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A B S T R A C T   

The SARS-CoV-2 pandemic highlighted the need for software tools that could facilitate patient triage regarding 
potential disease severity or even death. In this article, an ensemble of Machine Learning (ML) algorithms is 
evaluated in terms of predicting the severity of their condition using plasma proteomics and clinical data as 
input. 

An overview of AI-based technical developments to support COVID-19 patient management is presented 
outlining the landscape of relevant technical developments. Based on this review, the use of an ensemble of ML 
algorithms that analyze clinical and biological data (i.e., plasma proteomics) of COVID-19 patients is designed 
and deployed to evaluate the potential use of AI for early COVID-19 patient triage. The proposed pipeline is 
evaluated using three publicly available datasets for training and testing. Three ML “tasks” are defined, and 
several algorithms are tested through a hyperparameter tuning method to identify the highest-performance 
models. As overfitting is one of the typical pitfalls for such approaches (mainly due to the size of the 
training/validation datasets), a variety of evaluation metrics are used to mitigate this risk. 

In the evaluation procedure, recall scores ranged from 0.6 to 0.74 and F1-score from 0.62 to 0.75. The best 
performance is observed via Multi-Layer Perceptron (MLP) and Support Vector Machines (SVM) algorithms. 
Additionally, input data (proteomics and clinical data) were ranked based on corresponding Shapley additive 
explanation (SHAP) values and evaluated for their prognosticated capacity and immuno-biological credence. 
This “interpretable” approach revealed that our ML models could discern critical COVID-19 cases predominantly 
based on patient's age and plasma proteins on B cell dysfunction, hyper-activation of inflammatory pathways like 
Toll-like receptors, and hypo-activation of developmental and immune pathways like SCF/c-Kit signaling. 
Finally, the herein computational workflow is corroborated in an independent dataset and MLP superiority along 
with the implication of the abovementioned predictive biological pathways are corroborated. 

Regarding limitations of the presented ML pipeline, the datasets used in this study contain less than 1000 
observations and a significant number of input features hence constituting a high-dimensional low-sample 
(HDLS) dataset which could be sensitive to overfitting. An advantage of the proposed pipeline is that it combines 
biological data (plasma proteomics) with clinical-phenotypic data. Thus, in principle, the presented approach 
could enable patient triage in a timely fashion if used on already trained models. However, larger datasets and 
further systematic validation are needed to confirm the potential clinical value of this approach. The code is 
available on Github: https://github.com/inab-certh/Predicting-COVID-19-severity-through-interpretable-AI-analysis 
-of-plasma-proteomics.   

1. Introduction 

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has 
caused a global pandemic (COVID-19) leading to millions of deaths 
worldwide [1]. COVID-19 has a highly heterogenous clinical course, 
ranging from asymptomatic patients or mild symptoms to severe 

pneumonia with acute respiratory syndrome (ARDS) that frequently 
leads to death. Although vaccination efforts are ongoing worldwide with 
significant impact, the emergence of novel mutated Sars-CoV-2 variants 
constantly poses new healthcare challenges [2]. Since the COVID-19 
pandemic constitutes a significant economic burden on public health 
systems worldwide, ongoing efforts for novel biomarker discovery based 
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on high-throughput -omic technologies to improve patient triage are of 
obvious scientific and public health interest. 

In the era of “Big Data” in healthcare, Artificial Intelligence (AI) and 
Machine Learning (ML) are heavily investigated for the development of 
diagnostic, prognostic and predictive supervised models [3–5]. While 
ML is a promising technical paradigm, still, it also poses several chal
lenges and often its results produced “in silico” are difficult to validate in 
real-world healthcare settings. To this end, standardization, bench
marking and validation of AI/ML approaches have been identified as 
critical open issues to promote “trust” on the produced models. 

Initially, this study presents an overview of the application of ML for 
COVID-19 patient stratification based on their condition severity 
focusing on proteomic data. Next, based on the findings in the literature, 
a computational pipeline is proposed, and a benchmarking analysis of 
the employed ML algorithms is presented organized in three distinct ML 
tasks. The pipeline reveals that Multi-Layer Perceptron (MLP) out
performs other common ML classifiers, by prioritizing plasma proteins 
that participate in known and not insofar explored biological pathways, 
hence highlighting its translational significance. Overall, the herein 
approach tries to address the “black box” challenge of ML approaches 
[6] in the analysis of -omic data from multi-factorial diseases like 
COVID-19 with a combination of “interpretable” AI methodologies [7] 
and outlines a computational methodology1 for the investigation of 
potential biomarkers that could help carefully stratify patients with 
unfavorable clinical trajectories. 

