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ABSTRACT: The molecular mechanism of how human serum transferrin (hTF) recognizes cisplatin at the atomic level is still
unclear. Here, we report the molecular structure of the adduct formed upon the reaction of hTF with cisplatin. Pt binds the side
chain of Met256 (at the N-lobe), without altering the protein overall conformation.

Cisplatin, cis-diammineplatinum(II) dichloride, is a DNA-
damaging anticancer agent widely used for the treatment

of many forms of solid tumors.1−6 It works by interfering with
DNA replication and transcription as a result of the creation of
intrastrand cross-linked DNA adducts, which ultimately results
in the death of cancer cells.7−11 Cisplatin also exhibits serious
side effects that are possibly related to enzymatic and protein
structural changes,12 frequently restricting its therapeutic uses.
Although DNA is the primary biological target of cisplatin,

the interactions of this metallodrug with other biological
macromolecules are of great interest because they are crucial in
regulating drug biodistribution, efficacy, and toxicity.13−16

Human serum transferrin (hTF) is abundant in the plasma
with an average blood content of 200−370 mg/dL in healthy
people. It binds Fe3+ and delivers it to cells through the
transferrin receptor (TFR).
hTF is a ∼80 kDa single-chain protein consisting of two

lobes (called the N- and C-lobes), each comprising almost 330
residues, separated by a short flexible linker (residues 331−
339).17 Each lobe can be further divided into two similar
domains: N1 (residues 1−92 and 247−330), N2 (residues
93−246), C1 (residues 320−425 and 573−679), and C2
(residues 426−572). Both the N and C domains are separated
by a cleft, where a Fe binding site is located. Remarkably, upon
Fe3+ binding, the domains of each lobe rotate relative to one
another, thereby reducing the solvent accessibility of the two
equivalent Fe binding sites.18 Thus, the apo conformation is
described as “open”, while the Fe-bound form is denoted as
“closed”.
Because TFR is overexpressed on cancer cells,19 hTF has

been proposed as a potential anticancer drug carrier.20 In this
frame, it has been demonstrated that hTF can bind cisplatin
and selectively deliver it to cancer cells in vitro and in vivo.21,22

Obviously, the binding of cisplatin to the protein can also
potentially impact its efficacy as an anticancer agent.
Although numerous studies have been carried out to

establish the exact molecular mechanism of how hTF binds
cisplatin,22−29 controversial opinions still exist on cisplatin
binding sites of hTF. Early studies by Elliott et al. reported
binding of one or two cisplatin fragments per hTF molecule.23

Conversely, in 1995, Hoshino et al. suggested that, in contrast

to Fe ions, cisplatin binds hTF at a single Pt binding site.24 A
few years later, using NMR spectroscopy data, Sadler and co-
workers suggested that cisplatin binding to hTF involves the
side chain of Met256. This conclusion was drawn from the
observation of a substantial chemical shift change of the 13C-
methyl-Met256 resonance when the protein is treated with
cisplatin, which is not observed when hTF is incubated with Fe
salts.25 Subsequent mass spectrometry, UV−vis absorption
spectroscopy, and molecular modeling experiments by
Allardyce, Dyson, and co-workers suggested that the hydroxy
group of Thr457 is the most likely Pt binding site of hTF.26,27

Note that Thr457 is located close to the Fe3+ binding site on
the C-lobe of the protein. Further experiments using
hyphenated multidimensional liquid chromatography and
electrospray ionization tandem mass spectrometry highlighted
a variety of cisplatin binding sites close to Met256, Glu265,
Tyr314, Glu385, and Thr457.28 In 2012, Luo et al. found that
hTF can bind more than 22 cisplatin fragments, and the adduct
formed upon reaction of the Pt-based drug with the protein
can specifically deliver cisplatin to human hepatocellular liver
carcinoma cell lines, facilitating apoptosis via a mechanism that
is distinct from that of free cisplatin.22 Recently, it has been
shown that when hTF is pretreated with 10% ethanol, the
number of cisplatin binding sites for a protein molecule could
increase to 55, remaining stable at 41 for at least 1 week.29

