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ABSTRACT

Objective: Accurate and rapid phenotyping is a prerequisite to leveraging electronic health records for biomedi-

cal research. While early phenotyping relied on rule-based algorithms curated by experts, machine learning

(ML) approaches have emerged as an alternative to improve scalability across phenotypes and healthcare set-

tings. This study evaluates ML-based phenotyping with respect to (1) the data sources used, (2) the phenotypes

considered, (3) the methods applied, and (4) the reporting and evaluation methods used.

Materials and methods: We searched PubMed and Web of Science for articles published between 2018 and

2022. After screening 850 articles, we recorded 37 variables on 100 studies.

Results: Most studies utilized data from a single institution and included information in clinical notes. Although

chronic conditions were most commonly considered, ML also enabled the characterization of nuanced pheno-

types such as social determinants of health. Supervised deep learning was the most popular ML paradigm,

while semi-supervised and weakly supervised learning were applied to expedite algorithm development and

unsupervised learning to facilitate phenotype discovery. ML approaches did not uniformly outperform rule-

based algorithms, but deep learning offered a marginal improvement over traditional ML for many conditions.

Discussion: Despite the progress in ML-based phenotyping, most articles focused on binary phenotypes and

few articles evaluated external validity or used multi-institution data. Study settings were infrequently reported

and analytic code was rarely released.

Conclusion: Continued research in ML-based phenotyping is warranted, with emphasis on characterizing

nuanced phenotypes, establishing reporting and evaluation standards, and developing methods to accommo-

date misclassified phenotypes due to algorithm errors in downstream applications.
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BACKGROUND AND SIGNIFICANCE

Electronic health records (EHRs) are a central data source for bio-

medical research.1 In recent years, EHR data have been used to sup-

port discovery in disease genomics, to enable rapid and more

inclusive clinical trial recruitment, and to facilitate epidemiological

studies of understudied and emerging diseases.2–6 EHRs are also

positioned to be a key source of data for the development of person-

alized treatment strategies and the generation of real-world evi-

dence.7,8 A critical aspect of any secondary use of EHR data is

phenotyping, the process of identifying patients with a specific phe-
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notype (eg, the presence or onset time of a clinical condition or char-

acteristic) based on information in their EHR.9–11 Phenotyping is

one of the first steps of an EHR-based application as it is used to

both identify and characterize the population of interest.

Generally, the phenotyping process consists of 4 steps: (1) data

preparation, (2) algorithm development, (3) algorithm evaluation,

and (4) algorithm application (Figure 1). The focus of our article is

on the use of machine learning (ML) for algorithm development.

Traditionally, phenotypes have been inferred from rule-based algo-

rithms consisting of inclusion and exclusion criteria handcrafted by

clinical and informatics experts.12 However, given the complexity

and variation in documentation across phenotypes, providers, and

institutions, developing a sufficient set of rules is prohibitively

resource-intensive and difficult to scale across conditions and

healthcare settings.13,14 For example, the Electronic Medical

Records and Genomics (eMERGE) Network was an early leader in

phenotyping in creating a public phenotype library called PheKB. A

key finding from this effort was the time intensiveness of rule-based

phenotyping, sometimes requiring up to 6–10 months of manual

effort depending on the complexity of the condition.14 Similar find-

ings have been reported by other large research networks such as

OHDSI (Observational Health Data Science and Informatics).10

To address this barrier to EHR-based research, there has been

increasing interest in phenotyping algorithms derived from ML

models.15,16 In contrast to rule-based approaches, ML methods

aggregate multiple sources of information available in patient

records in a more automated and generalizable fashion to improve

phenotype characterization.17 While there has been substantial

progress in ML approaches designed to make phenotyping more

efficient, accurate, and portable in recent years, these advances have

yet to be formally synthesized.18 To the best of our knowledge, 5

articles surveyed EHR-based phenotyping methods through

2018.11,15–17,19 These articles provide conceptual summaries of

rule-based methods and early ML approaches and do not capture

advances in semi-supervised, weakly supervised, and deep learning

that were popularized after publication (Supplementary Table S1).

