug

extensions), the UK Query Table and History Substitution Table

August 2020 edition, UK Data Migration Workbench (Read to

SNOMED mapping) April 2020 edition, and the CPRD Aurum

medical dictionary. We obtained the SNOMED CT “Snapshot”

source files from NHS Digital in Release Format 2. The SNOMED

CT release is composed of 3 main tables: “concepts” which repre-

sents the clinical meanings, “descriptions” which contains the words

or phrases used to describe each concept, and “relationships” which

defines the connections between concepts. It also contains

“reference sets” which are lists of SNOMED CT concepts for partic-

ular business uses, such as translation between SNOMED CT and

other coding systems.

The software script to create the SNOMED CT phenotypes was

developed in Python 3.8 using Spyder 4.1 IDE and the Networkx

library version 2.5,35 which is a python package for network analy-

sis. We also carried out analyses in R 4.1 using a new package that

we developed, called “Rdiagnosislist.”34

Diabetes mellitus, asthma, and heart failure phenotypes
For each disorder, we created codelists for phenotype definitions

using 3 methods—a concise method using just the “is a” hierarchy

(“primary”), a method that uses additional SNOMED CT relation-

ships (“extended”), and a thorough but more labor-intensive

method involving manual searches of term descriptions (“value set”)

(Figures 1 and 2).

For the “value set” method, we aimed to identify all relevant

SNOMED CT concepts regardless of their place in the hierarchy, by

performing a keyword search of SNOMED CT descriptions. We

used the SNOMED CT knowledge model to simplify the list of con-

cepts by subsumption, and manually reviewed the list to decide if

each concept would be included. This broad approach aimed to

achieve complete coverage of phenotype-related codes including

diagnostic findings, test findings, complications, related diseases,

management, procedures, and follow-up. We additionally defined

exclusion criteria for each codelist, consisting of historical, possible,

suspected, or negated concepts, which were excluded from the final

phenotype definition. We used python Networkx-based methods to

explore the SNOMED CT hierarchy, develop SNOMED CT expres-

sions, and visualize the connections between concepts.

For the “primary” method, the inclusion codelist consisted of a

single concept describing the disease (“195967001 j Asthma [disor-

der],” “84114007 j Heart failure [disorder],” or “73211009 j Dia-

betes mellitus [disorder]”) and its descendants. For diabetes, we

excluded “11687002 j Gestational diabetes mellitus (disorder)” and

its descendants, to match the intent of the reference Read codelist,

which did not include gestational diabetes. None of the descendants

of the primary concept were excluded for the asthma or heart failure

codelists.

We also created “extended” codelists including: (1) all concepts

in the primary codelist, (2) all concepts related to the primary con-

cept hierarchy using with the “Due to” or “Associated with” rela-

tionships, and (3) concepts linked by the relationship “Associated

finding” with the additional criteria: “Finding context” attribute

equals “Confirmed present” or “Known present,” and “Subject rela-

tionship context” equals “Subject of record.” The third category

included concepts such as “Heart failure confirmed” and “History

of heart failure,” which have the “situation” semantic tag and are

not descendants of the “Heart failure” concepts. The aim of the

extended codelists was to encompass as many concepts as possible

that imply that the patient currently has the diagnosis or experienced

it in the past.

For each codelist, we added inactive SNOMED CT concepts

using the Query Table (Figure 1), because historic EHR data in

CPRD may include inactive concepts.

Phenotypes from the chronological map of human

health
We developed an R script to download and process Read Version 2

codelists from a GitHub repository (https://github.com/spiros/chro-

nological-map-phenotypes) for 276 diseases defined using primary

care data in a study of diseases across the lifecourse.33 Each codelist

consisted of Read terms for the disease diagnosis or history of the

disease (terms for suspected diseases were not included). We used

NHS Digital mapping files and the CPRD Aurum dictionary to map

the Read codelists to SNOMED CT concepts, and denoted these

converted codelists “Read-derived.”

We also sought to derive a parsimonious SNOMED CT expres-

sion to define each phenotype. For each mapped concept, parent of

a mapped concept, or descendant of a mapped concept, we calcu-

lated the precision and recall for using the concept and its descend-

ants to represent the entire codelist (Figure 3 and Table 1). We

clinically reviewed the highest performing concepts for each pheno-

type, and judged whether any of these concepts had the same mean-

ing as the phenotype itself. We used the functionality of the

Rdiagnosislist package to display SNOMED CT hierarchies to assist

224 Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 2

https://github.com/spiros/chronological-map-phenotypes
https://github.com/spiros/chronological-map-phenotypes


this process. If it was possible to find a suitable concept to represent

the entire codelist, this concept was selected and the codelist was

generated using SNOMED CT relationships (“is a” descendants and

linked personal history and confirmed situation concepts). Inactive

SNOMED CT concepts were then added using the Query Table. We

included personal history concepts as the codelists were intended to

be used for classifying disease prevalence or history; definitions for

incident disease should not include personal history concepts.

