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ABSTRACT

Objective: To develop an automated deidentification pipeline for radiology reports that detect protected health

information (PHI) entities and replaces them with realistic surrogates “hiding in plain sight.”

Materials and Methods: In this retrospective study, 999 chest X-ray and CT reports collected between Novem-

ber 2019 and November 2020 were annotated for PHI at the token level and combined with 3001 X-rays and

2193 medical notes previously labeled, forming a large multi-institutional and cross-domain dataset of 6193

documents. Two radiology test sets, from a known and a new institution, as well as i2b2 2006 and 2014 test

sets, served as an evaluation set to estimate model performance and to compare it with previously released dei-

dentification tools. Several PHI detection models were developed based on different training datasets, fine-

tuning approaches and data augmentation techniques, and a synthetic PHI generation algorithm. These models

were compared using metrics such as precision, recall and F1 score, as well as paired samples Wilcoxon tests.

Results: Our best PHI detection model achieves 97.9 F1 score on radiology reports from a known institution,

99.6 from a new institution, 99.5 on i2b2 2006, and 98.9 on i2b2 2014. On reports from a known institution, it

achieves 99.1 recall of detecting the core of each PHI span.

Discussion: Our model outperforms all deidentifiers it was compared to on all test sets as well as human label-

ers on i2b2 2014 data. It enables accurate and automatic deidentification of radiology reports.

Conclusions: A transformer-based deidentification pipeline can achieve state-of-the-art performance for deiden-

tifying radiology reports and other medical documents.
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INTRODUCTION

The task of deidentifying medical reports consists of detecting and

removing all the protected health information (PHI) from reports, as

defined in the Health Insurance Portability and Accountability Act

of 1996 (HIPAA) (see Figure 1). HIPAA distinguishes numerous

categories of PHI, among which the most frequent are dates, names,

locations, identifiers, and phone numbers. The privacy of patients is

protected by HIPAA and therefore access to data that includes PHI

is limited. Nevertheless, the access to these same data is critical to

build machine learning (ML) models capable of solving text-based
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medical tasks. For this reason, deidentifying medical documents

automatically is important to foster the development of ML meth-

ods and tools.

Historically, PHI detection has been automated mostly with

rule-based algorithms.1,2 More recent ML approaches tried first to

leverage conditional random fields,3,4 then long short-term memory

(LSTM) architectures,5,6 and most recently transformers,7 which

have achieved state-of-the-art performance across many natural lan-

guage processing (NLP) tasks.8,9 The development of PHI detection

models has been sustained by the release of several datasets, from

the i2b2 challenges10,11 to the Physionet1 and Dernoncourt–Lee6

corpora. The removal or substitution of PHI is a less well-studied

task, although the “hide in plain sight” approach12 is more robust

and promising.

Many previously published algorithms were not designed to dei-

dentify radiology reports. Similarly, public datasets for the deidenti-

fication task do not include such reports, limiting the possibility to

train models for the radiology domain. Consequently, their results

on radiology reports13 are unsatisfactory.

In this study, we propose an automated deidentification pipeline

optimized for radiology reports that includes both a PHI detection

model and a “hide in plain sight” algorithm that substitutes surro-

gate synthetic PHI. We apply a training approach for our detection

model that optimizes the use of the limited amount of labeled data.

In addition, we study its resistance to data shifts, using a variety of

training datasets and building a data augmentation technique for

this task. We have released our deidentification tool for public use;

our model weights are available on Hugging Face at https://hugging-

face.co/StanfordAIMI/stanford-deidentifier-base; our code is open

source and available on GitHub at https://github.com/MIDRC/Stan-

ford_Penn_MIDRC_Deidentifier.

MATERIALS AND METHODS

Data collection and annotation
This retrospective study used data collected for nonresearch pur-

poses and was approved by our institutional review boards, with a

waiver of informed consent. A total of 999 adult male and female

radiology reports were collected from multiple hospitals within a

single academic health system, University of Pennsylvania Health

System (“our Penn corpus”). Reports were randomly sampled from

our database of chest X-ray and chest CT reports between Novem-

ber 2019 and November 2020, with an equal proportion of reports

from each modality. These reports were annotated by 2 labelers

(PJC and CW), with disagreements resolved after discussion with a

radiologist who has 9 years of experience (TSC). For each report,

the annotations were directly inserted in-line using a spreadsheet,

capturing the PHI categories encountered in each radiology report

(see Table 1). Even though “Provider names” and “Vendor and soft-

ware names” are not included on the HIPAA Safe Harbor list of

identifiers considered PHI, they are elements that many institutions

want removed as part of the deidentification process.