Moreover, in light of the wave of EHR-based studies prompted by

the COVID-19 pandemic and the increased complexity of ML

approaches relative to their rule-based counterparts, there is a press-

ing need to survey the landscape of phenotyping given its ubiquity in

EHR-based applications.20,21

OBJECTIVE

Our work fills this gap in current literature through a methodical

review of ML-based phenotyping with respect to (1) the data sources

used, (2) the phenotypes considered, (3) the methods applied, and

(4) the reporting and evaluation methods used. Based on our analy-

sis of 37 items recorded across 100 selected articles, we also identify

areas of future research.

MATERIALS AND METHODS

Working definitions
To situate our discussion, key terminology related to EHR data and

ML is provided in Table 1. We broadly classified an ML method as

either (1) supervised, (2) semi-supervised, (3) weakly supervised, or

(4) unsupervised according to the model used and the data available

for training.22,23 We further classified each method as deep learning

if it is neural network-based and as a traditional ML approach oth-

erwise. Consistent with recent literature, we used an inclusive defini-

tion of phenotyping as a procedure that uses EHR data to “assert

characterizations about patients.”18 Our study therefore includes

binary phenotypes such as the presence of disease and nuanced phe-

notypes such as disease severity, disease progression, and social

determinants of health (SDOHs). We focused solely on literature

using EHRs, defined as longitudinal records of a patient’s interac-

tions with a healthcare institution or system primarily authored by

health professionals. We regard our work as a “methodical review”

as it does not qualify as a Cochrane-style review, but closely adheres

to the PRISMA (Preferred Reporting Items for Systematic reviews

and Meta-Analyses) guidelines.24

Search strategy
Due to the broad and evolving definition of phenotyping, early sys-

tematic reviews employed a manual review of all full-text articles

published in a small number of informatics venues.12,17 This manual

approach was later expanded to a PubMed query using an overly

inclusive search designed to capture all articles that (1) used EHR as

the primary data source and (2) utilized ML or natural language

processing (NLP) or considered phenotyping.15 The PubMed query

was similarly restricted to a subset of informatics venues in order to

target articles focused on phenotyping rather than clinical applica-

tions. We followed an analogous strategy, but increased the scope of

our search by including Web of Science as we found articles were

missed by PubMed. We also added additional strings related to

ML.25

Specifically, our search of PubMed and Web of Science identified

full-text articles that employed ML or NLP or considered phenotyp-

ing with EHR data published between January 1, 2018, and April

14, 2022. The range of publication year was specified to not overlap

with existing reviews and focused on the same major informatics

venues: (1) Journal of American Medical Informatics Association

(JAMIA), (2) Journal of Biomedical Informatics (JBI), (3) PLoS

One, (4) Proceedings of the American Medical Informatics Associa-

tion’s Annual Symposium (AMIA), and (5) JAMIA

Open.12,15,16,26,27 The complete search queries are provided in Sup-

plementary Table S2.

Study selection
Our overall search strategy is depicted in a PRISMA diagram

(Figure 2).

Title and abstract screening

After removing duplicates, articles were retrieved and underwent

title and abstract screening by 2 authors (SY and JG). A third author

(PV) resolved disagreements. Articles were excluded if they (1) were

reviews, perspectives, or editorials, (2) did not use EHRs as a pri-

mary data source, (3) did not use ML methods, or (4) did not con-

sider phenotyping. Supplementary Table S3 provides a list of article

exclusions.

Full-text review

One author (SY) reviewed the full-text articles and another author

(JG) verified the information from the full-text review when neces-

sary. After excluding papers that did not focus on ML approaches

for EHR phenotyping, 100 papers were selected (Supplementary

Table S4). During the full-text review, we extracted information on

(1) the data sources used, (2) the phenotypes considered, (3) the

methods applied, and (4) the reporting and evaluation methods
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used. A list of the 37 recorded variables is included in Supplemen-

tary Table S5.

RESULTS

In reviewing the literature, we found that all but 2 deep-learning

approaches were supervised (Figure 3). We therefore summarize

contributions in traditional supervised, deep supervised, semi-super-

vised, weakly supervised, and unsupervised learning in the subse-

quent sections.

Data sources
Sixty-three of the 100 articles relied on EHR data from a single insti-

tution, while 8 articles used data from multiple institutions, includ-

ing research networks such as the OHDSI28 and eMERGE.29 The

remaining articles leveraged publicly available data from the Medi-

cal Information Mart for Intensive Care (MIMIC-III) database and

NLP competitions (Supplementary Table S6). A small number of

studies utilized additional data sources, including administrative

claims30–36 and registry databases.37–40 Ninety-four studies were

conducted in the United States.

