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ABSTRACT

Sudden changes in health care utilization during the severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) pandemic may have impacted the performance of clinical predictive models that were trained prior to

the pandemic. In this study, we evaluated the performance over time of a machine learning, electronic health

record-based mortality prediction algorithm currently used in clinical practice to identify patients with cancer

who may benefit from early advance care planning conversations. We show that during the pandemic period,

algorithm identification of high-risk patients had a substantial and sustained decline. Decreases in laboratory

utilization during the peak of the pandemic may have contributed to drift. Calibration and overall discrimination

did not markedly decline during the pandemic. This argues for careful attention to the performance and retrain-

ing of predictive algorithms that use inputs from the pandemic period.
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INTRODUCTION

Clinical predictive models that rely on electronic health record

(EHR) features, such as patient characteristics, encounters, adminis-

trative codes, and laboratory values, are increasingly used in health

care settings to direct resources to high-risk patients.1 Sudden

changes in health care utilization during the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) pandemic may have

impacted the performance of clinical predictive models.2 Such mod-

els are prone to performance changes (“drift”) over time due to

changes in (1) the input distribution, including changes in values of

input features or patterns of missingness in the inputs due to exter-

nal causes; (2) changes in the output distribution, including changes

in case-mix or risk distribution; or (3) changes in the relationship

between inputs and outputs.3,4

OBJECTIVE

To investigate for the possibility of coronavirus disease (COVID)-

associated performance drift, we evaluated the performance over

time of a machine learning, EHR-based mortality prediction algo-
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rithm currently used in clinical practice. Owing to overall decreases

in health care utilization, namely outpatient and laboratory encoun-

ters, during the pandemic,2 we hypothesized that predicted mortality

and true-positive rate (TPR)—the percentage of deceased patients

that were predicted as high-risk—would decline during the pan-

demic.

MATERIALS AND METHODS

Data sources
The study cohort was extracted from Clarity, a database that con-

tains structured data elements of individual EHR data for patients

treated at the University of Pennsylvania Health System (UPHS).

The EHRs contained patient demographic characteristics, comor-

bidities, laboratory results, and utilization data. Mortality data were

derived from internal administrative data, the EHR, and the Social

Security Administration Death Master File, matched to UPHS

patients by social security number and date of birth.

Ethics
The University of Pennsylvania Institutional Review Board approved

this study with a waiver of informed consent, classifying this study

as quality improvement.

Participants
Patients were eligible if they were 18 years or older and had an

encounter at 1 of 18 medical or gynecologic oncology clinics within

the UPHS between January 2, 2019, and December 31, 2020. All

encounters were associated with a mortality risk prediction gener-

ated prior to the appointment. Eligible practices included a large ter-

tiary practice, in which clinicians subspecialize in 1 cancer type (eg,

lymphoma), and 17 general oncology practices, in which clinicians

usually treat multiple cancer types. Benign hematology, genetics,

and survivorship visits were excluded. Totally 360 727 encounters

were eligible after these exclusions. Encounters with the same con-

tact serial number (CSN) were combined as one distinct encounter

including all identified comorbidity conditions. After the combina-

tion, 237 336 encounters were included in the analytical sample.

Predictive algorithm
The mortality risks of patients were derived from a gradient boost-

ing machine learning algorithm (GBM) designed to predict 180-day

mortality among outpatients with cancer. This model was developed

and implemented at UPHS; 559 structured EHR features collected

at UPHS were used for training. Since January 2019, this algorithm

has been used as part of an intervention to prompt clinicians to ini-

tiate serious illness conversations among individuals with �10%

risk score of 180-day mortality.5 Model features are listed at https://

github.com/pennsignals/eol-onc and were derived using demo-

graphic, comorbidity, and laboratory values within 180 days prior

to the encounter. Risk scores are generated on the Thursday prior to

each medical oncology encounter and reflect absolute predicted

percentage-point mortality risk. Even during the pandemic period,

most appointments were scheduled prior to the previous Thursday,

and thus scheduling changes after the prediction was made were

rare. All missing variables in the training set were imputed as 0 for

count variables and using median imputation (ie, missing values

were replaced by the median of all values) for noncount variables.