We included in our study other datasets previously annotated for

the deidentification task: 2501 radiology reports13 from the same insti-

tution (“Steinkamp Penn Corpus”) and 500 radiology reports14 from a

new institution (“Radgraph Stanford Corpus”), allowing us to measure

performance on a new institution. In addition, we incorporated 889

discharge summaries from the 2006 i2b2 challenge11 and 1304 medical

notes from the 2014 i2b2 challenge,10 as they are rich in PHI and com-

monly used for benchmarking deidentifiers (see Figure 2). We manually

resolved labeling inconsistencies and did not include other datasets6,12

that were significantly different in format and content.

As seen in both Table 1 and Figure 2, the distribution of PHI

varies significantly across datasets. Radiology reports tend to have a

Figure 1. Overview of the deidentification task: all the PHI in an input radiology report is replaced by coherent synthetic PHI, thereby “hiding in plain sight” any

true PHI that might have been missed by the deidentifier. This figure only contains synthetic PHI. PHI: protected health information.
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limited amount of PHI, mostly consisting of dates, compared to dis-

charge summaries and medical notes from the i2b2 challenges. In

particular, the most critical PHI categories, for example, patient

names and IDs, are among the rarest categories in the case of radiol-

ogy reports. Therefore, building models on top of these reports,

capable of achieving enough accuracy on the most critical PHI cate-

gories, can be challenging: we investigate the added value brought

by training on i2b2 datasets as well, where certain PHI categories

are more abundant, with the help of data and fine-tuning methods

detailed in the following sections.

PHI detection model
The first step of our automated deidentification pipeline, PHI detec-

tion, is handled by a transformer encoder model that has a linear

token-level classification head (see Figure 3). We chose this architec-

ture because it achieves better performance on many NLP tasks than

older architectures such as LSTMs or conditional random fields. In

addition, its subtoken-level tokenizer allows the model to learn

proper nouns and other unusual PHI formats.

For pretraining, we relied on biomedical BERT models and

selected PubMedBERT15 based on a preliminary analysis to find the

highest performing model before supervised training on PHI data.16

For fine-tuning, we add a greedy chunking algorithm that splits

input reports before running the model, which can process no more

than 512 tokens at a time. Chunks are cut between sentences, with

no overlap. Chunking allowed us to avoid using a recurrent architec-

ture or training a much larger and computationally intensive model

such as Big Bird.17 This allows the model to handle the entire report

at inference time, optimizing the use of the training data, which fre-

quently has labeled PHI both at the beginning and at the end of each

report. Some PHI categories, like dates, are often located at the

beginning of the report, while others, like healthcare provider

names, are located at the end. The model is then trained with a

weighted cross-entropy loss that gives more weight to the PHI

tokens.

Table 1. Key characteristics of the datasets used in this study, including number of tokens and spans per PHI category

PHI category

Our Penn Corpus—

999 reports

Steinkamp Penn Corpus—

2501 reports

Radgraph Stanford

Corpus—500 reports

i2b2 2006—

889 reports

i2b2 2014—

1304 reports

Spans Tokens Spans Tokens Spans Tokens Spans Tokens Spans Tokens

All PHI 1465 7014 3428 15 207 1804 9368 18 532 102 145 23 615 109 200

Dates 1245 5969 2733 12 094 1138 5657 7595 33 134 12 203 55 784

Provider names 150 778 352 1700 131 1212 3612 31 385 4730 26 636

Locations 18 39 162 598 0 0 2647 11 114 2253 6858

Vendor and

software names

24 126 84 312 0 0 0 0 206 589

IDs 26 89 70 361 527 2435 3517 18 644 1505 7181

Patient names 1 6 21 103 0 0 929 6236 2195 9895

Phone numbers 1 7 6 39 8 64 232 1632 523 2257

PHI: protected health information.