2. Assessing current literature 

Several papers investigating the use of ML to support the manage
ment of COVID-19 patients have been published. However, only a few 
papers use AI upon proteomic data for COVID-19. In this section, we 
outline relevant AI-based analysis pipelines on Olink NPX technology 
proteomic data, organized in the typical stages of ML pipelines, i.e., data 
preprocessing, training and interpretation. 

2.1. Data preprocessing 

In the prediction models, a preprocessing pipeline is followed to face 
the problem of data gaps or errors. The two most prominent approaches 
were the deletion of records that did not satisfy the quality criteria and/ 
or the imputation of the null values, i.e., their replacement with 
“proper” values that would facilitate computations but not introduce 
significant biases. From our research, the following imputation ap
proaches are identified:  

- Multiple imputation method using Fully Conditional Specification 
(FCS) [10]: The missing values are imputed based on the observed 
values for a given individual and the relations observed in the data 
for other participants, assuming the observed variables are included 
in the imputation model.  

- k - nearest neighbors (k-NN) imputation [8]: This method selects 
observations with similar characteristics to the observation of in
terest to impute missing values (e.g., based on the use of Euclidean 
distance between observations as a similarity measure). 

Sometimes, input data are normalized (e.g. at the study of Gisby et al. 
[8], data is standardized with a mean of 0 and standard deviation of 1). 
Moreover, several methods were employed to feature selection and/or 
dimensionality reduction. Table 1 identifies the different approaches 
applied in the COVID-19 proteomic data preprocessing. 

2.2. ML training approaches 

Most of the reviewed works, applied ensembles of ML algorithms, 
typically including Random Forest, Gradient Boosted Decision Tree, 
XGBoost, and Extra Tree classifiers. Logistic regression, Lasso Logistic 
regression, Support Vector Machine (SVM), and neural network algo
rithms were also individually applied in some papers. A notable 
contribution was proposed by Byeon al. [11], who introduced the 
concept of an AutoML classifier (AutoGluon-Tabular). 

2.3. Interpretability 

While this was not the typical case, some works also focus on the 
respective models' interpretability. Indicatively, Shapley additive 
explanation (SHAP) values were used by Beltrami et al. [9], to depict the 
impact of the training features in the outcome model. Moreover, co
efficients are calculated as an explanation method as the mean decrease 
in the Gini method [12] and minimal-optimal variables method [13]. 
Gisby et al. [8] applied a random forest explainer from an R library. 

3. Methods 

Three publicly available datasets were aligned to be used for training 
(Fig. 1 – upper part A) and three ML “tasks” were defined to validate the 
application of the selected algorithms to evaluate their performance 
(Fig. 1 – lower part B). 

3.1. ML prediction tasks 

The ML tasks can be summarized as follows:  

- In task 1, an ensemble of ML models was trained independently on 
each of the three datasets and validated with the cross-validation 
method using data from the same dataset. For this task, every data
set contained all the initial columns/features.  

- In task 2, each dataset was used for training, and the trained model 
was tested against the two remaining datasets. More specifically, for 
the training process, a 10-fold cross-validation procedure is used and 
then the trained models are tested separately against the rest of the 
datasets.  

- In task 3, the three datasets are merged in a great bulk dataset, and 
models are trained and tested with a 10-fold cross-validation method 
against data from the aggregated bulk dataset. 

The ML models for the three tasks were developed following the 
TRIPOD (Transparent Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis) guidelines (Supplementary Fig. 12) 
[14]. 