Detailed descriptions of the ML algorithm were described in pre-

vious publications.6,7 Clinicians received alerts for up to 6 encoun-

ters in the upcoming week with patients whose mortality risk scores

were �10%, indicating that their patient was high-risk and may be

appropriate for a conversation; absolute mortality risk was not pre-

sented to the clinician. The overall area under the receiver operator

characteristic curve (AUC) of this algorithm was 0.89 (95% CI,

0.88–0.90), and disease-specific AUC ranged from 0.74 to 0.96 in a

prospective validation.6

Outcomes
The primary outcome was 180-day mortality from the time of the

encounter. Mortality data were derived from the EHR, our internal

cancer registry, and the Social Security Administration Death Mas-

ter File (SSA DMF).

Features
Variables used in the algorithm have been previously published and

are provided in Supplementary Table S1.

Statistical analysis
Descriptive analyses compared encounter-level characteristics in the

following periods: January 2019–February 2020 (“pre-pandemic”),

March–May 2020 (“early pandemic” washout period, representing

the early impact of stay-at-home orders and pandemic-related policy

changes in hospitals and clinics), and June–December 2020 (“later

pandemic”, representing longer-term impact).

Interrupted time series analysis

An interrupted time series (ITS) model was used to evaluate the

changes in the absolute 180-day mortality risk scores, the mortality

percentage of encounters classified as high-risk, and percentage of

laboratory utilization before and after the pandemic, using March–

May 2020 as a washout period. The purpose of introducing the

washout period in the analysis was to allow any effect of COVID-19

to manifest in patient behaviors as well as clinical practices. The

model structure is as follows8:

Yt ¼ b0 þ b1T þ b2Xt þ b3TXt

where T represents the time elapsed since the start of the study

period with the unit representing the frequency with which observa-

tions were taken (ie, month in current study), Xt is a dummy varia-

ble indicating the prepandemic period (coded in 0) or the later

pandemic period (coded in 1), Yt is the outcome at time t. Monthly

average prediction score, or monthly percentage of high-risk

encounters, or monthly percentage of laboratory utilization, or

monthly calculated TPR were used as the dependent variables in this

study. Logit transformation was applied to the outcomes to ensure

the predicted trends in later pandemic period ranged within 0 to 1.

b0 represents the baseline prediction score at T ¼ 0, b1 is interpreted

as the change in the outcome associated with a time unit increase

(representing the underlying pre-COVID trend), b2 is the level

change following the COVID outbreak and b3 indicates the slope

change following the COVID outbreak. A Kolmogorov–Smirnov

test was performed in SAS to compare the distribution of percentage

of high-risk encounters in the before and after COVID period in the

sample.

True positive rate comparison

Because we hypothesized that pandemic-related utilization declines

would result in underprediction of mortality risk, TPR was the pri-

mary performance metric. TPR was calculated based on the total
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number of predicted high-risk encounters and observed all-cause

180-day mortality from the encounter date, based on the 10%

threshold used in practice.5 ITS analysis with logit transformation

was performed to evaluate the impact of the pandemic on the model

TPR; mortality risk scores from each patient’s first encounter in

each month were used to calculate TPR in ITS analyses.9,10

Other performance metrics

In addition to TPR, we compared the following performance metrics

between the prepandemic and later pandemic periods: AUC, positive

predictive value (PPV), and specificity. Additionally, to compare cal-

ibration between the 2 periods, we generated calibration plots and

calculated Brier scores,11 a quadratic scoring rule in which the

squared differences between actual binary outcomes and predicted

probabilities are calculated and lower values indicate higher overall

accuracy; As with our TPR calculation, to compare these perform-

ance metrics, we used mortality risk scores at a 10% threshold from

each patient’s first encounter in each month.

Mechanisms of performance drift

To identify potential mechanisms of performance drift, we first com-

pared patient and encounter characteristics among the prepandemic,

early pandemic, and later pandemic periods. We then compared

observed versus predicted laboratory utilization using a LASSO

model to predict laboratory utilization in the later pandemic period.