With respect to the data types used for developing phenotyping

algorithms, 70 of the 100 articles utilized unstructured free-text

data, and half of these articles also incorporated information from

structured data. Unsurprisingly, diagnoses were the most common

structured data element and were typically derived from the Interna-

tional Classification of Diseases, 9th or 10th Revision (ICD-9/10)

billing codes (Figure 4(a)). Clinical note types (eg, progress notes

and discharge summaries) used for algorithm development were

rarely specified (Figure 4(b)). However, most articles reported on

the NLP software that was used to process free-text. The clinical

Text Analysis and Knowledge Extraction System (cTAKEs) was the

most popular. Frequently used terminologies and NLP software are

detailed in Supplementary Tables S7 and S8, respectively.

Phenotypes
The articles in our study considered 157 phenotypes, with 40 articles

focusing on more than 1 phenotype. Studies using data from NLP com-

petitions focused on adverse drug events41 and clinical trial eligibility,42

while studies using MIMIC-III characterized phenotypes seen in the

intensive care unit.43 Outside of the articles using publicly available

data, chronic conditions with a large burden on the healthcare system,

such as heart diseases and type II diabetes mellitus, were most fre-

quently considered overall. Sixty-nine of the 100 articles aimed to iden-

tify binary phenotypes (eg, case/control disease status), while few

focused on the severity or temporal phenotypes (4 and 11 articles,

respectively). Although this finding coincides with previous reviews,

there were considerable differences in the top phenotypes across the 5

ML paradigms (Figure 5). The phenotypes considered in articles utiliz-

ing traditional supervised learning were not identified in previous

reviews.12,15 These include phenotypes primarily documented in free-

text such as suicidal behavior44,45 and SDOHs.30,46–49 Deep supervised

learning papers similarly considered SDOHs50–57 as well as episodic

conditions58–61 and COVID-19.62,63 The phenotypes considered by

articles using semi- or weakly supervised methods aiming to expedite

algorithm development included common, chronic conditions64–66 that

had been previously identified with a rule-based or traditional super-

vised learning method.13,67 Most unsupervised methods considered

progressive conditions associated with multiple comorbidities or phe-

notypic heterogeneity such as dementia and chronic kidney dis-

ease.68,69

ML methods
Traditional supervised learning

Sixty articles employed supervised learning methods, with 27

articles using traditional models. In contrast to rule-based algo-

rithms, phenotyping algorithms derived from supervised learning

are less burdensome to develop as they are learned from the data.15

Traditional supervised learning is also more amenable to incorporat-

ing a greater number of features predictive of the phenotype into the

algorithm, such as information in clinical notes.17,154–160 Among the

Figure 1. Overview of the phenotyping process. Step 1 involves data preparation which includes (i) extraction and processing of relevant data from records of

candidate patients from the data warehouse and (ii) manual review of a subset of charts to obtain gold-standard phenotype labels. Step 2 is the algorithm devel-

opment phase in which researchers use the data from Step 1, often referred to as the data mart, to develop the phenotyping algorithm with a rule-based or

machine learning (ML) method. Step 3 evaluates the accuracy of an algorithm by comparing the assigned phenotype from the algorithm to the gold-standard

label, often with estimates of the positive predictive value (PPV), sensitivity, and other accuracy metrics. Step 4 applies the algorithm from Step 2 to obtain the

cohort of patients with the phenotype for downstream analysis. The identified cohort can then be used in a variety of downstream applications.
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articles using traditional supervised learning, half of them mapped

terms in free-text to clinical concepts in the Unified Medical Lan-

guage System (UMLS)70 for use in algorithm development. Similar

to features derived from structured data elements, the extracted con-

cepts were typically engineered into patient-level features (eg, total

number of positive mentions of a concept in a patient’s record)