3.2. Data collection 

The first dataset originated from the seminal study of the Massa
chusetts General Hospital (MGH) and contained 306 COVID-19 patients 
[15], the second dataset originates in the Imperial College of London 
(ICL) and involved 55 End-Stage Renal Disease (ESRD) patients [16], 
and the third dataset comes from the Institute for Systems Biology of 
Seattle (YPS) consisting of 139 COVID-19 patients [17]. The selected 
datasets contain plasma proteomic data and include information about 
patients' comorbidities, clinical profiles, symptoms, demographics, 
other -omic data, and prognosis scores based on World Health Organi
zation (WHO) grading scheme [18]. Population characteristics for the 
study cohorts are presented in Table 2. Interestingly, a common clinical 
denominator among the three studies in focus was kidney disease co
morbidity, since the latter was strongly associated with poor clinical 
prognosis [19]. 

1 The use of terms “interpretable AI” and “explainable AI” (XAI) for compu
tational approaches aiming to provide “explanations” (e.g., SHAP) is indeed 
debatable. It is widely acknowledged that these approaches can mainly be used 
by data scientists rather than clinical professionals. 
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3.3. Data pre-processing and feature selection 

The three datasets were normalized and aligned so that they could be 
used both individually (task 1 and task 2) and also combined in one (task 
3). Proteomics data, the age category of patients, and characterization of 
kidney disease comorbidity were used as the input features of our 
approach, presented in detail in Table 2. 

It should be noted that the alignment process of the three datasets for 
task 2 and task 3 led to the removal of data columns that refer to data not 
common between the three datasets. Before alignment, three rows that 
contained almost 10% of null values were detected and removed in YPS 
dataset. Additionally, the null column of the CD6 protein was deleted. 
Similarly, null values of MGH and ICL datasets were deleted for the first 
task. For task 1, 33 patients with null values were deleted from the MGH 
dataset, and two patients from the ICL dataset. In tasks 2 and 3, there are 
no null values in the common columns that are used for the ML models. 

To align the data provided by the three datasets, we categorized the 
age values into four main categories based on the initial separation of 
the MGH dataset ((20,40] = 1, (40,60] = 2, (60,80] = 3, (80,100] = 4). 
Furthermore, as all ICL patients were characterized as positive for kid
ney disease comorbidity in the paper, there is no representative column. 
Thus, a binary column was added (value 1). 

Moreover, as the expression of proteins in every dataset is provided 
in arbitrary Normalized Protein eXpression (NPX) units [1] with a 
distinct range of values, the respective values are normalized using 
normal distribution applied to every dataset separately, using the 
StandardScaler tool [20]. Furthermore, the COVID-19 severity outcome 
column is transformed to binary, corresponding to “Serious” and “Non- 
serious” based on the WHO score as described in Fig. 3A. Table 3 pre
sents a complete overview of the feature structure in our datasets. 

Regarding the dimensionality reduction approach applied, Tsai et al. 
[22] argue that the selection of highly sophisticated dimensionality 
reduction algorithms might not have a significant effect on High 
Dimensionality and Low Sample (HDLS) datasets (such as the ones used 
in the presented pipeline). Thus, the dimensionality reduction method 
applied was based on the Principal Component Analysis (PCA) approach 
(Fig. 2A). More specifically, PCA was applied only to the protein 
expression columns which corresponded to different dimensions for the 
different trained datasets (Table 4): 

3.4. Machine Learning algorithms 

For our experiment, several ML algorithms are tested for their per
formance at the prediction tasks mentioned above. 

3.4.1. K-nearest neighbors (KNN) 
KNN is a classification learning algorithm that is placing the training 

sample in an n-dimensional space. Next, every observation from test 
dataset is classified (mostly based on the Euclidean distance) with the 
training samples that is closer to [23]. 

3.4.2. Decision tree 
A decision tree algorithm is based on a tree-like structure, where 

each test feature is represented by an internal node, where every clas
sification is represented by each leaf [24]. 

3.4.3. Random Forest 
Random Forest is a combination of decision trees, that can be used 

for both classification and regression. It is an ensemble-based ML 
method [25]. 

3.4.4. Support Vector Machine (SVM) 
The SVM modeling algorithm is seeking for the optimal hyperplane 

that distinguish two classes with the greatest margin [26]. This demands 
to solve the following maximization problem (1): 

max
∑n

i=1
xi −

1
2
∑n

i=1

∑n

j=1
xixjyiyjk

(
xixj

)
(1)  

3.4.5. Extra Trees 
Extra Trees algorithm builds totally randomized trees whose struc

tures are independent of the output values of the learning sample. It is an 
ensemble-based ML method [27]. 