Prepandemic period data were used to train the model. Predictors

included in the model were baseline demographic characteristics and

comorbidity conditions. Then the modeled output was applied to

the later pandemic period to predict laboratory utilization, including

all visit types. Finally, to investigate the potential contributions of

greater telemedicine utilization and lower laboratory utilization to

performance drift, we examined mortality risk scores associated

with and without telemedicine encounters or laboratory visits.

RESULTS

We analyzed mortality risk scores associated with 237 336 in-

person and telemedicine medical oncology encounters between Janu-

ary 2019 and December 2020.

Interrupted time series analyses showed that the later pandemic

period was characterized by a 6.8-percentage-point decrease in

encounters classified as high-risk (33.3% [prepandemic] vs 26.5%

[later-pandemic], P< .001 for level change, Figure 1A). The Kolmo-

gorov–Smirnov test showed that the distributions of percentage of

high-risk encounters in the prepandemic and later pandemic periods

were different (P< .002). There was a corresponding 2.1 absolute

percentage-point decrease in predicted 180-day mortality risk in the

later pandemic period (12.4% [prepandemic] vs 10.3% [later pan-

demic], P< .001 for level change, Figure 1B).

The TPR was 81.2%, 75.7%, and 76.2% in February, June, and

December 2020. An ITS analysis with logit transformation was per-

formed to evaluate the impact of the pandemic on the model TPR.

The onset of the pandemic was associated with an absolute 7.0-per-

centage-point decrease in TPR (80.9% [prepandemic] vs 73.9%

[later pandemic], P¼ .0203 for the level change) (Figure 1C).

Other than TPR, other performance metrics were similar in the

pre- and later pandemic periods (Table 1). Calibration was also sim-

ilar in the pre- and later-pandemic periods (Figures 1D and E).

Age, race, average patient encounters per month, insurance type,

comorbidity, laboratory values, and overall mortality were similar

across the 3 time periods (Table 2).

Compared to the prepandemic period, the early and later pan-

demic periods had higher proportions of telemedicine encounters

(0.01% [prepandemic] vs 20.0% [early pandemic] vs 26.4% [later

pandemic]) and encounters with no preceding laboratory draws

(17.7% [prepandemic] vs 19.8% [early pandemic] vs 24.1% [later

pandemic]). In the ITS analysis controlling for prepandemic trends,

the pandemic was associated with an absolute 8.9-percentage-point

decrease (81.2% vs 72.3%, P< .0001 for level change) in laboratory

utilization associated with the pandemic (Figure 1F). In the later

pandemic period, telemedicine encounters (mean predicted risk

score 10.3%) and encounters with no preceding laboratory draws

(mean predicted risk score 1.5%) were associated with lower pre-

dicted risk score than in-person encounters (mean predicted risk

score 11.2%, P< .001) or encounters with preceding laboratory

draws (mean predicted risk score 14.0%, P< .001), respectively

(Figure 1G and H).

DISCUSSION

During the SARS-CoV-2 pandemic period, the performance of a

machine learning prognostic algorithm used to prompt serious ill-

ness conversations in clinical practice declined substantially, with a

7.0-percentage-point decrease in true-positive rate. The algorithm

underidentified patients at high predicted risk of mortality in the ini-

tial months of the pandemic period. Towards the end of 2020, pre-

diction scores began to return to prepandemic baselines, presumably

due to resumption of routine health care utilization. However,

model TPR remained continually below baseline throughout 2020.

Declines in encounters associated with laboratory draws and

increases in telemedicine utilization—both potentially spurred by

pandemic-related stay-at-home orders and patient fears of exposure

in health care settings—may have contributed to lower performance.

Laboratory utilization likely had a disproportionate impact, as

counts of laboratory encounters were included as features of the

models in addition to the average and variation in actual laboratory

values. Decreased utilization of laboratories in the later pandemic

period—rather than changes in lab values themselves—appeared to

contribute to decline in performance.