Figure 2. Comparison of the frequency of PHI categories between radiology reports and clinical notes. Relative to clinical notes, radiology reports are strongly

unbalanced and show scarcity of some PHI categories. PHI: protected health information.
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The performance of the model was optimized using the methods

in Figure 4: data augmentation with the “hide in plain sight” algo-

rithm; ULMFiT fine-tuning methods18,19; hyperparameter optimiza-

tion with a Tree of Parzen estimator20; and distributed training with

scheduling for quick exploration of the hyperparameter space. As

part of the ULMFiT methods, the model was trained using discrimi-

native learning rate, which consists of varying the learning speed

across layers to avoid catastrophic forgetting phenomena (eg, for the

embedding layers). These learning rates were all scheduled with a 1-

cycle slanted triangular strategy, supposed to quickly converge to an

optimum region of the parameters space before refining the weights.

In addition, a final decay of the learning rates was added at the very

end of the training, and the scheduling approach used for the learn-

ing rates was applied to the momentums as well. Aside these learn-

ing rate and momentum strategies, the model training relied on an

unfreezing approach that consists of only training the head for the

first epoch and then fine-tuning the entirety of the transformer for

the remaining epochs, helping smooth the training and maximize

the knowledge retained.18

PHI replacement with synthetic PHI “hiding in plain

sight”
The second step of our automated deidentification pipeline removes

the detected PHI tokens and replaces them with synthetic PHI (Fig-

ure 5). This complements the first step by obscuring the few missed

PHI entities and serves as a data augmentation tool to diversify the

PHI seen in each category.

This rule-based model includes first a postprocessor that cleans

the labels of the output, correcting errors that are detectable with

hard-coded rules, such as overlapping PHI spans or incorrectly clas-

sified stop words. Then, the “hide in plain sight” algorithm removes

and replaces the PHI in a manner that could better resist adversarial

attacks21 by relying on a stochastic approach that builds both a con-

tent and format distribution for each PHI category, based on the

parsed input PHI entities. The content and formats are adjusted by

in-document and cross-document constraints, which maintain the

coherency of dates or healthcare workers and locations, based on

short- and long-term memory. These memory units are specific to

each PHI category and store each generated PHI, so that the redun-

dancy of PHI within and between reports in the original data can be

mimicked (eg, a hospital name common to many reports in the origi-

nal data will be replaced by a synthetic hospital name, stored and

then repeated across many reports in the deidentified data): short-

term memory allows to handle report-level redundancy, whereas

long-term memory acts at the dataset-level. Using the content and

format distributions, fake PHI entities are produced based on token

generators (eg, phone numbers, IDs, dates) or public databases (eg,

provider and patient names, hospital names, vendor names), such as

Census 2000, and all can be randomly altered by typing errors.

Not only is this “hide in plain sight” algorithm used at inference

time, to replace the PHI detected by the ML model, but also at train-

ing time, as a data augmentation tool. It can be run on the training

data and the associated ground-truth labels, therefore producing a

new version of the training data, with different PHI entities. Com-

bined with the original training data, this creates a data-augmented

training set with more diversified PHI content. In particular, PHI

categories that have few entities (eg, patient names) or lack diversity

(eg, vendors or hospitals) are enriched through this process: the

amount of PHI in each category is doubled, or can be multiplied sev-

eral times if duplicate PHI in the original training data is counted

only once.

Statistical analysis
Train and validation splits were stratified by label, to account for

the strongly unbalanced data. Our models were evaluated on 4

hold-out test sets:

1. Steinkamp Penn test set13: 1023 radiology reports from the same

institution as the training data.

Figure 3. Model architecture for the PHI detection task. First, the reports are split by a greedy chunking algorithm: chunks are cut between sentences, with no

overlap. Then, chunks are fed to the transformer that leverages its attention mechanism to give a hidden representation to each token. A classification head uses

these hidden representations to attribute scores, which measure the likelihood that each token belongs to each PHI class. Based on these scores, each token gets

classified into its most likely PHI class. This figure only contains synthetic PHI. PHI: protected health information.
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Figure 4. Model optimization methods, from data augmentation to efficient hyperparameter exploration, are used to make the best use of limited labeled training

data. Among the various fine-tuning strategies, discriminative learning rate, 1-cycle slanted triangular scheduling, and the unfreezing approach18 all contribute to

enhancing the model performance. In combination with a hyperparameter optimization algorithm, which gets distributed for faster exploration of the hyperpara-

meter space, these allow the deidentifier models to be better trained under the data and compute constraint regimes.