based on the consensus of domain experts.71 Gold-standard labels

for model training were predominantly annotated through a manual

review of patient records.72 In some instances, labels were also

derived from registry data,37 laboratory results,35,36,73 or rule-based

algorithms.47

The most commonly used methods were random forest, logistic

regression, and support vector machine (SVM) (Table 2). A common

trend among selected articles was the use of a selective sampling

method, such as undersampling or the Synthetic Minority Oversam-

pling Technique (SMOTE), to address class imbalance for rare phe-

notypes such as surgical site infections and

rhabdomyolysis.31,33,35,37,48,76,77 Several models, including SVM,

single-layer perceptron, and logistic regression, were also extended

to accommodate federated analysis of distributed EHR data held

locally at multiple institutions to identify adverse drug reactions.33

Deep supervised learning

While traditional supervised learning methods can streamline algo-

rithm development, they are limited by their inability to handle raw

input data. Deep learning models consist of many processing layers

that discover intrinsic patterns within data to alleviate the burden of

feature engineering.78,79 This is particularly valuable in the context of

EHR data as models can learn rich representations of the clinical lan-

guage in free-text.80 All but 2 articles employing deep supervised learn-

ing articles leveraged clinical notes. The articles utilized word

embeddings to represent words or clinical concepts as real-valued vec-

tors based on their context.81 Word embeddings are typically learned

from a large corpus in an unsupervised fashion and used as the input

Table 1. Descriptions of (a) terms used to describe EHR data and (b) ML methods in the context of phenotyping

(a)

Term Description

Structured data Data that utilize a controlled vocabulary. Structured data are readily available and searchable in an EHR research

database, but often have variable accuracy in characterizing phenotypes. Examples include diagnosis codes,

procedure codes, demographics, prescriptions, and laboratory values.

Unstructured data Data that are not organized in a specific manner and require substantial processing prior to analysis. In the con-

text of phenotyping, the most common form of unstructured data is free-text, such as progress notes, admission

and discharge summaries, and radiology reports. Medical images are another form of unstructured data, but

were not used in the selected articles.

Gold-standard label The best classification available for phenotype status, most often derived from manual review of patient records

by a clinical expert.

Silver-standard label Proxy for the gold-standard phenotype label that is less accurate in characterizing the phenotype, but that can be

obtained without time-consuming chart review. Examples include billing codes specific to the phenotype and

laboratory values.

Feature Data elements that are potentially predictive of the phenotype and used for algorithm development. Examples

include structured data elements such as diagnosis codes and prescriptions as well as information derived from

unstructured free-text such as the number of times a phenotype is positively mentioned in a patient’s record.

Labeled data Data that contain information on both the gold-standard phenotype labels and the features.

Weakly labeled data Data that contain information on silver-standard labels and the features.

Unlabeled data Data that contain information on only the features.

(b)

ML category Description Motivation for use in phenotyping

Supervised learning Includes methods used to characterize a phenotype with

algorithms trained with labeled data.

More automated and potentially more accurate than

rule-based methods.

Semi-supervised learning Includes methods used to characterize a phenotype with

algorithms trained with both labeled and unlabeled

data.

Reduces the amount of labeled data for model training.

Weakly supervised learning Includes methods used to characterize a phenotype with

algorithms trained with weakly labeled data.

Eliminates the need for labeled data for model training.

Unsupervised learning Includes methods used to identify structure relevant to a

phenotype, such as subtypes or clusters of disease

progression trajectories, using unlabeled data.

Enables phenotype discovery.

Deep learning A type of ML method that includes methods based on

multilayer neural networks. Can be either supervised,

semi-supervised, weakly supervised, or unsupervised.

Alleviates the need for feature engineering and can yield

high accuracy on phenotyping tasks.

Traditional machine learning ML methods that are not constructed based on multi-

layer neural networks.

Simpler to implement and interpret than deep learning

methods.
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layer to a neural network. Common corpora within the selected

articles included clinical notes53,57,63,82–86 as well as external sources

such as biomedical publications56,61,62,87,88 and Wikipedia

articles51,58,89–92 (Supplementary Table S9). Word2vec,93,161,163

Global Vectors (GloVE),94,162 and Bidirectional Encoder Representa-

tions from Transformers (BERT)95–98 were the most frequently used

methods for training embeddings (Supplementary Table S10).