Performance drift of predictive algorithms has been conceptually

described in non-COVID settings where characteristics of the input

or output distribution differ.3,4 This is one of the first studies to

show algorithm performance drift due to SARS-CoV-2 pandemic-

related shifts in the input distribution; this drift extended well into

2020. It is unlikely that natural decreases in algorithm performance

explain the performance drift. First, our ITS model showed a signifi-

cant level change after April 2020 that was well below the natural

trend in the prepandemic period. Prediction scores dropped sharply

after the initial SARS-CoV-2 period, which would be atypical for

natural algorithm performance drift. Second, demographic, clinical

severity, and cancer-specific characteristics remained largely similar

across time periods. Actual mortality in this population also

remained consistent, although causes of death (including a higher

proportion COVID-related deaths) likely changed, causing a calibra-

tion shift. Indeed, a major contributor to algorithm performance

declines during the pandemic was a shift in underlying utilization

patterns, resulting in a database shift by decreasing the counts of

laboratory encounters.
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A similar study published in 2021 found that predictive model

alerts increased by 43% during the pandemic, even though this

model was not trained in the SARS-CoV-2 era.12 Cancellation of

elective surgeries and higher than average patient acuity in the

underlying patients contributed to this. Our study adds to this and

similar literature by suggesting that changes in the frequency of

alerts caused by pandemic-related utilization shifts may be

associated with decreased accuracy overall. Predictive or risk-

adjustment algorithms that use inputs from EHR or claims data

should be interpreted with caution, as pandemic-related decreases in

utilization may impact performance. Health systems, payers, and

clinicians should consider retraining EHR- or claims-based predic-

tive algorithms in the postpandemic era. Alternatively, as calibration

did not markedly change in the pre- versus postpandemic periods,

health systems could consider setting different thresholds for clinical

predictive models in the later and postpandemic periods to account

for shifts in predicted risk distribution.

While some studies have shown evidence of changes in scores

from predictive models,12 ours is the first to examine changes in algo-

rithm performance during the pandemic, measured by the decrease in

the TPR. Our study argues for considering retraining models with

training data during the lengthy COVID pandemic period, given

likely utilization shifts that may induce longer-term changes in per-

formance. Even in nonpandemic scenarios, regular retraining of pre-

dictive algorithms may be useful to address gradual changes in

algorithm performance. For models where the pandemic resulted in

underidentification of high-risk patients, setting lower risk thresholds

may be an alternative solution. Shocks such as the pandemic should

Figure 1. Performance drift in the prediction model during the COVID pandemic. (A–D) Interrupted time series analyses of COVID pandemic impacts on (A) Per-

centage of high-risk encounters; (B) Absolute predicted 180-day mortality risk; (C) True-positive rate. Circles represent monthly observed averages across all

medical oncology encounters. Solid lines reflect time trends in the prepandemic (January 2019–February 2020), early pandemic (March–May 2020), and later pan-

demic (June–December 2020) periods, with 95% confidence intervals surrounding each time trend in shaded grey. (D, E) Calibration plots for the pre-COVID (D)

and post-COVID (E) periods, with a dashed line indicating the clinically relevant threshold used in practice. (F) Interrupted time series analysis of COVID pandemic

impact on laboratory utilization. Circles represent monthly observed average percentage of encounters with prior associated laboratory utilization in the prior 180

days across all medical oncology encounters. Solid lines reflect time trends in the prepandemic (January 2019–February 2020), early pandemic (March–May

2020), and later pandemic (June–December 2020) periods, with 95% confidence intervals surrounding each time trend in shaded grey. (G) Prediction score by

visit type in pre- versus later pandemic. The mean prediction score in the prepandemic period among the in-person visits was 0.13 (IQR: 0.02–0.17), while among

telehealth visits, the mean prediction score was 0.03 (IQR: 0.01–0.03). In the later pandemic period, the mean prediction score among in-person visits was 0.11

(IQR: 0.01–0.12), while among telehealth visits, the mean prediction score was 0.12 (0.02–0.14). (H) Prediction score by laboratory utilization in pre- versus later

pandemic. The mean prediction score in the prepandemic period among the encounters with laboratory utilization was 0.16 (IQR: 0.03–0.21), while among the

encounters without any laboratory utilization, the mean prediction score was 0.015 (IQR: 0.013–0.014). In the later pandemic period, the mean prediction score

among the encounters with labs was 0.14 (IQR: 0.02–0.18), among the encounters without labs was 0.015 (0.012–0.014).
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also prompt more frequent diagnostic checks on performance.