Table 1 
Feature selection/dimensionality reduction approaches.  

Dimensionality reduction 
methods 

Description 

Recursive feature extraction 
(RFE) analysis [9] 

Eliminates the features that less correlated with the 
target variable. 

Feature selection through GINI 
Index [9] 

The features are selected based on GINI Index, a 
measure that calculates the contribution of each 
feature to the prediction of the output. 

Recursive Feature Elimination  
[10] 

It is a feature importance method that keeps the 
most significant features for the chosen ML model. 

Principal Component Analysis 
(PCA) [10] 

It is a dimensionality reduction process that 
integrates variables of a dataset to uncorrelated 
features and maximizes variance.  

Fig. 1. Methodology (part A: The overall approach of the methodology, part B: The Machine Learning tasks).  
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3.4.6. Extreme gradient boosting (XGBoost) 
XGBoost is a regression tree, and it can apply regression and classi

fication. This algorithm is a variant of the gradient boosting machine 
(GBM) [28]. If the XGBoost model consists of K decision trees, the 
optimization objective function is the below Eq. (2): 

ŷι =
∑K

k=1
fk(xi), fk ∈ (2)   

fk: independent tree with leaf scores 
F: space of regression tree 

3.4.7. Multi-Layer Perceptron (MLP) 
The MLP is a fully connected feedforward artificial neural network. 

An MLP consists of input nodes that connect as a directed graph with the 
nodes of the output layer [29]. It is a supervised learning algorithm that 
learns a function (3): 

f () : Rm→Ro (3)   

m: number of input's dimensions 
o: number of output's dimensions 

3.5. Evaluation metrics 

The accuracy of KNN, Decision Tree, Random Forest, SVM, Extra 
Trees, XGBoost, and MLP classifiers were tested for all the above three 
tasks. The selection of the model parameters was performed via the grid 
search method for each ML algorithm through cross-validation. Thus, 
the combination of parameters chosen for the models at every task is 
presented as supplementary material along with the respective results 
for every evaluation metric (accuracy, area under the curve - AUC, 
precision, recall, and F1-score). 

3.6. Interpretation of ML results through Systems Biology 

To evaluate the produced results, SHAP values were calculated for 
every feature as they came up after the PCA application (Supplementary 
Figs. 6, 7). As protein expression features are represented via vectors 

after the dimensionality reduction of PCA, we computed the loadings for 
every component that was in the top 20 contributors of the predictive 
model result. Furthermore, the magnitude of every protein from these 
components is calculated (Fig. 3B). Finally, to gain a better under
standing of the biological interpretability of the produced ML models, 
we also performed pathway enrichment approaches using Enrichr 
(“Reactome” database) for the plasma proteins ranked as the top-30 
loadings (Supplementary Figs. 8, 9, 10) and constructed protein- 
protein interaction networks (PPI) with GeneMania to unravel biolog
ical interactions among plasma proteins of interest [30]. 

4. Results 

The grid-search cross-validation approach led to the results of the 
best parameters with the highest accuracy of each one of the three tasks. 
The performance of the respective ML models was presented using AUC, 
F1-score, Precision, and Recall. It should be noted that as the classifi
cation of severe COVID-19 patients is more important than the early 
identification of patients with mild prognosis, the ML models are 
selected based on the recall of severe COVID-19 patients. 

4.1. Task 1 

The performance from the first task was separated into three parts for 
the three different datasets. 

The best ML model for the MGH dataset (Fig. 3) was achieved via 
MLP which combines the best performance in accuracy, F1-score, and 
recall with 0.75, 0.71, and 0.74, respectively. Additionally, MLP suc
ceeded in one of the highest AUC scores. The precision of the MLP model 
was lower than most of the models but for the specific use case, false 
positives (non-severe cases falsely predicted as severe) are preferable to 
false negatives (unpredicted severe COVID-19 cases). Thus, a high recall 
score is more important as a metric, and we prioritize it when evaluating 
the produced outcomes. 