Among neural network architectures, feed-forward networks were

only used in 3 studies (Supplementary Table S11)99 while BERT and

variants were frequently used for phenotypes documented in clinical

notes such as SDOHs (eg, education50,57) and symptoms (eg, chest

pain92 and bleeding58) Recurrent neural networks (RNNs), convolu-

tional neural networks (CNNs), and their variants were the most prev-

alent architectures as they accommodate sequential data in

longitudinal patient records and clinical text.24,78 For instance, the

bidirectional long-short term memory (Bi-LSTM), an RNN variant

that captures previous and future information in a sequence, was used

to characterize phenotypes evolving over time such as dementia34 and

substance abuse.54 In terms of text-based phenotyping, the Bi-LSTM

with a conditional random field layer (Bi-LSTM-CRF) was used to

improve the identification of adverse drug events.82,83,90 Similarly,

Gehrmann et al improved text-based phenotyping with a CNN

designed to identify phrases relevant to substance abuse, depression,

and other chronic conditions with the MIMIC-III phenotype data

set.55

Semi-supervised learning

Despite its widespread use, supervised learning is difficult to scale

due to the time and resources required to obtain gold-standard

labeled data.100 Semi-supervised methods are trained with a large

amount of unlabeled data (ie, unreviewed medical records) and a

small amount of labeled data to minimize the burden of chart

review.101 Three types of semi-supervised learning methods were

used in 6 articles (Table 3). The first type performed feature selec-

tion using “silver-standard labels” that can be automatically

extracted from patient records, such as the frequency of phenotype-

Figure 2. PRISMA diagram for article selection. Only 1 exclusion reason was chosen for each record during the screening process, although the reasons are not

mutually exclusive.
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Figure 3. Number of articles that used the various machine learning paradigms.

Figure 4. Types of structured data and clinical notes used to develop phenotyping algorithms in the selected articles (excluding articles using competition data).

A data type is presented if it is used in more than 1 article. Encounters include encounter metadata, while medical history notes include both social history and

cardiac surgical history.
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specific diagnostic codes, prior to supervised training.102,103 For

instance, PheCAP processed openly available knowledge sources

such as Wikipedia articles to generate a candidate list of related

UMLS concepts. An ensemble sparse regression approach using

silver-standard labels was then used to identify relevant concepts for

supervised learning. PheCAP was used to phenotype over 20 condi-

Figure 5. Top phenotypes considered within each machine learning category and the number of articles of each phenotype (excluding articles using competition

data sources). Phenotypes are colored if they appear in more than 1 ML paradigm.
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tions using EHR data from 4 institutions.102,105 The second type of

semi-supervised learning applied self-learning to train a generative

model with labeled data to create pseudolabels for the

unlabeled data set in order to train a traditional supervised

model. Self-learning performed on par with supervised learning for

18 phenotypes.64,65 In contrast, the third type of semi-supervised

learning directly incorporated unlabeled data into the algorithm

through modification of the loss function.66,104 For example, a

semi-supervised tensor factorization (PSST) approach used the infor-

mation in unlabeled data to incorporate cannot link constraints into

tensor factorization for the classification of hypertension and type-2

diabetes.66 PSST performed similarly to supervised tensor factoriza-

tion, but with fewer labeled examples.

Weakly supervised learning

Analogous to semi-supervised learning, the goal of weakly super-

vised learning is to expedite the phenotyping process by eliminating

the need for gold-standard labeled data. Weakly supervised methods

rely on a silver-standard label that can be easily extracted from

patients records in place of a gold-standard label.106 The silver-

standard label is selected based on clinical expertise as a proxy for

the phenotype.106–109 Common silver-standard labels included phe-

notype-specific diagnosis codes, lab results, and free-text mentions

of the phenotype.74,75,110

Two types of weakly supervised learning approaches were used

in 15 articles (Table 4). The first type assumed the silver-standard

label follows a mixture model representing phenotype cases and

controls.74,75,110–114 For example, PheNorm utilized Gaussian mix-

ture models with denoising self-regression for phenotyping 4 chronic

conditions.74 MAP later improved upon PheNorm with an ensemble

of mixture models and was validated across 16 phenotypes and 2

phenome-wide association studies.40,75 PheVis extended the resolu-

tion of PheNorm from patient-level to visit-level by incorporating

past medical history information into estimation.112 The second

type of weakly supervised methods used silver standards to directly

train supervised models.51,107,108,115–119 For instance, APHRODITE

employs noisy label learning with an anchor feature with a near-

perfect positive predictive value (PPV), but potentially imperfect

sensitivity to train L1-penalized logistic regression models.115 APH-

RODITE is available in openly available R software for users of the

OMOP common data model. Similar approaches have been used to

identify phenotypes poorly documented in structured data such as

systemic lupus erythematosus.51,116 In general, weakly supervised

models exhibit similar or improved performance to their rule-based

and supervised counterparts (Supplementary Figures S1 and S2).