Pandemic-related performance shifts are also likely to affect other

performance models, including risk stratification and risk-adjustment

algorithms used by large payers that utilize data during the pandemic

period for inputs.13 Alternatively, reinforcement learning systems,14

shift-stable algorithms, or adaptive continuous learning methods that

continuously monitor and correct shift can enhance clinical applic-

ability by accounting for changes in the underlying dataset.

Limitations of this study include potentially limited generaliz-

ability because it includes a single health system. However, our

study includes 18 diverse medical oncology practices spanning 2

states. We were also unable to account for unmeasured contributors

to changes in underlying risk. The distribution of other unmeasured

markers of patient acuity, including performance status and cancer

burden, may have contributed to fewer alerts during the pandemic.

While we relied on a combination of cancer registry data, the Social

Security Administration Death Master File, and institutional data to

measure the outcome of death, and while overall rates of death

remained consistent throughout the study period, it is possible that

we did not capture all deaths during the later pandemic period.

Indeed, it is known that the SSA DMF and EHR data likely underes-

timate death rates compared with gold-standard sources such as the

Centers for Disease Control’s National Death Index (NDI).15,16

However NDI data are infrequently updated and were not present

for either the pre- and later-pandemic periods in this study; there-

fore, any potential bias underestimating death was assumed to be

consistent throughout the time period. Furthermore, because fewer

high-risk alerts were generated in the later pandemic period, it is

likely that an increase in deaths would have resulted in a further

decrease in the TPR of the algorithm. Additionally, our analysis of

mechanisms of drift relied on descriptive analyses. Other methods

such as neural networks may point to learning features of the input

data, including combinations of features, that would lend more

insight into drift mechanisms. Finally, we did not have access to the

Figure 1. Continued

Table 1. Comparison of other performance metrics in the pre- and

later-pandemic periods

Prepandemic Later-pandemic

Mean prediction score 0.103 0.088

TPR 0.809 0.739

AUC 0.849 0.844

Brier score 0.046 0.042

Specificity 0.762 0.807

PPV 0.168 0.175

AUC: area under the receiver operator characteristic curve; PPV: positive

predictive value; TPR: true-positive rate.
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cause of death in our dataset. We did not observe that the pandemic

period nor receipt of algorithm-based nudges were associated with

meaningfully higher mortality rates. However, it is possible that

subtle changes in mortality rates associated with alerts or changes in

the distributions of causes of death during the pandemic may have

also contributed to the performance drift observed in this study.

CONCLUSION

For a mortality prediction model used to identify individuals who

need timely advance care planning, performance and identification

of high-risk patients substantially declined for a sustained period

during the SARS-CoV-2 pandemic period, driven partially by

decreases in laboratory utilization during the peak of the pandemic.

This argues for careful attention to the performance and retraining

of predictive algorithms that use inputs from the pandemic period.
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Table 2. Baseline characteristics of medical oncology encounters

Overall Prepandemica Early pandemica Later pandemica

Number of encounters, N (%) 237 336 (100.00) 141 969 (59.82) 27 582 (11.62) 67 785 (28.56)

Number of unique patients, N (%) 34 666 (100.00) 27 609 (79.64) 12 702 (36.64) 21 961 (63.35)

Monthly encounter rate (total patient visits per month) (SD) 1.47 (0.88) 1.50 (0.94) 1.45 (0.82) 1.42 (0.78)

Prediction score per encounter, mean (SD) 0.12 (0.18) 0.13 (0.18) 0.12 (0.17) 0.11 (0.17)

Telemedicine 0.11 (0.16) 0.03 (0.03) 0.12 (0.16) 0.10 (0.16)

In-person 0.13 (0.18) 0.13 (0.18) 0.12 (0.17) 0.11 (0.17)