Evaluation of phenotypes
We extracted the earliest recorded diagnosis for each condition for

patients in the study population using different phenotype defini-

tions. We compared the precision, recall, and F1 scores of

SNOMED CT phenotype definitions in selecting patient cohorts,

taking the Read-derived cohorts as the gold standard. We also com-

pared the number of patients, mean age, and sex distribution of

cohorts defined using different methods.

Ethics statement
CPRD has overarching annual research ethics approval from the

United Kingdom’s Health Research Authority Research Ethics Com-

mittee (East Midlands—Derby, reference number: 05/MRE04/87).

The study was approved by the MHRA (UK) Independent Scientific

Advisory Committee (protocol number: 20_170R_ISAC).

RESULTS

Study population
The sample used in analysis consisted of 237 122 men and 262 878

women with a mean (SD) age of 40.2 (19.1) years at the mid-point

of their registration period.

CALIBER
Read V2
codelists

Map to SNOMED CT
using NHS Digital
and CPRD Aurum
mapping tables

Regular expression
search of SNOMED CT
descriptions to identify
concepts of interest

Add related concepts
(Networkx engine)

Primary concept
and descendants

Primary
SNOMED CT
codelist

Extended
SNOMED CT
codelist

Read-derived
codelist

Primary
SNOMED CT
cohort

Extended
SNOMED CT
cohort

Read-derived
cohort

Compare precision and recall of SNOMED CT codelists with  Read-derived
codelists as gold standard

Compare number of patients, and age and sex distribution between cohorts

SNOMED CT
International

Snapshot

SNOMED CT
UK Clinical
Extension

SNOMED CT
UK Query

Table

Clinical review.
Remove
inappropriate
concepts

EHR data
for 500,000

patients
(CPRD AURUM)

Add inactive SNOMED CT concepts

Value set
SNOMED CT
codelist

Value set
SNOMED CT
cohort

Map to CPRD Aurum medcodes

Add 'Due to',
'Confirmed present',
'History of', and
'Associated with'
concepts

Figure 1. Flow diagram showing the creation and validation of “primary,” “extended,” and “value set” SNOMED CT codelists for diabetes, heart failure, and

asthma.

Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 2 225



Diabetes mellitus, asthma, and heart failure phenotypes
We successfully created value set SNOMED CT-based phenotype

definitions based on keyword searches for words relevant to diabe-

tes mellitus (Supplementary Table S1), asthma (Supplementary

Table S2, Figure 4), and heart failure (Supplementary Table S3). The

total number of concepts in the codelist was for 258 diabetes, 53 for

asthma, and 44 for heart failure. The majority of concepts had the

semantic tag “disorder,” comprising 58.5%–96.6% of concepts in

each codelist. Other semantic types comprised a small number of

concepts in each codelist except for the asthma value set, which con-

tained 12 concepts (22.6%) with the semantic tag “regime/therapy”

(Supplementary Table S4, Figure 4).

The vast majority of SNOMED CT concepts and patients were

obtained by using “is a” SNOMED CT relationships with primary

concepts (Table 2). Among diabetes concepts, the relationship

“Has focus” selected 2051 additional patients (7.69%) compared

to using “is a” relationships alone. The majority of these addi-

tional patients (1820) were selected by the “Diabetes mellitus

screening” concept, but some of these patients may not actually

have diabetes (if they underwent screening and the screening test

was negative).

Definitions for primary codelists in tabular form and as

SNOMED CT expressions are given in Supplementary Table S5,

and definitions for extended codelists are in Supplementary Table

S6. Interactive HTML documents for exploring the extended

codelist hierarchy are in Supplementary File 2 (diabetes mellitus),

Supplementary File 3 (asthma), and Supplementary File 4 (heart

failure).

Cohorts derived from value set codelists included more patients

compared to those derived from primary or extended codelists. Consid-

ering Read-derived codelists as the gold standard, value set codelists

had higher recall, but slightly lower precision than primary or extended

codelists (Table 3). F1 scores exceeded 0.93 for all comparisons.

There were minimal differences in the age and sex distributions

between cohorts defined using the different methods, although some

differences were statistically significant because of the large sample

size. For the diabetes phenotype, the primary and extended cohorts

had a slightly lower proportion of female patients than the Read

cohort (difference in proportions 0.012 or 0.010, respectively).

Some of the SNOMED CT asthma and heart failure cohorts were

younger than cohorts selected using Read, for example the primary

asthma cohort was mean 0.36 years (95% CI: 0.09–0.64) younger

and the primary heart failure cohort was 0.67 years (95% CI; 0.29–

1.05) younger than the Read cohort (Table 4).