Figure 5. Our rule-based synthetic PHI algorithm incorporates modules for each PHI category that can easily be augmented with new modules that handle new

types of PHI. For each PHI category, it relies on a parser, a constraint, and a generator. The parser infers the input distributions of content and format. These distri-

butions are skewed by constraints that, for instance, prevent generation of a PHI token identical to the original PHI and maintain the relative order and format of

dates in each report. Finally, following these distributions, a rule-based generator replaces each true PHI span with a synthetic one. We elected not to use a neu-

ral-based generator to avoid the risk of outputting training data. This figure only contains synthetic PHI. PHI: protected health information.
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2. Radgraph Stanford test set14: 500 radiology reports from a new

institution, to evaluate how well the algorithm performs on data

from a different institution.

3. i2b2 2006 test set11: 220 discharge summaries representing both

a format and content shift.

4. i2b2 2014 test set10: 514 medical notes different both in format

and content from previous sets and serving as a common bench-

mark for deidentification tasks.

Our main criterion is the performance on Steinkamp Penn test

set, which is large enough to include rare PHI categories. It contains

6383 PHI tokens, including 5028 dates, 760 provider names, 229

locations, 117 vendor and software names, 164 identifiers, 63

patient names and 25 phone numbers.

We report F1 score, precision, and recall per category and for all

PHI. We provide 95% confidence intervals using a bootstrap per-

centile method with 1000 bootstrap samples.

We use a paired samples Wilcoxon test to measure improvement

between different models with P<0.05 as the measure of signifi-

cance and Bonferroni correction whenever necessary.

RESULTS

Training details
Each of our detection model experiments was optimized across 100

trainings using a tree of Parzen estimator, which explores a hyper-

parameter space defined for its main characteristics as follows: max-

imum learning rate between 1e-05 and 5e-04; momentum between

0.8 and 0.95; dropout between 0 and 0.5; weight decay between 1e-

06 and 1e-04; and number of epochs from 3 to 5.

Our best model is trained for 1 epoch only with its classification

head and learning rate set to 8.5e-05, then over 4 epochs with all its

weights and learning rate set to 3e-05. Its weighted loss function

uses the same weight, 3, for all PHI categories, and only 1 for non-

PHI tokens.

Running all experiments takes between 15 and 75 min per run

depending on the size of the training set, totaling 272 h on a single

GPU NVIDIA Quadro P5000. Parallelizing across 3 GPUs reduced

the duration to a little less than 4 days. As the compute resources are

in the Eastern United States (carbon efficiency of 0.37 kg CO2eq/

kWh), we estimate 18.1 kg CO2eq of carbon emissions overall.22

Experiments
We train 5 detection models using the same pretraining, PubMed-

BERT,15 and the same hyperparameter optimization process on vari-

ous training sets:

1. Radiology reports only, using our labeled training set along with

Steinkamp Penn training set.13

2. Radiology reports with data augmentation, seeing the impact of

our “hide in plain sight” data augmentation method.

3. i2b2 only, using i2b2 2006 and i2b2 2014 training sets, to study

the difference of performance when trained on nonradiology

reports and to compare with other deidentifiers based on these

datasets.

4. Radiology reports and i2b2, combining both datasets to evaluate

if it results in a gain of performance.

5. Radiology reports and i2b2 with data augmentation, our largest

training set, trying to benefit from all the data from the previous

experiments.

Our best model for PHI detection was trained on both radiology

reports and i2b2 medical texts and uses our data augmentation

method. On the PHI versus non-PHI task, which consists of binariz-

ing the labels and the predictions as either PHI or non-PHI (see “All

PHI” in Table 2), it achieves 97.9 F1 score on radiology reports

from a known institution, 99.6 F1 score on radiology reports from a

new institution, 99.5 F1 score on i2b2 2006, and 98.9 F1 score on

i2b2 2014. This task has the advantage of not accounting for mis-

classifications between different PHI categories. The good perform-

ance of our best model on this task underlines its accuracy at

detecting spans of PHI, regardless of how it classifies them between

the various PHI categories.

The results of these experiments are presented in Table 2.

Macro-averaging the per-class performances on Steinkamp Penn test

set (same institution), the best performing model was trained on

radiology report data only, supplemented by data augmentation

(P<0.01). Training on i2b2 only resulted in a loss of more than 3

points of F1 score on the PHI versus non-PHI task (P<0.01). Train-

ing on both i2b2 and radiology reports resulted in a slight reduction

in F1 score (P<0.01), which is mitigated by the use of data augmen-

tation (P<0.01).