Regarding the YPS dataset (Fig. 4), high accuracy, AUC, and Preci
sion scores were achieved with the highest F1-score, and recall suc
ceeded from computationally complex algorithms like SVM reached 
0.83 and 0.72, respectively. MLP and SVM algorithms are the highest 
performers in every evaluation metric. However, these algorithms are 
sensitive to potential overfitting trained with small datasets (SVM ac
curacy 1.0 and MLP accuracy 0.94). Therefore, the XGBoost algorithm 
(an ensemble method for avoiding overfitting in small datasets) could be 
identified as a non-overfitting alternative (F1 score 0.75, recall 0.65). 

As we can see from the overall metrics (Fig. 4), the developed ML 
models that were applied to the ICL dataset did not perform very well. 
Since it is more important for our purpose to have the highest values for 
Recall and F1-score, the SVM algorithm seems to be the best choice 
(Recall = 0.7 and F1-score = 0.69). 

4.2. Task 2 

Regarding this task, it is significant to mention that the training 
models are more robust because the training and the testing sets come 
from different studies' datasets. 

In the first step, the ML model was trained in the MGH dataset and 
tested in the ICL dataset (Fig. 4). In this context, the MLP algorithm 
achieved the highest F1-score and recall, with 0.62 and 0.61, respec
tively. Additionally, Fig. 5 depicts the performance of the models trained 
in the MGH dataset and tested using the YPS dataset, with MLP 
achieving the best performance. 

The models trained with the YPS dataset and tested with the MGH 
dataset (Fig. 5) produced relatively good results for both SVM and MLP 
models with slight differences in the recall (SVM reached 0.68 and MLP 
0.7). On the other hand, there is a significant difference in precision 
between SVM (0.78) and MLP (0.62). To this end, the F1-score of MLP 
(0.6) is lower than SVM (0.67). As recall is the most important metric for 

Table 2 
Population characteristics for the study cohorts.  

COVID-19 
severity 
outcome 

MGH YPS ICL 

Severe 
(n =
132) 

Non- 
severe 
(n =
251) 

Severe 
(n =
50) 

Non- 
severe 
(n =
206) 

Severe 
(n =
13) 

Non- 
severe 
(n =
42) 

Age, years range 
(20,40] 5 (3.8 

%) 
31 
(12.3 
%) 

6 (12 
%) 

62 (30 
%) 

0 2 (4.8 
%) 

(40,60] 16 
(12.1 
%) 

57 (23 
%) 

15 (30 
%) 

52 
(25.2 
%) 

1 (7.7 
%) 

6 (14.3 
%) 

(60,80] 80 
(60.6 
%) 

129 
(51.4 
%) 

25 (50 
%) 

64 (31 
%) 

9 (69.2 
%) 

26 (62 
%) 

(80,100] 31 
(23.5 
%) 

34 
(13.5 
%) 

4 (8 %) 28 
(13.6 
%) 

3 (23 
%) 

8 (19 
%)  

Kidney disease 
Positive 30 

(22.7 
%) 

31 
(12.3 
%) 

4 (8 %) 14 (6.8 
%) 

13 42 

Negative 102 
(77.3 
%) 

220 
(87.7 
%) 

46 (92 
%) 

192 
(93.2 
%) 

0 0  
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our study, we conclude that MLP has the best performance in the correct 
classification of severe COVID-19 patients. 

In Task 2, the last models were trained with the ICL dataset. Initially, 
these models were tested with the YPS dataset. As clearly shown in 
Fig. 6, the SVM exceeded the rest of the models. The SVM model also 
outperforms the rest of the models when using the ICL dataset for 
training and MGH for validation (F1-score of 0.69). 

4.3. Task 3 

For task 3 where all data are harmonized in one bulk dataset, SVM 
produced the best results (Fig. 7). Although in precision SVM reaches 
0.77, the ensemble methods Gradient Boost, Random Forest, and Extra 
Trees surpass it with a precision of 0.78, 0.88, and 0.85, respectively 
(Supplementary Table 10). 

As a whole, the results from the trained models in Tasks 1 and 2 show 
that the MLP algorithm works best for the MGH dataset. However, the 
SVM algorithm excelled at the ICL dataset's models in Tasks 2 and 3. As 
recall is the most important evaluation metric for the specific use case, 

the best score for MGH and YPS datasets is achieved via MLP, and the 
ICL dataset is achieved using SVM. 