Phenotypes from the chronological map of human

health
On manual review of the Read to SNOMED CT mappings, we were

able to represent 257 of the 276 phenotypes with a SNOMED CT

concept, and in 59% (151/257), this was the concept that was sug-

gested automatically (the concept hierarchy with the highest F1

score for the inclusion of SNOMED CT concepts against the gold

standard of the original Read codelist mapped to SNOMED CT).

Some phenotypes could not be represented as a single concept hier-

archy because they are a collection of different diseases (eg,

84114007 | Heart failure (disorder)

236003008 | Cardiac ascites (disorder)

417996009 | Systolic heart failure (disorder)

915571000000102 | On optimal heart failure therapy (finding)

395105005 | Heart failure confirmed (situation)
Finding context: Confirmed present
Temporal context: Current or specified time
Subject relationship context: Subject of record

161505003 | History of heart failure (situation)
Finding context: Known present
Temporal context: Past
Subject relationship context: Subject of record

PRIMARY CODELIST

EXTENDED CODELIST

ADDITIONAL CONCEPTS IN VALUE SET CODELIST

D
ue to

Is a

Associated

finding
Figure 2. Examples of SNOMED CT concepts related to heart failure, showing which would be included in codelists created using the “primary,” “extended,” and

“value set” methods.
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“enteropathic arthropathies”), or because they are defined by exclu-

sion (eg, “other hemolytic anemia,” “stroke not otherwise spec-

ified”) (Supplementary Table S7). Full results are included in

Supplementary File 5.

For 29 phenotypes, the SNOMED CT concept hierarchy selected

an identical cohort to the mapped Read codelist, and in 135

(52.5%), the F1 score was greater than 0.9.

DISCUSSION

Summary of main findings
By examining 276 diseases, we have demonstrated that the

SNOMED CT knowledge model can simplify the process of

selecting patient cohorts and outcomes in EHR research data-

bases, and enable the transformation of historic phenotyping

algorithms. In cases where the SNOMED CT knowledge model

corresponds well to the researcher’s intended definition of a

phenotype, it may be possible to represent the phenotype using

a single concept hierarchy. For the examples of diabetes melli-

tus, heart failure, and asthma, patient cohorts derived using dif-

ferent Read and SNOMED CT phenotyping methods were very

similar. We have also produced an R package34 with sample

code (Supplementary File 6) to enable researchers to easily

adopt these methods to develop their own codelists in

SNOMED CT, or convert codelists from other terminologies

such as Read.

Chronological
map Read V2

codelists

Map Read V2
terms to SNOMED CT
using NHS Digital
and CPRD mappings

For each SNOMED CT concept,
calculate precision and recall
for concept hierarchy to
represent entire codelist

Single concept hierarchy
SNOMED CT codelist

Read-derived
codelist

Single concept hierarchy
SNOMED CT cohort

Read-derived
cohort

Compare precision and recall of SNOMED CT codelists with  Read-derived
codelists as gold standard

Compare number of patients, and age and sex distribution between cohorts

SNOMED CT
International

Snapshot

SNOMED CT
UK clinical

& drug 
extensions

Generate codelist from linked
history concepts and descendants
of selected SNOMED CT concept

EHR data
for 500,000

patients
(CPRD AURUM)

STOP:
Not possible
to derive a

single concept
hierarchy
codelist

NO

YES

Is it possible
to select a single concept

hierarchy to represent
entire codelist?

SNOMED CT
UK Query

Table
Add inactive SNOMED CT concepts

Map to CPRD Aurum medcodes

Figure 3. Flow diagram showing the creation and testing of SNOMED CT codelists for 276 conditions in the chronological map of health study.
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Defining phenotypes using SNOMED CT
Conventionally, phenotype and outcome definitions consist of an

enumerated list of terminology concepts (“codelist,” “code set,” or

“value set”) created by the manual process of keyword searching,

which does not take into account the ontology contained within the

terminology system.1 Consistent with previous studies, we found

that the SNOMED CT ontology can simplify the process of produc-

ing diagnosis codelists that are concise, understandable to clinicians,

and useful for data analytics.8,19 We have extended these findings to

a large EHR database containing data encoded using both Read V2

and SNOMED CT from hundreds of primary care practices in the

United Kingdom. We have also developed semiautomated methods

for converting a Read V2 codelist into a parsimonious SNOMED

CT phenotype definition, implemented in an R package.34

Figure 4. Concept network diagram for the asthma “value set” phenotype definition, with key concepts labeled. Key to node colors: black with white text ¼ pri-

mary concept, orange ¼ linked finding or disorder, white with blue outline ¼ linked concepts of other semantic types eg, procedure or regime/therapy. Edges rep-

resent relationship types: black ¼ “Is a,” green ¼ “Has focus,” red ¼ “Associated procedure,” and orange ¼ “Associated finding.”