When evaluating on Radgraph Stanford test set, which contained

radiology reports from a new institution, the model trained on both

radiology reports and i2b2 with data augmentation outperforms

models trained only on radiology reports (P<0.01): an F1 score on

all PHI of 99.6 and a recall of 99.3.

Finally, on the i2b2 test sets, models that only saw radiology

reports at training time suffer a lower performance, more pro-

nounced on i2b2 2014, losing almost 6 points of F1 score compared

to models that saw i2b2 reports at training time (P<0.01). This loss

of performance is limited for dates, the majority category.

Best model performance
Based on these results, we selected as our best model the model

trained on both radiology reports and i2b2 texts with data augmen-

tation. As shown in Table 2, that model minimizes the loss of per-

formance on Steinkamp Penn test set while achieving a significant

improvement on i2b2 test sets. We believe its more diverse training

set, both in terms of document types and PHI entities themselves,

makes it more likely to resist data shifts at inference time. Its per-

formance on Radgraph Stanford test set, which outperforms all

other models including the ones trained on radiology reports only,

supports this hypothesis. This model will be referred to as our “best

model” below and as the “stanford-deidentifier-base” when shared

on Github and HuggingFace.

On the PHI versus non-PHI task, our best model achieves 97.9

F1 score (with 95% confidence interval [97.1–98.5]) on Steinkamp

Penn test set, with 97.7 recall and 98.0 precision. It achieves almost

99 points of F1 score on dates and recall above 98.5 on dates, pro-

vider names, and IDs. It suffers a lower performance on vendor and

software names, which are less common PHI categories.

An error analysis shows that most errors are due either to mis-

classifications between PHI categories or to mislabeling of prefixes

or suffixes from PHI spans. For instance, a phone number can start

with a “#” token, annotated as PHI but predicted as non-PHI by the

model; a professional title, such as “Professor”, could also be missed

by the model. Some of these errors could also be considered as anno-

tation errors, stressing the need for coherent and extensive annota-

tion instructions for the deidentification task. When looking at the

recall per span regardless of PHI category, our best model detects
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99% of the PHI present in radiology reports (see Table 3). This per-

formance is possible by paying attention to both the PHI entities

themselves and their context, as seen in Figure 6.

Model comparison
Using Steinkamp Penn test set and the results of the associated

study,13 we compare our best model to several deidentifiers previ-

ously released:

1. MIST3 trained on 1200 discharge summaries and other medical

notes using conditional random fields.

2. NLM-Scrubber2 built on top of 3093 clinical documents using

rules and dictionaries.

3. Emory HIDE4 developed on 100 pathology reports with condi-

tional random fields.

4. MIT deid rule-based1 that uses 2434 nursing notes as well as

rules and dictionaries.

5. NeuroNER5,6 created on 2939 medical texts, including i2b2

data, and combining recurrent neural networks and conditional

random fields.

6. The transformer-based MIT deid model,7 trained on 6262 medi-

cal notes, including i2b2 datasets.

All ML deidentifiers were retrained on Steinkamp Penn training set

(MIST, Emory HIDE, and NeuroNER) except for the transformer-

based MIT deid, to test its performance when used directly. Some dei-

dentifiers do not detect some categories and some group categories

together, giving them an advantage when looking at specific metrics.

As seen in Table 4, our best model outperforms the best of the

others by 4.3 F1 score on PHI versus non-PHI. We notice smaller

differences on frequent categories like dates (þ1 F1 score) and larger

on rare categories (þ48.9 F1 score on patients, þ8.6 F1 score on

provider names).

The transformer-based MIT deid algorithm is outperformed

both on Steinkamp Penn test set (þ19.5 F1 score, P<0.01) and

i2b2 2014 (þ0.3 F1 score).

DISCUSSION

Our best model provides state-of-the-art performance on radiology

report deidentification as well as several benchmark medical text

deidentification tasks. Our algorithm is supplemented by a “hide in

plain sight” PHI synthesizer that not only makes any remaining PHI

Table 3. Recall per PHI category for both the simple PHI versus

non-PHI task and the same task with at least one token per PHI

span needing to be detected

PHI category Recall for PHI

versus non-PHI

Recall for PHI

versus non-PHI

with at least one

token detected per span

All PHI 97.7 99.1

Macro-averaged over

PHI categories

93.1 96.4

Dates 98.6 99.5

Provider names 98.4 100

Locations 88.6 97.8

Vendors and softwares 67.5 77.8

IDs 98.8 100

Patient names 100 100

Phone numbers 100 100

Notes: The first score accounts for misclassifications between PHI catego-

ries and the second score for mislabelings of PHI prefixes or suffixes. Scores

were computed on Steinkamp Penn test set.