4.4. Testing on an independent dataset 

Furthermore, the data from the study of the Mayo Clinic (MC) con
taining 455 COVID-19 patients [11] was also used to evaluate the MLP 
model (Supplementary Fig. 13). We followed the methodology of task 1. 
The results verified MLP as the best algorithm for the MC dataset 
(Supplementary Table 11, Supplementary Fig. 12). To this end, the ML 
pipeline mentioned above (Fig. 2) is an optimal procedure to reveal the 
outstanding algorithm for this type of data. 

4.5. Explainable AI reveals predictive plasma proteins for COVID-19 
severity 

To elucidate the biological significance of plasma proteins repre
senting top-30 loadings of the various ML-approaches (Supplementary 
Figs. 8, 9, 10), we inferred the PPI network connecting the most pre
dictive proteins for each task and dataset along with the most probable 
pathways from Reactome. 

For Task 1, we predominantly detected signaling cellular responses 
that have been extensively documented in COVID-19 immunopathology 
(e.g., “Signaling by the B Cell Receptor (BCR)”, “TNFR1-induced 

Table 3 
Description of the common features of the 3 datasets.  

Features Description 

Proteins An intersection of 168 common proteins identified in the 
three selected datasets (Supplementary Fig. 1). Protein 
expression is measured in NPX (Normalized Protein 
eXpression) which is Olink's arbitrary unit and it is 
normalized in Log2 scale. Sequentially, the values were 
standardized in a range from 0 to 1. 

Age Patients are separated in the following classes: (20,40], 
(40,60], (60,80], (80,100] 

Kidney disease 
comorbidity 

Dataset demarcated patients over kidney disease. 

COVID-19 patients' 
severity 

Patients are categorized based on the WHO Progression 
scale as Severe COVID-19 (severe, critical) and Non-severe 
COVID-19 (mild, moderate) [21].  

Fig. 2. Development and evaluation of the final models A Data preprocessing B Feature contribution on the models' results.  

Table 4 
Dimensionality reduction with PCA.  

Tasks Datasets Initial dimensions Final dimensions 

Task 1 MGH  1420  124 
YPS  457  66 
ICL  438  35 

Task 2 MGH  168  61 
YPS  168  48 
ICL  168  30 

Task 3 MGH- YPS- ICL  168  72  
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Fig. 3. Task 1 performance of F1-score from GridSearch hyperparameter tuning A. MGH B. YPS C. ICL.  
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Fig. 4. Task 2 performance of F1-score from GridSearch hyperparameter tuning for trained model in MGH dataset and test in ICL and YPS dataset A. YPS B. ICL.  
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Fig. 5. Task 2 performance of F1-score from GridSearch hyperparameter tuning for trained model in YPS dataset and test in ICL and MGH dataset A. ICL B. MGH.  
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Fig. 6. Task 2 performance of F1-score from GridSearch hyperparameter tuning for trained model in ICL dataset and test in YPS and MGH dataset A. YPS B. MGH.  
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NFkappaB signaling pathway”, “Toll Like Receptor 10 (TLR10)”, 
“Myd88 dependent cascade” etc.) (Fig. 8). Uniquely, the MGH-Task 1 
loadings (Fig. 8A) associated with the most diverse repertoire of 
signaling pathways which contained not only aforementioned cellular 
responses but also PECAM1 interactions, platelet sensitization by LDL, 
vesicle-mediated transport and signaling via SCF/c-Kit signaling axis 
[31]. Based on ARCHS4 data mining, the most predictive protein in the 
MGH study was a promoter of RAS/JUN kinase signaling pathways 
called CRKL (CRK Like Proto-Oncogene, Adaptor Protein) with meta
bolic functionalities while in the YPS study IRAK1 (Interleukin 1 Re
ceptor Associated Kinase 1), a potentiator of IL1R downstream signaling, 
was the most predictive protein. Furthermore, on the ICL study, the most 
predictive protein was NEMO/IKBKG which is a critical mediator of the 
Nf-KB pathway. 