No preceding labs 0.02 (0.01) 0.02 (0.01) 0.01 (0.01) 0.02 (0.01)

Preceding labs 0.15 (0.19) 0.16 (0.19) 0.14 (0.18) 0.14 (0.18)

Observed 6-month mortality rate (%) 7.0 7.4 6.3 6.4

Age, mean (SD) 61.92 (13.86) 61.91 (13.74) 61.95 (13.81) 61.94 (14.12)

Age group, N (%)

<55 years old 62 605 (26.38) 37 305 (26.28) 7295 (26.45) 18 005 (26.56)

55–64 years old 64 806 (27.31) 39 407 (27.76) 7419 (26.90) 17 980 (26.53)

65–74 years old 72 553 (30.57) 43 041 (30.32) 8587 (31.13) 20 925 (30.87)

75 and over 37 372 (15.75) 22 216 (15.65) 4281 (15.52) 10 875 (16.04)

Marital status, N (%)

Married 155 676 (65.59) 92 860 (65.41) 18 306 (66.37) 44 510 (65.66)

Not married 81 612 (34.39) 49 087 (34.58) 9269 (33.61) 23 256 (34.31)

Missing 48 (0.02) 22 (0.02) 7 (0.03) 19 (0.03)

Race, N (%)

Non-Hispanic White 178 794 (75.33) 107 305 (75.58) 20 735 (75.18) 50 754 (74.87)

Hispanic Latino/White 2834 (1.19) 1690 (1.19) 328 (1.19) 816 (1.20)

Non-Hispanic Black 36 438 (15.35) 21 691 (15.28) 4179 (15.15) 10 568 (15.59)

Hispanic Latino/Black 1072 (0.45) 667 (0.47) 119 (0.43) 286 (0.42)

Other 13 262 (5.59) 7873 (5.55) 1632 (5.92) 3757 (5.54)

Unknown 4936 (2.08) 2743 (1.93) 589 (2.14) 1604 (2.37)

Insurance, N (%)

Commercial 26 748 (11.27) 15 767 (11.11) 3059 (11.09) 7922 (11.69)

Medicaid 12 589 (5.30) 7530 (5.30) 1412 (5.12) 3647 (5.38)

Medicare 193 417 (81.50) 115 766 (81.54) 22 592 (81.91) 55 059 (81.23)

Self-pay 943 (0.40) 515 (0.36) 142 (0.51) 286 (0.42)

Missing 3639 (1.53) 2391 (1.68) 377 (1.37) 871 (1.28)

Visit type, N (%)

In-person 213 943 (90.14) 141 958 (99.99) 22 069 (80.01) 49 916 (73.64)

Telehealth 23 393 (9.86) 11 (0.01) 5513 (19.99) 17 869 (26.36)

Elixhauser comorbidity count, mean (SD) 2.34 (1.89) 2.36 (1.88) 2.33 (1.87) 2.30 (1.93)

Encounters with no preceding laboratory values, N (%) 46 942 (19.8) 25 119 (17.7) 5469 (19.8) 16 354 (24.1)

Lab value, mean (SD)

Albumin 4.34 (22.00) 4.33 (23.07) 4.31 (20.10) 4.38 (20.36)

Hemoglobin 12.10 (1.75) 12.09 (1.76) 12.13 (1.72) 12.10 (1.73)

Calcium 9.17 (0.49) 9.18 (0.51) 9.16 (0.46) 9.17 (0.45)

White blood cell 7.21 (9.08) 7.16 (8.15) 7.13 (8.35) 7.34 (11.00)

Total bilirubin 0.60 (0.62) 0.61 (0.62) 0.58 (0.52) 0.61 (0.68)

Alkaline phosphatase 91.27 (77.04) 92.47 (81.25) 90.85 (70.47) 88.93 (70.20)

aPrepandemic: January 2019–February 2020. Early pandemic: March–May 2020, representing the early impact of stay-at-home orders and pandemic-related

policy changes in hospitals and clinics. Later pandemic: June–December 2020, representing longer-term impact.
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SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American

Medical Informatics Association online.
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