PHI: protected health information.

Figure 6. Visualization of integrated gradients23 for our model on a radiology report. It highlights the tokens considered by the model to classify a certain entity to

a certain PHI class. The model leverages the content of the potential PHI entity, its possible redundancy in the report, and the nearby context to take its decision.

This figure only contains synthetic PHI. PHI: protected health information.
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difficult to detect but also serves as a data augmentation technique.

Our data augmentation technique had a significant impact on dei-

dentification performance. A model trained with this approach only

on radiology reports performs well on most uncommon PHI catego-

ries, including patient names and phone numbers. For other rela-

tively rare PHI categories, such as provider names and IDs, data

augmentation allows an improvement of more than 3 points of F1

score on Steinkamp Penn test set. The results on Radgraph Stanford

test set show that data augmentation is more effective than supple-

menting the training data with PHI from a different distribution,

underlining that the model relies on context and structure in addi-

tion to the content of the PHI itself.

Supplementing the training with i2b2 data further improved

model performance on reports from a new institution.

These combined improvements led our model to improve upon

previously released deidentifiers in almost all PHI categories except

vendor and software names, the most difficult categories. The great-

est improvements were achieved for provider and patient names,

which are highly sensitive PHI categories.

The MIT transformer deidentifier, the most similar model in

terms of architecture, was outperformed by our best model on Stein-

kamp Penn test set and the i2b2 2014 test set. Our model trained

only on i2b2, which was used for the MIT model training as well,

outperformed it on i2b2 2014 test set and Steinkamp Penn test set,

showing the added value of our fine-tuning methods to both maxi-

mize performance on i2b2 data and improve model robustness on

other domains. Our model also achieves 93.9 macro-averaged F1

score on i2b2 2014, improving upon the 84.8 score for humans on

the same categories.10

Recall is the most important metric for deidentification tasks, as

any missed PHI may cause harm. Precision also matters to preserve

the integrity of the reports for downstream tasks. Our model

achieves recall of 99.1% on Steinkamp Penn test set when detecting

at least 1 token per span, while maintaining precision of 98.0%.

The remaining errors come either from data labeling inconsistencies,

misclassifications between PHI categories, misclassifications of pre-

fixes/suffixes of a PHI span, or true errors.

On the highly sensitive categories of PHI (ie, patient names, iden-

tifiers, and phone numbers), our model achieves recall of 99%, the

only errors being misclassified prefixes/suffixes from correctly

classified PHI spans. Only vendor and software names, the least sen-

sitive, but most difficult PHI category to detect, suffered a lower per-

formance: 59% recall on i2b2 2014. In comparison, an inter-

annotator agreement study10 on the same dataset showed that

human labelers achieved only 52% recall on vendor and software

names. The difficulty of correctly classifying this PHI category

comes from both its definition, covering a broad range of tool names

that can be proper or common nouns, and its scarcity and lack of

diversity. For this reason, we included in the released deidentifier

command-line tool an option to specify institution-specific vendor

and software names, enforcing their detection in the reports that are

being deidentified. An institution-specific rule- and dictionary-based

model could be used to supplement this model.

Looking at all the cross-domain experiments, it can be noticed

that a transformer-based model, along several fine-tuning and

hyperparameter optimization methods, leads to optimal perform-

ance on each domain when trained on the same domain, be it radiol-

ogy reports or i2b2 medical notes. Nevertheless, these domain-

specific models lose significant performance when tested on a differ-

ent domain, between –4 and –5 F1 score on the PHI versus non-PHI

task. Including training data from the other domain leads to mini-

mizing the loss of performance on both domains compared to the

best in-domain models, between 0 and –0.8 F1 score, what can be

further reduced with the use of data augmentation. In addition,

these cross-domain trained models perform best on data from a new

institution and are more robust, as illustrated on the Radgraph Stan-

ford test set. These experiments underline that unifying various dei-

dentification datasets to train a single deidentifier model maintain

performance on each domain (within 0.5 F1 score when using data

augmentation), while improving model robustness on new institu-

tions, which is of particular interest if these institutions have no

training data available. In the setting where training data can be

obtained at an institution, we suggest to first build a test set where

the performance of our model can be assessed, before taking a deci-

Table 4. Comparison of our best model to several publicly available deidentifier models using F1 score (precision, recall), on Steinkamp