Unsupervised learning

In contrast to the previously discussed ML approaches, unsupervised

learning is used for phenotype discovery, including identification of

subphenotypes,39,76,120–128 co-occurring conditions,69,129 and dis-

ease progression patterns.68,130–134 Among the 19 articles utilizing

unsupervised learning, Latent Dirichlet Allocation

(LDA)69,124,125,127,133 and K-means were the most frequently used

methods.120,121,123,125 LDA was applied to identify the co-

occurrence of allergic rhinitis and osteoporosis among patients with

kidney disease69 as well as to capture trends in mental health and

end-of-life care among dementia patients.133 K-means was used to

discover subphenotypes such as patients with different symptoms of

acute kidney injury.120 Model-derived subpopulations were com-

monly used in downstream prediction tasks.39,68,121,122,125,131 For

example, a SVM was used to identify sepsis using features of subpo-

pulations with distinct dysfunction patterns discovered from a self-

organizing map.128 Only 1 article utilized a deep learning approach,

specifically a deep autoencoder to discover subtypes of depres-

sion.132

Reporting and evaluation methods
As the articles primarily focused on identifying disease cases (exclud-

ing unsupervised learning articles), most evaluated algorithm per-

formance with PPV, sensitivity, and/or F-score (70/81 articles

reported at least 1 of these metrics; Supplementary Table S12). The

area under the ROC curve (AUROC) was also reported as an overall

summary of discriminative performance (42/81 articles), while cali-

bration was rarely assessed (7/81 articles). Additionally, several

studies linked EHR data to administrative claims30–36 or registry

databases37–40 to validate algorithm accuracy. Biorepositories were

also used to demonstrate the validity of a derived phenotype in repli-

cating a genetic association study.75,110,111,135 Only 5 studies per-

formed external validation or evaluated algorithmic

fairness.36,40,52,61,136 We also found limited reporting of the data

descriptors necessary to assess the feasibility of implementing an

algorithm in a new setting. Patient demographics were only reported

Table 2. Common methods in each machine learning category

Machine learning

type

Methods Number of articles

Traditional super-

vised learning

Random forest 14

Logistic regression 11

Support vector machine

(SVM)

11

L1-penalized logistic

regression

8

Decision trees 4

Extreme gradient boost-

ing (XGBoost)

4

Naive Bayes 3

Deep supervised

learning

Recurrent neural net-

works (RNNs) and

variants

19

Convolutional neural

networks (CNNs) and

variants

11

BERT and variants 7

Feed-forward neural

networks (FFNNs)

3

Weakly supervised

learning

PheNorm74 3

MAP75 2

Random forest (with

silver-standard labels)

2

Unsupervised

learning

Latent Dirichlet

Allocation (LDA)

5

K-means 4

UPGMA (Unweighted

Pair Group Method

with Arithmetic mean)

hierarchical clustering

2

Note: A method is presented if it appeared in more than 1 article. Several

papers used more than 1 method. The table does not include any semi-super-

vised methods as each article used a distinct method. Semi-supervised meth-

ods are presented in Table 3.
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in 38 of 71 papers using private data sources and only 20 articles

released their analytic code. A majority of these articles used

complex deep-learning models (9 articles) and/or free-text data

(9 articles).