Thus, from a survey of this literature data, it appears clear
that the cisplatin binding sites of hTF have not yet been
unambiguously identified, mainly because of a substantial lack
of direct structural information on the cisplatin/hTF system.
Here, we report for the first time the result of the X-ray

structure determination of the adduct formed upon reaction of
the Pt drug with hTF. We use the hTF form with Fe3+ bound
at the C-lobe only (FeC-hTF) because crystals of this form
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have already been used to obtain adducts of hFT with metal
ions.30−33 Moreover, FeC-hTF represents a large fraction of
hTF species in serum.18,33−35

Crystals of the cisplatin/FeC-hTF adduct were thus obtained
by using the soaking strategy.31,33 In particular, crystals of FeC-
hTF were grown by a hanging-drop vapor diffusion method at
20 °C using a reservoir solution consisting of 15% (w/v) PEG
3350, 16% (v/v) glycerol, 8 mM disodium malonate, and 150
mM Na-PIPES (pH 6.5). These crystals were then soaked for
72 h in a cryoprotectant solution saturated with cisplatin (see
the Experimental Section for further details). X-ray diffraction
data were collected on these crystals at 100 K on the XRD2
beamline of Elettra Sincrotrone Trieste, Italy (see Table S1 for
data collection statistics). Crystals belong to the space group
C2221, diffract X-ray at 3.17 Å resolution, and present a single
hTF polypeptide chain in the asymmetric unit. The structure
was solved by the molecular replacement method using the
program Phaser MR36,37 and the coordinates of FeC-hTF from
the Protein Data Bank (PDB) code 4X1B,30 stripped of all its
ligands, as the search model. The final model (Figure 1), which

includes some regions in the C-lobe that are absent in the
starting model (for example, residues 418−423 and 612−623,
which are very flexible, and Asn413 N-glycosylation), was
refined using the REFMAC537,38 program to an R-factor of
0.177 (R-free = 0.243) with good stereochemistry (see Table
S1 for refinement statistics). Deviations from ideal bond
lengths and angles are 0.001 Å and 0.98°, respectively.
Notably, the overall conformation of the protein is not
significantly affected by cisplatin binding (Figure S1): the Cα
root-mean-square deviation of the cisplatin/FeC-hTF adduct
from the starting model and from other reported30−33,39

structures of MC-hTF (M = metal) is 0.39 Å and within the
range of 0.40−0.53 Å, respectively. Accordingly, there are no
major changes in the orientation of the two lobes and of their
domains when cisplatin binds the protein (Figures 1 and S1):
the C-lobe adopts a closed conformation, whereas the N-lobe
adopts an open conformation.
Inspection of the difference Fourier (2Fo − Fc and Fo − Fc)

and anomalous difference electron density maps clearly
revealed the presence of a peak in correspondence with the

Fe binding site at the C-lobe, close to residues Asp392,
Tyr426, Tyr517, and His585 (Figure 2A) and of a peak close

to the side chain of Met256 at the N-lobe (Figure 2B). Close
to the Fe (anomalous peak at 5.20σ), the synergistic anion
malonate, present in the crystallization condition, was added to
the model, as was done in the starting model and in other MC-
hTF structures.30−33,39 The peak close to Met256 has been
attributed to a Pt center. Here, an anomalous peak is at 5.22σ.
A comparison between the 2Fo − Fc electron density map of
Met256 in our structure and in the other structure30−33,39−46

of hTF deposited in the PDB is reported in Figure S2. At the
Pt binding site, the Pt ligands have been tentatively assigned,
but because of the limited resolution of the structure, the
ligand assignments should be considered with care. In
particular, considering the experimental conditions (pH 6.5
and the absence of chloride ions), the long soaking time (72
h), and the absence of an anomalous difference electron
density map peak in correspondence with the Pt ligands, in
addition to Met256, two NH3 groups and one H2O molecule
have been assigned as Pt ligands (Figure 2B).
The cisplatin binding site is located on the protein surface at

∼35 Å from the Fe3+ ion in the C-lobe and at ∼30 Å from the
Fe binding site in the N-lobe. Refinements indicate an
occupancy value of ∼0.6 for the Pt ion and of 1.0 for the Fe
ion. B-factors for the metal centers are high but with values not
far from those of the coordinating residues (B-factor ratios
within the range 0.8−1.4). The average Pt···Sδ(Met256)
distance is 2.2 Å, in line with the expectation.47