For Task 2 (Supplementary Figs. 8, 9), the various ML iterations were 
accompanied by the enrichment of TLR signaling pathways, IFN 
signaling and TNF signaling. The most predictive proteins in this task 
were IRAK1, AXIN1 (Axis Inhibition Protein 1) which impedes on the 
Wnt pathway and SRPK2 (Serine/Arginine-Rich Protein-Specific Kinase 
2) which is a multi-faceted kinase involved in neurotransmitter signaling 
in the Central Nervous System (CNS). 

Lastly, regarding the evaluation dataset of MC, the most predictive 
proteins correlated with TNF signaling, SCF/c-Kit signaling, PDGF 
signaling and IL-3/IL-5/GMCSF signaling, resembling the pathway 
landscape of MGH dataset. The most predictive protein in the MC study 
was HARS1 (Histidine–TRNA Ligase, Cytoplasmic) which is an 
aminoacyl-tRNA synthetase (Supplementary Fig. 10). 

5. Discussion 

A bevy of high-throughput biological studies with clinical annota
tions has been at the forefront of biomarker discovery for COVID-19 
[32]. To this end, AI could be used to provide early hints or useful in
sights regarding the disease progression and the impact of various fac
tors, including the identification of potential causal factors. Albeit a 
multitude of different AI approaches are being applied in the afore
mentioned datasets for COVID-19 (e.g., Random Forest, Logistic 
regression etc.) [9], there are still several lingering caveats considering 
predominantly the lack of interpretability and explainability (“black 
box” challenge) [33]. Acknowledging these hurdles, in the herein work 
we present a benchmarking pipeline for various ML classifiers based on 
COVID-19 plasma proteomics (3 datasets based on Olink PEA 

technology encompassing detailed clinical covariates) engaging an 
“interpretable” AI approach [34]. 

Assembling the benchmarking pipeline for ML classifiers was pred
icated on the analysis of the current literature which highlighted the 
narrow number of ML algorithms (usually decision tree algorithms) that 
are already used in proteome studies. Furthermore, most presented 
scientific studies did not usually select XAI models to spot biomarkers 
but other feature selection methods e.g. Mean decrease in Gini [35]. 
Finally, most studies analyze small patient cohorts and plasma proteins 
while their findings lack external validation with independent datasets. 

The benchmarking pipeline consists of 3 Tasks that helped to test 
several algorithms and to conclude the most optimal ML algorithm for 
our data. These tasks are designed to avoid results that arise from 
overfitting. We choose 4 distinct datasets − 3 for training (MGH, YPS, 
ICL dataset for benchmarking pipeline) and one for evaluation (MC)- 
based on Proximity Extension Assay (PEA) technology from Olink. This 
technology has been applied in a diverse array of multi-factorial diseases 
like pestilential infections (e.g., COVID-19), cancer, neurodegenerative 
conditions (e.g., Alzheimer's) and it has been proven to provide critical 
information about disease pathobiology due to a large number of pro
teins analyzed. Compared to Mass Spectroscopy, NPX data are already 
normalized and more specific [36]. Therefore, there are already 420 
studies that are designed with NPX data. Although the relevant literature 
review highlighted the AUC score as an evaluation metric for the ML 
models, in our study we used accuracy, F1-score, Recall and Precision to 
examine thoroughly the performance of our ML models. Finally, we also 
included two “interpretation” steps. The first step leveraged SHAP 
values to point out the top 20 most informative PCA embeddings 
(Supplementary Figs. 6, 7) and the second ranked the magnitude of 
protein vectors that these top 20 embeddings consist of. (Supplementary 
Figs. 8, 9, 10) Recent benchmarking ML studies on biological data tend 
to execute only the procedure that we followed in Task 1 [37,38]. 

The benchmarking pipeline highlighted MLP as the superior model 
for our experiment based on the Recall score that this algorithm suc
ceeds. As our study focus on the best predictive model for severe COVID- 
19 patients, recall in the evaluation metric the first compare our models 
on. Moreover, the SVM model also outperformed the ICL models of Task 
2 and Task 3. Even in the independent validation dataset, MLP out
performs the rest of the models. 

Concerning the biological interpretation of the results, all models 
contained, as top-loadings, plasma proteins that pertained to critical 
aspects of COVID-19 pathobiology like aberrant activation of B cells, 

Fig. 7. Task 3 performance of F1-score from GridSearch hyperparameter tuning.  