With respect to performance comparisons, 21 articles compared

an ML approach to a rule-based method (Supplementary Table

S13). Traditional ML was used in 10 of these articles and outper-

formed rule-based algorithms in 8 articles with respect to PPV, sensi-

tivity, or both (Supplementary Figure S3). Two supervised deep

learning models were compared to rules, with a Bi-LSTM perform-

ing similarly to a rule-based approach for substance abuse54 and a

bidirectional gated recurrent unit model significantly decreasing per-

formance in identifying insulin rejection.137 Twenty articles also

provided comparisons between deep learning and traditional base-

lines (Supplementary Table S14). Deep learning outperformed tradi-

tional ML across all reported accuracy metrics for 18 of 33

phenotypes considered (Supplementary Figure S4(a)). Deep learning

improved sensitivity with a corresponding decrease in PPV or vice-

versa (Supplementary Figure S4(b, c)) for the remaining phenotypes,

with the exception of 1 study demonstrating that elastic net logistic

regression outperformed an RNN for phenotyping fall risk (Supple-

mentary Figure S4(d)).61 It is important to note that a meaningful

gain in accuracy must be interpreted in the context of the use case of

the algorithm and the target metric of performance. Moreover,

improvements in accuracy must be weighed against additional chal-

lenges brought on by deep learning, including data demands,

decreased interpretability, and limited generalizability over time and

across healthcare settings.72,138–140

DISCUSSION

This review highlights the substantial ongoing work in ML-based phe-

notyping. A broad range of phenotypes have been considered and the

use of unstructured information in clinical notes is widespread. While

ML approaches did not uniformly outperform rule-based methods,

deep learning provided marginal improvement over traditional base-

lines. Moreover, semi-supervised and weakly supervised learning have

expedited the phenotyping process while unsupervised learning has

been effective for phenotype discovery. Progress withstanding, most

articles focused on binary phenotypes and few studies evaluated exter-

nal validity or used multi-institution data. Study settings were infre-

quently reported and analytic code was rarely released. Future work is

warranted in “deep phenotyping,” reporting and evaluation stand-

ards, and methods to accommodate misclassified phenotypes due to

algorithm errors in downstream applications.

Deep phenotyping
“Deep phenotyping” moves beyond binary identification to the

characterization of nuanced phenotypes, such as the timing or

severity of a condition, using advanced methods leveraging intero-

perable and multimodal data types.20,122,141,142 From a methodo-

logical viewpoint, studies of nuanced phenotypes will face similar,

but more substantial challenges in obtaining gold-standard labeled

data. Further work in semi- and weakly supervised deep learning

methods is necessary.143,144 Moreover, given the privacy constraints

associated with EHRs and other health data sources, leveraging

interoperable and multimodal data calls for advancements in feder-

ated learning methods that can accommodate distributed data sour-

ces stored locally across institutions.145

Reporting and evaluation standards
Research networks, such as eMERGE, have long advocated for

transparent and reusable phenotype definitions. Most recently, in

response to the wave of COVID-19 studies, Kohane et al146 pro-

posed a checklist for evaluating the quality of EHR-based studies,

emphasizing phenotypic transparency as a key concern. However,

we found most articles did not release the necessary details for a

complete evaluation of an approach or implementation in other

settings. As a step towards reporting standards that increase trans-

parency and reproducibility, OHDSI proposed Findable, Accessi-

ble, Interoperable, and Reusable (FAIR) phenotype definitions

based on APHRODITE. All of the necessary tooling, data models,

software and vocabularies are publicly available and released with

open-source licenses.147 As noted in Kashyap et al in their evalua-

tion of the APHRODITE framework, effective reporting of pheno-

typing models should include a detailed recipe for data

preparation and model training, rather than the pretrained models

Table 3. Semi-supervised methods used in the selected articles as well as the phenotypes considered and the size of the labeled and unla-

beled data sets

Method Paper Phenotype(s) Unlabeled data set size Labeled data set size

Silver-standard based

feature selection

Cade et al102 Sleep apnea 15 741 300

Cohen et al103 Acute hepatic porphyria 22 372 200

Self-learning Estiri et al64 Alzheimer’s disease; atrial fibrillation; asthma; bipo-

lar disorder; breast cancer; coronary artery dis-

ease; Crohn’s disease; congestive heart failure;

chronic obstructive pulmonary disease; epilepsy;

gout; hypertension; rheumatoid arthritis; schizo-

phrenia; stroke; type 1 diabetes mellitus; type 2

diabetes mellitus; ulcerative colitis

5732 (Average) 360 (Average)

Estiri et al65 Alzheimer’s disease; atrial fibrillation; coronary

artery disease; congestive heart failure; chronic

obstructive pulmonary disease; rheumatoid

arthritis; stroke; type 1 diabetes mellitus; type 2

diabetes mellitus; ulcerative colitis

6000 (Average) 351 (Average)