Table 1. Example of semiautomated codelist conversion from Read Version 2 to SNOMED CT, by calculating concept-based precision and

recall for the hierarchy of each mapped concept and its parents. In this example, the SNOMED CT hierarchy for the concept “12295008 j
Bronchiectasis” also includes Kartagener syndrome, which is not included in the Read codelist, hence the precision is 0.83 instead of 1

Read term(s) SNOMED CT concept Precision Recall F1 score

H34.00 Bronchiectasis 12295008 j bronchiectasis (disorder)—automatically

selected as best match (highest F1 score)

0.83 1 0.91

H34z.00 Bronchiectasis NOS

A115.00 Tuberculous bronchiectasis 23022004 j tuberculous bronchiectasis (disorder) 1 0.2 0.33

P861.00 Congenital bronchiectasis 77593006 j congenital bronchiectasis (disorder) 1 0.2 0.33

H340.00 Recurrent bronchiectasis 195984007 j recurrent bronchiectasis (disorder) 1 0.2 0.33

H341.00 Postinfective bronchiectasis 195985008 j post-infective bronchiectasis (disorder) 1 0.2 0.33

(Parent of mapped concept) 187251001 j sequelae of tuberculosis (disorder) 0.17 0.2 0.18

(Parent of mapped concept) 41427001 j disorder of bronchus (disorder) 0.05 1 0.1

(Parent of mapped concept) 123976001 j post-infectious disorder (disorder) 0.02 0.4 0.03

(Descendant of mapped concept) 42402006 j Kartagener syndrome (disorder) 0 0 0
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Terminologies change over time as medical knowledge changes

or errors in the terminology system are corrected.14 A codelist

defined using SNOMED CT expressions or hierarchy will automati-

cally include new concepts if they are modeled in an appropriate

place in the hierarchy, and SNOMED CT enabled EHR systems

could enable patient populations for decision support, audit, or

research to be defined in a parsimonious way.

The principal parent–child “is a” relationship enabled the major-

ity of relevant concepts to be captured. Additional concepts could be

included by using other relationships, for example “Due to” could

enable inclusion of concepts for which the current concept is a

sequela or consequence, and “Associated with” provides a link to

procedures associated with a diagnosis. SNOMED CT concepts

with the semantic tag “situation” include concepts for suspected and

historic conditions, as well as a few concepts for confirmed disor-

ders, which may be important in some cases. For example, the latest

UK release of SNOMED CT contains 2 important “situation” con-

cepts related to COVID-19: “1300721000000109 j COVID-19 con-

firmed by laboratory test” and “1300731000000106 j COVID-19

confirmed using clinical diagnostic criteria,” which are related to,

but not direct subtypes of “840539006 j Disease caused by Severe

acute respiratory syndrome coronavirus 2 (disorder)” (the main

COVID-19 diagnosis concept).

Recommendations for the use of SNOMED CT in

defining research phenotypes
Based on our findings, we recommend the use of SNOMED CT con-

cept hierarchies and attributes for generating phenotype definitions

in a parsimonious, explainable, and reproducible way. However,

there researchers need to be aware of the following caveats:

First, SNOMED CT concepts can become inactive but may have

been used to record historic data that exist in research databases.

There may be no current equivalent for the meaning of some inac-

tive concepts (if they are ambiguous or deprecated). In this project,

we included inactive SNOMED CT concepts using the NHS Digital

Query Table, which categorizes the provenance of the link on a 4-

level scale (ranging from 0¼ subsumption is always true, to

3¼original concept had at least 2 distinct meanings).

Second, the researcher or clinician may have a different intent

regarding the inclusion of subtypes compared to the SNOMED CT

hierarchy, such as whether gestational diabetes is included within a

diabetes phenotype.

Third, SNOMED CT semantic types may not be adhered to

strictly when data are entered, which means that essential informa-

tion may not be in the expected location in the hierarchy. For exam-

ple, cancer diagnoses may have been recorded using “morphologic

abnormality” concepts which are intended for use on histology

reports. Semantic tags are not always consistent with the SNOMED

CT hierarchy within SNOMED CT itself.36

Fourth, the SNOMED CT methods rely on complete and accu-

rate relationships between concepts being modeled within the

SNOMED CT ontology. While this is broadly the case for diagno-

ses, concepts in other domains (eg, symptoms/findings) may not be

as well modeled, and it is possible that relevant terms may be over-

looked if researchers rely solely on the hierarchy. We recommend

that ongoing engagement between clinicians, researchers, and

SNOMED CT editors should continuously improve the quality of

the SNOMED CT model.