Penn test set13

PHI category MIST NLM-Scrubber Emory HIDE MIT deid

rule-based

NeuroNER MIT deid

transformer-

based

Our best model

(radiology þ i2b2

þ augmentation)

All PHI 75.5 (94.7, 62.7) 74.1 (64.1, 87.5) 92.2 (96.6, 88.2) 74.0 (81.7, 67.6) 93.6 (94.5, 92.6) 78.4 (95.1, 66.7) 97.9 (98.0, 97.7)

Macro- averaged 61.5 (94.6, 53.7) 58.8 (51.8, 83.6) 72.9 (82.1, 66.1) 28.0 (35.6, 26.0) 68.6 (75.1, 65.6) 53.5 (67.9, 48.8) 89.4 (91.5, 88.0)

Dates 75.1 (97.4, 61.2) 97.9 (98.3, 97.5) 96.4 (96.8, 96.0) 89.0 (96.0, 83.0) 97.9 (98.4, 97.5) 83.4 (98.0, 72.6) 98.9 (99.1, 98.6)

Provider names 80.8 (93.0, 71.4) None 86.6 (97.5, 77.9) None 87.0 (82.0, 92.6) 54.3 (84.2, 40.1) 95.6 (92.9, 98.4)

Locations 79.6 (85.2, 74.7) None 83.0 (93.4, 74.7) 30.8 (51.1, 22.0) 86.3 (82.0, 77.9) 45.0 (60.5, 35.8) 89.4 (90.6, 88.2)

Vendors and

software

88.1 (86.7, 89.7) None 76.5 (88.6, 67.2) 6.2 (28.6, 3.4) 75.9 (82.0, 70.7) None 65.0 (78.3, 55.6)

IDs 11.1 (100, 5.9) None 90.6 (98.1, 84.1) 0 (0, 0) 84.8 (81.1, 88.9) 55.3 (76.3, 43.3) 97.3 (95.9, 98.8)

Patient names 19.0 (100, 10.5) 45.4 (37.3, 57.8) 0 (0, 0) 42.1 (37.9, 47.5) 48.0 (100, 31.6) None 95.9 (100, 92.1)

Phone numbers 77.0 (100, 62.5) 33.0 (19.9, 95.6) 76.9 (100, 62.5) 0 (0, 0) 0 (0, 0) 29.5 (20.6, 52.0) 84.0 (84.0, 84.0)

Notes: Certain cases are left with “None” values, as the corresponding model is not capable of detecting the PHI category. Rule-based models could not be

retrained and suffered from differences in what was considered PHI in the original study, which sometimes excluded years or name titles from being labeled as

PHI. Our best model was trained on both radiology reports and i2b2 notes with our data augmentation approach. The “All PHI” category corresponds to the

PHI versus non-PHI task, where labels and predictions are binarized as either PHI or non-PHI. For each PHI category, the best score is emboldened and under-

lined.

PHI: protected health information.
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sion on directly using it or re-training it first. If re-training is needed,

our experiments show that robustness can be maximized and in-

domain performance maintained (within 0.5 F1 score) by

fine-tuning the model on in-domain data along data from various

deidentification corpora. In this case, the annotation scheme must

take into account potential labeling inconsistencies, and either con-

form to the other deidentification datasets or review and update

their labels.

One limitation of our work is that we did not determine the pre-

cise ratio of data-augmented reports to original reports, nor the ratio

of out-of-domain reports (i2b2) to in-domain reports (radiology

reports) that would provide the best performance. In addition, we

have not yet compared our model with commercially available tools.

Finally, it is not yet possible for others to use our radiology report

datasets, including benchmarking their models on Steinkamp Penn

test set. We plan to address these limitations with future work.

In summary, we have developed and evaluated an automated

deidentification pipeline that includes a transformer-based detection

model and a “hide in plain sight” rule-based PHI synthesis algo-

rithm. Leveraging the second step of our pipeline as a data augmen-

tation technique and employing out-of-domain reports and an

optimized fine-tuning algorithm, our model achieves state-of-the-art

performance not only on radiology reports, but also other types of

medical notes such as discharge summaries. Our model weights and

code are publicly available.
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