Attempts to improve the resolution of the structure of the
cisplatin/FeC-hTF adduct carried out to date failed. However,
to obtain further evidence of the Pt binding site, anomalous
difference electron density maps have been recalculated at
lower resolution, where the I/σ ratio is higher using the data
set at 3.17 Å resolution and analyzing the additional X-ray
diffraction data collected on other cisplatin/FeC-hTF adduct
crystals at a similar or lower resolution (data set 2 at 3.22 Å
resolution and data set 3 at 3.63 Å resolution, respectively).
These data have also been compared with those derived from a
data set (at 4.02 Å resolution) collected on a Pt-free FeC-hTF
(Table S2). Only an anomalous peak at 4.54σ in
correspondence with Fe3+ in the C-lobe was observed in the
case of the Pt-free protein structure, while significant
anomalous peaks have been observed close to Met256 in the
Pt-bound structures. Finally, the reaction of cisplatin with Sδ of
Met256 has been further highlighted by the omit Fo − Fc

Figure 1. Overall structure of the cisplatin/FeC-hTF adduct. A single
cisplatin fragment has been identified close to the side chain of
Met256 in the N-lobe. The cisplatin fragment atoms are shown as
spheres (Pt is gray, NH3 are blue, and H2O is red), and the residue
that coordinates the Pt center is reported as a stick. Coordinates and
structure factors of the cisplatin/FeC-hTF adduct were deposited in
the PDB under the accession code 8BRC.

Figure 2. Details of the binding sites of Fe ion (A) and cisplatin (B)
in the structure of the cisplatin/FeC-hTF adduct. 2Fo − Fc electron
density maps (gray) are contoured at the 1.0σ level, and anomalous
difference electron density maps are in yellow.
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electron density map obtained by removing the Met256 side
chain and the coordinating compound from the structure of
the cisplatin/FeC-hTF adduct (Figure S3).
In conclusion, we have solved and refined, for the first time,

the 3D structure of an adduct formed in the reaction of
cisplatin with hTF. The main results of this study can be
summarized as follows:
(i) The first direct information on the location of a binding

site for cisplatin on the hTF structure has been reported.
Cisplatin binds FeC-hTF close to the side chain of Met256 at
the N-lobe. This result is in line with that obtained in other
cisplatin/protein adducts, which indicated that cisplatin
binding to proteins occurs mainly at the level of the side
chains of His or Met residues47−51 and with early NMR
spectroscopy and mass spectrometry studies by Sadler and co-
workers25 and by Will, Wolters, and Sheldrick.28

(ii) Cisplatin binding to hTF does not significantly alter the
overall conformation of the protein. In the platinated FeC-hTF,
the C-lobe is in a closed conformation, whereas the N-lobe
adopts an open state.
(iii) The cisplatin binding site is distinct from those

previously found for Ru3+ and Os3+ (His14/His289, His273,
His349/His350, Lys489, Lys490/Glu507, and His578/
Arg581),33 for Fe3+ (Fe binding site),30,33,39,41,42,44,45 Ti4+
(Fe binding site of the C-lobe, Tyr188),31,33,43 Yb3+ (Fe
binding site of the C-lobe),30 Cr3+ (Fe binding site of the C-
lobe),32 and Bi3+ (Tyr188)41 (Table S3). This finding indicates
that, in principle, it is possible to design anticancer metal-based
drugs/hTF adducts where the protein can carry cisplatin and
other anticancer metallodrugs. In this respect, it is interesting
to note that, although solved at a relatively low resolution, the
crystal structure of the cisplatin/FeC-hTF adduct here reported
(PDB code:8BRC) can serve as an excellent template for the
design of new theranostic agents, given the ability of hTF to
transport both anticancer agents, like cisplatin, and radio-
imaging agents.35

Collectively, this work does not solve the literature debates
on the number and location of Pt binding sites on the hTF
structure, but for sure it provides solid evidence that the side
chain of Met256 is involved in the cisplatin recognition.
As a final note, it is useful to underline that our structure

enriches the repertoire of structures of hTF adducts with metal
compounds that is still scarce (Table S3) and provides critical
data for our understanding of the role of hTF in cisplatin
cellular delivery and for interpreting the results of phys-
icochemical experiments carried out so far on this system.
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