Limitations of this study
A limitation of this study is that we considered the existing Read V2

phenotype definitions as the gold standard, and assumed that they

were complete and accurate based on the manual review process

involved in creating them. Thus it was assumed that any additional

Read V2 terms selected by the SNOMED CT method and mapping

were extraneous, but this may not have been the case.

Second, we relied on accurate mappings between SNOMED CT

and Read V2 as supplied by NHS Digital and CPRD in order to

ensure that codelists created using different terminologies had the

same meaning.

Third, we did not have access to patients’ original text notes,

and were unable to verify the accuracy of the original Read or

SNOMED CT concepts entered in the health records. CPRD does

not provide researchers with access to the free text within EHRs

because of concerns over confidentiality. However, previous valida-

tion studies using the primary care databases37 have shown that

coded diagnoses are likely to be correct when present, but may

Table 2. Number of SNOMED CT concepts, medcodes, and patients included using different relationships in value set phenotype defini-

tions. Among concepts linked to “Diabetes mellitus” by the relationship “Has focus,” the concept “Diabetes mellitus screening” captured

the greatest number of additional patients (1820)

Phenotype Relationship N concepts N CPRD medcodes N patients

N (%) additional patients

compared to self and “is a”

Diabetes mellitus Self and “Is a” 131 409 26 681 –

Associated procedure 10 16 5469 47 (0.18%)

Due to 70 338 2590 30 (0.11%)

Associated with 40 115 7308 40 (0.15%)

Has focus 4 8 7991 2051 (7.69%)

Associated finding 2 4 1107 4 (0.01%)

Associated etiologic finding 1 1 57 1 (< 0.01%)

All 258 895 28 849 2168 (8.13%)

Asthma Self and “Is a” 49 110 57 287 –

Has focus 4 4 784 39 (0.07%)

All 53 114 57 326 39 (0.07%)

Heart failure Self and “Is a” 43 84 9501 –

Associated finding 1 1 82 20 (0.21%)

All 44 85 9521 20 (0.21%)
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be incomplete and may not use the most specific, precise term

available.

Fourth, our study was limited to the primary care setting. We

assume that SNOMED CT coding in secondary care settings will be

similarly accurate in order to enable data to be used for research, but it

will be important to validate the accuracy and completeness of coding.

CONCLUSION

In conclusion, the SNOMED CT knowledge model provides an effi-

cient way to define disease phenotypes in EHR databases. We have

demonstrated that the method can result in similar patient popula-

tions compared to manually curated codelists, and we have devel-

oped tools to assist researchers in making use of these models. For

some disease phenotypes, a simple definition based on a single con-

cept hierarchy may be sufficient to define the phenotype. These

methods may facilitate the use of EHR data for research and

improving patient care.

FUNDING

This work was supported by Health Data Research UK, which

receives its funding from the UK Medical Research Council, Engi-

neering and Physical Sciences Research Council, Economic and

Social Research Council, Department of Health and Social Care

(England), Chief Scientist Office of the Scottish Government Health

and Social Care Directorates, Health and Social Care Research and

Development Division (Welsh Government), Public Health Agency

(Northern Ireland), British Heart Foundation, and the Wellcome

Trust. This study was supported by National Institute for Health

Research (RP-PG-0407-10314) and Wellcome Trust (086091/Z/08/

Z). ADS is funded by a postdoctoral fellowship from THIS Institute,

NIHR (AI_AWARD01864 and COV-LT-0009), UKRI (Horizon

Europe Guarantee for DataTools4Heart) and British Heart

Foundation Accelerator Award (AA/18/6/24223). VK is supported

by the UKRI/NIHR Strategic Priorities Award in Multimorbidity

Research (MR/V033867/1) for the Multimorbidity Mechanism and

Therapeutics Research Collaborative. RTL is supported by a UKRI

Rutherford Fellowship. SD is supported by: (1) Health Data

Research UK London, which receives its funding from HDR UK

funded by the UK MRC, EPSRC, ESRC, Department of Health and

Social Care (England), Chief Scientist Office of the Scottish Govern-

ment Health and Social Care Directorates, Health and Social Care

Research and Development Division (Welsh government), Public

Health Agency (Northern Ireland), BHF, and Wellcome Trust; (2)

The NIHR Biomedical Research Centre at University College Lon-

Table 4. Cohort characteristics based on different SNOMED CT-based phenotype definitions, and comparison with the original manually

curated Read V2 codelists

Phenotype Method N patients N (%) female

Difference in sex

proportion (95% CI) P value

Mean (SD)

age

Difference in

mean age (95% CI) P value

Diabetes mellitus Read 28 233 13 051 (46.2) – – 56.9 (19.0) – –

Primary 24 882 11 207 (45.0) 0.012 (0.003–0.020) .006 57.0 (18.6) –0.09 (–0.41 to 0.23) .58

