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Abstract

Multidrug-resistant Plasmodium falciparum parasites are a major threat to public health in 

intertropical regions. Understanding the mechanistic basis, origins, and spread of resistance 

can inform strategies to mitigate its impact and reduce the global burden of malaria. The 

recent emergence in Africa of partial resistance to artemisinins, the core component of first-

line combination therapies, is particularly concerning. Here, we review recent advances in 

elucidating the mechanistic basis of artemisinin resistance, driven primarily by point mutations 

in P. falciparum Kelch13, a key regulator of hemoglobin endocytosis and parasite response to 

artemisinin-induced stress. We also review resistance to partner drugs, including piperaquine and 

mefloquine, highlighting a key role for plasmepsins 2/3 and the drug and solute transporters P. 
falciparum chloroquine-resistance transporter and P. falciparum multidrug-resistance protein-1.

Artemisinin-based combination therapies

Malaria continues to be a major global health problem, with an estimated 241 million 

cases and 627,000 deaths in 2020 [1]. Plasmodium falciparum, the most virulent causative 

species, accounts for ~98% of cases. Encouragingly, substantial reductions in the disease 

burden have been achieved over the past two decades, due in part to the implementation 

of artemisinin (ART)-based combination therapies (ACTs) as the first-line treatment for 

uncomplicated P. falciparum malaria in endemic countries worldwide.

ART and its derivatives are highly potent, fast-acting antimalarials that can reduce P. 
falciparum biomass by up to 10 000-fold every 48-hour asexual blood-stage cycle [2]. 

A three-day regimen of ART monotherapy is associated with high levels of parasite 

recrudescence due to a short plasma half-life (typically < 1–2 hr), thus necessitating 

the use of longer-lasting partner drugs in combination therapies. Partner drugs require 

a different mode of action, or mechanism of resistance, to reduce the chances of 
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multidrug-resistance selection. The World Health Organization currently recommends six 

first-line ACTs: artemether-lumefantrine (AL), artesunate-amodiaquine (ASAQ), artesunate-

mefloquine (AS-MQ), artesunate-sulfadoxine-pyrimethamine (AS-SP), dihydroartemisinin-

piperaquine (DHA-PPQ) and artesunate-pyronaridine (AS-PND) [1]. AS-MQ and DHA-

PPQ have been the predominant ACTs used in SE Asia, while AL and ASAQ are the main 

ACTs used in Africa and account for ~98% of doses delivered worldwide (Table 1).

One of the biggest roadblocks to malaria control is the ability of P. falciparum to rapidly 

evolve antimalarial resistance. ART-resistant P. falciparum emerged over a decade ago in the 

Greater Mekong Subregion (GMS), traditionally a hotbed for development of antimalarial 

resistance. Clinically, ART partial resistance is defined as delayed parasite clearance 

following artesunate monotherapy or ACT, and can be observed as a parasite-clearance 

half-life > 5 hr, or parasites microscopically evident on day 3 [3]. Initially, delayed clearance 

did not result in higher rates of treatment failure when artesunate monotherapy was followed 

with an effective partner drug [4]. Increased parasite exposure to partner drugs, however, 

led to the emergence of partner-drug resistance, notably to PPQ [5–9]. The resulting high 

rates of ACT treatment failure hindered control efforts in the GMS, leading to urgent 

calls for malaria elimination from this region to prevent the spread of multidrug-resistant 

parasites [10]. Malaria rates in this region have decreased substantially in recent years, 

and the greatest current concern is the independent emergence of ART partial resistance 

in sub-Saharan Africa, where 95% of malaria cases and deaths occur [1]. If ART partial 

resistance spreads across Africa and precedes partner drug and ACT failure, as witnessed in 

the GMS, the consequences could be devastating.

Here, we review recent research on resistance to ACTs and their components, including 

the multifaceted mechanisms underlying ART partial resistance, its geographic spread, 

resistance to DHA-PPQ in the GMS, and genetic modulators of partner-drug susceptibility.