S. Dimitsaki et al.                                                                                                                                                                                                                               



Artificial Intelligence In Medicine 137 (2023) 102490

11

Fig. 8. MLP predicts COVID-19 severity using proteins regulating immune-inflammatory and developmental pathways in Task 1. GeneMania protein-protein 
interaction networks (PPI), pathway enrichment dotplots and heatmaps with protein-nodes for the most predictive plasma proteins (top-30) as features of MLP 
(Task 1) considering the MGH (A), YPS (B) and ICL (C) datasets respectively. 
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cytokine storm, TNF signaling, TLR signaling [35,39]. Interestingly, in 
Task 1 for the MGH dataset and in the validation MC study, more diverse 
pathways were retrieved (Fig. 8, Supplementary Fig. 10), like pertur
bations with cellular adhesion and endothelial damage, exosomal 
communication among cells, platelet involvement and deregulation of 
key cytokine regulate adaptive and innate responses as well as stem cell 
differentiation i.e. SCF/c-Kit signaling [31,40–42]. Since not all of these 
pathways have been explored in-depth in COVID-19 immunopathology, 
these findings advocate for the use of explainable AI to unravel nascent 
biological information from voluminous -omic datasets with potential 
translational significance [43]. 

In terms of limitations, it should be highlighted that the used datasets 
focus on early variations of the SARS-COV-2 virus and do not take into 
account the Delta or Omicron variation which has significantly varied 
clinical outcomes [44]. Moreover, it should be noted that the presented 
ML pipeline (as also the vast majority of papers published in the field) 
has not been clinically validated [45]. Furthermore, we have only used 
the SHAP values methodology which merely ranked plasma proteins 
based on their contributions on COVID-19 patient classification from the 
MLP model. It should be pointed out that SHAP values should be used for 
the “interpretation” of ML models where the input values satisfy specific 
requirements (e.g., statistical independence) which are not necessarily 
true in our case as the input features of the presented ML models cannot 
be verified as independent. Still, we argue that SHAP values could be 
used to provide qualitative insights to identify potential input values 
which heavily impact the outcome/prediction of the respective algo
rithms. Albeit pathway enrichment showed the biological relevance of 
the top-ranked proteins, more complex relations among plasma prote
omics like non-linear dependencies (which could lead to new biological 
insights) remained largely elusive. To address this challenge, a potential 
way forward could be to research a wider array of ML/DL models (e.g., 
Bayesian Probabilistic Neural Network) along with Bayesian mathe
matics and combinations of various interpretable ML methodologies (e. 
g. Individual Conditional Expectation, Partial Dependence Plot etc.). 

Overall, in the herein work, we provide a benchmarking pipeline that 
could help the selection of appropriate ML tools for studying biological 
“Big Data” from -omic studies. Our approach employs distinct ML met
rics to help avoiding potential overfitting and an interpretability 
component to assist with the biological explainability of ML models. To 
the best of our knowledge, we are the first to design such a pipeline for 
Olink PEA COVID-19 plasma proteomics, hence highlighting known and 
more obscure -from the literature- proteins and pathways relevant to 
COVID-19 immunopathology that merit further in vitro and clinical 
investigation. Conclusively, we posit that this type of ML benchmark 
studies can aid in the design of ML models closer to the biological 
“ground truth”, hence increasing the possibilities of discovering novel 
biomarkers and “druggable” targets. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.artmed.2023.102490. 
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[7] Sidak D, Schwarzerová J, Weckwerth W, Waldherr S. Interpretable machine 
learning methods for predictions in systems biology from omics data. Front Mol 
Biosci Oct. 2022;9. https://doi.org/10.3389/fmolb.2022.926623. 

[8] Gisby J, et al. Longitudinal proteomic profiling of dialysis patients with covid-19 
reveals markers of severity and predictors of death. Elife Mar. 2021;10. https://doi. 
org/10.7554/ELIFE.64827. 

[9] Beltrami AP, et al. Combining deep phenotyping of serum proteomics and clinical 
data via machine learning for COVID-19 biomarker discovery. Vol. 23, Page 9161 
Int. J. Mol. Sci 2022;23(16):9161. https://doi.org/10.3390/IJMS23169161. Aug. 
2022. 
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