Extended 25 214 11 411 (45.3) 0.010 (0.001–0.018) .025 56.9 (18.6) 0.04 (–0.28 to 0.36) .80

Value set 28 849 13 327 (46.2) 0.000 (–0.008 to 0.008) .95 56.8 (18.6) 0.08 (–0.23 to 0.39) .61

Asthma Read 51 020 27 312 (53.5) – – 26.1 (22.4) – –

Primary 52 593 28 164 (53.6) 0.000 (–0.006 to 0.006) .96 26.5 (22.7) –0.36 (–0.64 to –0.09) .010

Extended 55 552 29 662 (53.4) 0.001 (–0.005 to 0.007) .66 26.2 (22.5) –0.13 (–0.40 to 0.14) .36

Value set 57 326 30 742 (53.6) –0.001 (–0.007 to 0.005) .76 27.7 (23.3) –1.62 (–1.89 to –1.34) <.001

Heart failure Read 9454 4596 (48.6) – – 75.2 (13.1) – –

Primary 8474 4229 (49.9) –0.013 (–0.028 to 0.002) .087 75.9 (12.9) –0.67 (–1.05 to –0.29) <.001

Extended 8546 4259 (49.8) –0.012 (–0.027 to 0.003) .10 75.8 (13.0) –0.59 (–0.97 to –0.21) .002

Value set 9521 4606 (48.4) 0.002 (–0.012 to 0.017) .75 75.0 (13.5) 0.22 (–0.16 to 0.60) .25

Table 3. Performance of different SNOMED CT-based phenotype definitions, compared to the original manually curated Read V2 codelists

as a gold standard

Phenotype Method N concepts N CPRD medcodes N patients Precision (95% CI) Recall (95% CI) F1 score

Diabetes mellitus Read 216 784 28 233

Primary 152 593 24 882 0.999 (0.998–0.999) 0.880 (0.876–0.884) 0.936

Extended 204 779 25 214 0.988 (0.987–0.990) 0.883 (0.879–0.886) 0.933

Value Set 258 739 28 849 0.921 (0.918–0.924) 0.941 (0.938–0.944) 0.931

Asthma Read 25 69 51 020

Primary 34 99 52 593 0.969 (0.967–0.970) 0.999 (0.998–0.999) 0.984

Extended 36 102 55 552 0.918 (0.916–0.920) 1.000 (1.000–1.000) 0.957

Value Set 53 107 57 326 0.890 (0.887–0.892) 1.000 (0.999–1.000) 0.941

Heart failure Read 38 78 9454

Primary 27 54 8474 0.995 (0.993–0.996) 0.892 (0.885–0.898) 0.941

Extended 30 59 8546 0.990 (0.988–0.992) 0.895 (0.888–0.901) 0.940

Value Set 44 76 9521 0.982 (0.980–0.985) 0.989 (0.987–0.991) 0.986

230 Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 2



don Hospital NHS Trust; (3) The Alan Turing Institute (EP/

N510129/1); (4) The British Heart Foundation Accelerator Award

(ref AA/18/6/24223); (5) The BigData@Heart Consortium, funded

by the Innovative Medicines Initiative-2 Joint Undertaking under

grant agreement (ref 116074); (6) The British Heart Foundation

Data Science Centre (ref SP/19/3/34678); (7) The UKRI/NIHR

funded Multimorbidity Mechanism and Therapeutics Research Col-

laborative (MR/V033867/1); (8) The Longitudinal Health and Well-

being COVID-19 National Core Study, which was established by

the UK Chief Scientific Officer in October 2020 and funded by UK

Research and Innovation (grant references MC_PC_20030 and

MC_PC_20059); (9) The Data and Connectivity National Core

Study, led by Health Data Research UK in partnership with the

Office for National Statistics and funded by UK Research and Inno-

vation (grant reference MC_PC_20058); and (10) The CONVALES-

CENCE study of long COVID, which is funded by NIHR/UKRI.

AUTHOR CONTRIBUTIONS

ADS devised the protocol, sought approvals and supervised the proj-

ect. ME, AG, MQ, and ADS analyzed the data. ME drafted the

manuscript. All authors contributed intellectual content and

approved the final manuscript. ADS is guarantor.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American

Medical Informatics Association online.

ACKNOWLEDGEMENTS

This study was carried out as part of the CALIBER VC resource

(https://www.ucl.ac.uk/health-informatics/caliber and https://www.

caliberresearch.org/). CALIBER, led from the UCL Institute of

Health Informatics, is a research resource providing validated elec-

tronic health record phenotyping algorithms and tools for national

structured data sources. This study is based in part on data from the

Clinical Practice Research Datalink obtained under license from the

UK Medicines and Healthcare products Regulatory Agency. Data

are provided by patients and collected by the NHS as part of their

care and support. The interpretation and conclusions contained in

this study are those of the authors alone.