Modified loss

function

Zhang et al104 Aldosteronism 6391 185

Henderson et al66 Resistant hypertension; type 2 diabetes mellitus 1622 400
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themselves, given substantial differences in EHR data across insti-

tutions.115

Additionally, we observed a lack of rigorous evaluation of phe-

notyping algorithms, with most studies using standard metrics to

evaluate internal validity. We stress further model interrogation

for phenotyping, including external validation as well as evalua-

tion of fairness. However, reliable performance evaluation requires

a substantial amount of gold-standard labeled data. There is very

little work on semi-supervised and weakly supervised methods for

evaluating model performance and further research is war-

ranted.148–150

Accounting for misclassified phenotypes due to

algorithm errors
As ML phenotyping expands the scope of EHR research, care must

be taken when using derived phenotypes for downstream tasks as

they are inevitably misclassified due to algorithm errors. In the con-

text of association studies, it is well known in the statistical commun-

ity that misclassification can lead to diminished statistical power and

biased estimation.151–153 However, statistical methods are often

siloed from the informatics community. We advocate for the dissemi-

nation of existing methods and for methodological developments in

“post-phenotyping” inferential and predictive modeling studies.

Table 4. Weakly supervised methods used in the selected articles, as well as the phenotypes considered and the silver-standard label used

Method Paper Phenotype(s) Silver-standard label(s)

ICD

code

SNOM-

ED code

Relevant

concept or

word in

free-text

Other

Mixture

modeling

PheNorm74 Rheumatoid arthritis; Crohn’s disease; ulcer-

ative colitis; coronary artery disease

� �

PheProb111 Rheumatoid arthritis �

Multimodel Automated

Phenotyping (MAP)75

Asthma; Crohn’s disease; ulcerative colitis;

cardiomyopathy; congestive heart failure;

epilepsy; juvenile rheumatoid arthritis;

chronic pulmonary heart disease; type 1

diabetes mellitus; cardiovascular disease;

inflammatory bowel disease

� �

Geva et al40 Asthma; bipolar disorder; Schizophrenia;

breast cancer; chronic obstructive pulmo-

nary disease; congestive heart failure; cor-

onary artery disease; hypertension;

depression; epilepsy; multiple sclerosis;

rheumatoid arthritis; type 1 diabetes mel-

litus; type 2 diabetes mellitus; Crohn’s dis-

ease; ulcerative colitis

� �

PheMAP110 Type 2 diabetes mellitus; dementia; hypo-

thyroidism

�

PheVis112 Rheumatoid arthritis; tuberculosis � �

Surrogate-guided ensemble

latent Dirichlet alloca-

tion (sureLDA)113

Asthma; breast cancer; chronic obstructive

pulmonary disease; depression; epilepsy;

hypertension; schizophrenia; stroke; type

1 diabetes mellitus; obesity

Phenotype proba-

bilities derived

from PheNorm

Ning et al114 Coronary artery disease; rheumatoid arthri-

tis; Crohn’s disease; ulcerative colitis; pul-

monary hypertension

� �

Noisy label-

ing

Automated PHenotype

Routine for Observatio-

nal Definition, Identifica-

tion, Training and

Evaluation (APHRO-

DITE)115

Appendicitis; type 2 diabetes mellitus; cata-

racts; heart failure; abdominal aortic

aneurysm; epilepsy; peripheral arterial

disease; obesity; glaucoma; venous

thromboembolism

�

Murray et al116 Systemic lupus erythematosus �

Ling et al38 Metastatic breast cancer �

Banerjee et al117 Urinary incontinence; Bowel dysfunction �

NimbleMiner118 Fall �

Annapragada et al51 Child physical abuse �

Sanyal et al119 Insulin pump failure �
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Limitations
As the definition of phenotyping is variable within the literature,12

we used a broad search capturing articles focusing on ML or NLP or

phenotyping using EHRs. Following prior work, we limited our

scope to select informatics venues.12,15 Although we have missed

articles outside of these journals, our aim is to rigorously character-

ize the general landscape of ML-based phenotyping, which

we believe is captured in the venues considered and in our detailed

analyses.

CONCLUSION

This review summarizes the landscape of ML-based phenotyping

between 2018 and 2022. Current literature has laid the groundwork

for “deep phenotyping,” but developing standards and methodology

for the reliable use of a diverse range of phenotypes derived from

ML models is necessary for continued EHR-based research.
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