CONFLICT OF INTEREST STATEMENT

None declared.

DATA AVAILABILITY

The data underlying this article were provided by the Clinical Prac-

tice Research Database (CPRD) under license and cannot be shared

publicly in order to protect patient confidentiality. Data can only be

provided with the approval of the CPRD’s Research Data Gover-

nance (RDG) Process.

REFERENCES

1. Williams R, Kontopantelis E, Buchan I, Peek N. Clinical code set engineer-

ing for reusing EHR data for research: a review. J Biomed Inform 2017;

70: 1–13.

2. Watson J, Nicholson BD, Hamilton W, et al. Identifying clinical features

in primary care electronic health record studies: methods for codelist

development. BMJ Open 2017; 7 (11): e019637.

3. Shang N, Liu C, Rasmussen LV, et al. Making work visible for electronic

phenotype implementation: lessons learned from the eMERGE network. J

Biomed Inform 2019; 99: 103293.

4. NHS Digital. Read Codes – NHS Digital 2020. https://digital.nhs.uk/serv-

ices/terminology-and-classifications/read-codes. Accessed August 30,

2022.

5. Mo H, Thompson WK, Rasmussen LV, et al. Desiderata for computable

representations of electronic health records-driven phenotype algorithms.

J Am Med Inform Assoc 2015; 22 (6): 1220–30.

6. National Library of Medicine. Overview of SNOMED CT 2016. https://

www.nlm.nih.gov/healthit/snomedct/snomed_overview.html. Accessed

August 30, 2022.

7. Lee D, de Keizer N, Lau F, Cornet R. Literature review of SNOMED CT

use. J Am Med Inform Assoc 2014; 21 (e1): e11–9.

8. Chu L, Kannan V, Basit MA, et al. SNOMED CT concept hierarchies for

computable clinical phenotypes from electronic health record data: com-

parison of intensional versus extensional value sets. JMIR Med Inform

2019; 7 (1): e11487.

9. Stearns MQ, Price C, Spackman KA, Wang AY. SNOMED clinical terms:

overview of the development process and project status. Proc AMIA Symp

2001; 2001: 662–6.

10. Bhattacharyya S. Introduction to SNOMED CT. Singapore: Springer; 2015.

11. Giannangelo K, Millar J. Mapping SNOMED CT to ICD-10. Stud Health

Technol Inform 2012; 180: 83–7.

12. Nadkarni PM, Marenco LA. Implementing description-logic rules for

SNOMED-CT attributes through a table-driven approach. J Am Med

Inform Assoc 2010; 17 (2): 182–4.

13. Dhombres F, Winnenburg R, Case JT, Bodenreider O. Extending the cov-

erage of phenotypes in SNOMED CT through post-coordination. Stud

Health Technol Inform 2015; 216: 795–9.

14. Ceusters W, Bona JP. Analyzing SNOMED CT’s historical data: pitfalls

and possibilities. AMIA Annu Symp Proc 2016; 2016: 361–70.

15. NHS Digital. SNOMED CT 2020. https://digital.nhs.uk/services/

terminology-and-classifications/snomed-ct. Accessed August 30,

2022.

16. Observational Health Data Sciences and Informatics. The Book of

OHDSI. Jan 2021. ISBN ISBN-13: 978-1088855195. https://ohdsi.github.

io/TheBookOfOhdsi/Cohorts.html. Accessed August 30, 2022.

17. Hripcsak G, Ning Shang PLP, Rasmussen LV, et al. Facilitating phe-

notype transfer using a common data model. J Biomed Inform 2019;

96: 103253.

18. Resource ValueSet – Content. Fast Healthcare Interoperability Resources.

Health Level 7 International 2022. https://build.fhir.org/valueset.html.

Accessed August 30, 2022.

19. Willett D, Kannan V, Chu L, et al. SNOMED CT concept hierarchies for

sharing definitions of clinical conditions using electronic health record

data. Appl Clin Inform 2018; 9 (3): 667–82.

20. Winnenburg R, Bodenreider O. Metrics for assessing the quality of value

sets in clinical quality measures. AMIA Annu Symp Proc

2013;2013:1497–505.

21. LIMICS Research Lab UP. Medical Terminologies for Python 2020.

https://github.com/MedevaKnowledgeSystems/pymedtermino. Accessed

August 30, 2022.

22. IHTSDO. Snomed-ecl-parser 2020. https://github.com/IHTSDO/snomed-

ecl-parser. Accessed August 30, 2022.

23. Cornet R, Laverman S, Karlsson D. SnoLyze: SNOMED CT Expression

Constraint Language execution engine in R 2020. https://github.com/slav-

erman/SnoLyze. Accessed August 30, 2022.

24. Gim�enez-Solano VM, Maldonado JA, Bosc�a D, et al. Definition and vali-

dation of SNOMED CT subsets using the expression constraint language.

J Biomed Inform 2021; 117: 103747.

25. Herrett E, Gallagher AM, Bhaskaran K, et al. Data resource profile: Clini-

cal Practice Research Datalink (CPRD). Int J Epidemiol 2015; 44 (3):

827–36.

26. Wolf A, Daniel Dedman D, Campbell J, et al. Data resource profile: Clini-

cal Practice Research Datalink (CPRD) Aurum. Int J Epidemiol 2019; 48

(6): 1740–1740g.

Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 2 231

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac158#supplementary-data
https://www.ucl.ac.uk/health-informatics/caliber
https://www.caliberresearch.org/
https://www.caliberresearch.org/
https://digital.nhs.uk/services/terminology-and-classifications/read-codes
https://digital.nhs.uk/services/terminology-and-classifications/read-codes
https://digital.nhs.uk/services/terminology-and-classifications/read-codes
https://www.nlm.nih.gov/healthit/snomedct/snomed_overview.html
https://www.nlm.nih.gov/healthit/snomedct/snomed_overview.html
https://www.nlm.nih.gov/healthit/snomedct/snomed_overview.html
https://digital.nhs.uk/services/terminology-and-classifications/snomed-ct
https://digital.nhs.uk/services/terminology-and-classifications/snomed-ct
https://digital.nhs.uk/services/terminology-and-classifications/snomed-ct
https://ohdsi.github.io/TheBookOfOhdsi/Cohorts.html
https://ohdsi.github.io/TheBookOfOhdsi/Cohorts.html
https://build.fhir.org/valueset.html
https://github.com/MedevaKnowledgeSystems/pymedtermino
https://github.com/IHTSDO/snomed-ecl-parser
https://github.com/IHTSDO/snomed-ecl-parser
https://github.com/slaverman/SnoLyze
https://github.com/slaverman/SnoLyze


27. Blak BT, Thompson M, Dattani H, et al. Generalisability of the Health

Improvement Network (THIN) database: demographics, chronic disease

prevalence and mortality rates. Inform Prim Care 2011; 19 (4): 251–5.

28. Denaxas S, Shah AD, Mateen BA, et al. A semi-supervised approach for

rapidly creating clinical biomarker phenotypes in the UK Biobank using

different primary care EHR and clinical terminology systems. JAMIA

Open 2020; 3 (4): 545–56.

29. University of Manchester Institute of Population Health. ClinicalCode-

s.org. 2013. https://clinicalcodes.rss.mhs.man.ac.uk/. Accessed August 30,

2022.

30. Denaxas S, Gonzalez-Izquierdo A, Direk K, et al. UK phenomics

platform for developing and validating electronic health record

phenotypes: CALIBER. J Am Med Inform Assoc 2019; 26 (12):

1545–59.

31. Health Data Research UK. Phenotype Library. 2022. https://phenotypes.

healthdatagateway.org/. Accessed August 30, 2022.

32. Morley KI, Wallace J, Denaxas SC, et al. Defining disease phenotypes

using national linked electronic health records: a case study of atrial fibril-

lation. PLoS One 2014; 9 (11): e110900.

33. Kuan V, Denaxas S, Gonzalez-Izquierdo A, et al. A chronological map of

308 physical and mental health conditions from 4 million individuals in the

English National Health Service. Lancet Digit Health 2019; 1 (2): e63–e77.

34. Shah AD. Rdiagnosislist: Manipulate SNOMED CT Diagnosis Lists. R

package version 1.1 2022. https://cran.r-project.org/web/packages/Rdiag-

nosislist/index.html. Accessed August 30, 2022.

35. NetworkX. NetworkX documentation 2020. https://networkx.org.

Accessed August 30, 2022.

36. Bona JP, Ceusters W. Mismatches between major subhierarchies and

semantic tags in SNOMED CT. J Biomed Inform 2018; 81: 1–15.

37. Herrett E, Thomas SL, Schoonen WM, et al. Validation and validity of

diagnoses in the General Practice Research Database: a systematic review.

Br J Clin Pharmacol 2010; 69 (1): 4–14.

232 Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 2

https://clinicalcodes.rss.mhs.man.ac.uk/
https://clinicalcodes.rss.mhs.man.ac.uk/
https://phenotypes.healthdatagateway.org/
https://phenotypes.healthdatagateway.org/
https://cran.r-project.org/web/packages/Rdiagnosislist/index.html
https://cran.r-project.org/web/packages/Rdiagnosislist/index.html
https://networkx.org