Artemisinin mode of action and mechanism of resistance

ART is activated by reduced heme iron (Fe2+ heme), which mediates cleavage of the 

endoperoxide bridge and results in the production of free-radical species (possibly carbon-

centered [11]). These free radicals can alkylate heme, proteins, lipids, DNA, and other 

parasite biomolecules [12]. Widespread cell damage triggers the unfolded protein response 

through activation of protein kinase 4, leading to phosphorylation of eIF2α and subsequent 

inhibition of protein translation. This damage also leads to a buildup of polyubiquitinated 

proteins that are tagged for parasite proteasome-mediated degradation. This proteotoxic 

stress appears to be further ex-acerbated by ART-mediated inhibition of proteasome 

function, with studies showing synergy between ART derivatives and proteasome inhibitors 

[13–15]. Parasite responses to ART show similarities to heat-shock responses, and parasites 

unable to mount a heat-shock response display increased ART susceptibility [16,17]. ART 

derivatives may also inhibit the formation of hemozoin, leading to a buildup of Fe2+ heme 

[18]. This toxic by-product of parasite protease-mediated hemoglobin degradation is thought 

to be the primary activator of ART [19]. While disruption of the heme-degradation process 

decreases parasite sensitivity to ART, a recent study provided evidence that increasing heme 
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levels also selectively antagonized ART’s antimalarial action, suggesting a multifactorial 

relationship between the heme-detoxification pathway and ART activation [20].

The primary genetic drivers of ART resistance, both in vitro and in vivo, are point 

mutations in P. falciparum K13 (also known as Kelch13), which reside mostly, although 

not exclusively, in the beta-propeller domain [21,22]. The causal relationship between 

several K13 mutations and resistance has been validated in vitro through reverse genetics 

[23–26]. K13 mutations allow a subset of early ring-stage parasites to survive cell-cycle 

arrest brought on by ART exposure, enabling those parasites to reinitiate transcription 

and complete their in-traerythrocytic developmental cycle once ART is no longer present 

at inhibitory concentrations [27–29•]. Resistance in vitro is routinely defined as > 1% 

survival of early ring-stage parasites exposed for 6 hr to 700 nM DHA (the primary active 

metabolite of ART) followed by drug-free culture incubation for a further 66 hr (this assay 

is referred to as the RSA0–3 h) [30]. These resistant parasites constitute a transcriptionally 

diverse population that differs in its expression of stress-response genes [31]. As discussed 

below, the mechanism of resistance appears to involve a complex interplay of K13 protein 

abundance, hemoglobin endocytosis, and the parasite response to stress.

K13-propeller mutations have been found in several studies to decrease the abundance of 

this essential protein, without altering k13 transcription levels [27,32,33••]. This reduction 

is likely a result of altered protein-folding characteristics and solubility [34] and can differ 

by background and developmental stage [29•]. Downregulation of K13 protein levels results 

in decreased sensitivity to ART, and overexpression of either mutant or wild-type K13 

resensitizes resistant parasites [33••–36].

K13 was recently localized to peripheral compartments in the parasite plasma membrane 

as well as vesicular compartments and the endoplasmic reticulum [25•,32,33••,35,37,38]. 

At the plasma membrane, K13 appears to be concentrated at the neck of hemoglobin-filled 

cytostomes that traffic the bulk of host hemoglobin from the red blood cell cytosol to the 

parasite’s lysosome-like digestive vacuole (DV) [32,33••]. Genetic mislocalization of K13 

reduces cytostome trafficking and decreases the abundance of hemoglobin-derived peptides 

[32,33••]. Studies of K13-associated proteins have defined an interactome that includes 

multiple endocytosis proteins, including AP-2μ and the ubiquitin hydrolase UBP1, both of 

which have been linked to ART resistance [33••,39,40]. Conditional inactivation of several 

interactome proteins resulted in reduced ART susceptibility [33••]. These studies indicate 

a role for K13 in clathrin-independent endocytosis and hemoglobin uptake, suggesting that 

K13-mediated ring-stage resistance may result from reduced hemoglobin transport to the 

DV, and subsequent reduction of the drug activator Fe2+ heme.

Mutations in K13 also appear to mediate ART resistance through an increase in the baseline 

stress response, allowing for more effective mitigation of, or recovery from, the cell damage 

induced by ART exposure. The precise function of K13 is unknown, however, due to 

its sequence similarity to a class of Kelch/BTB/POZ ubiquitination adapters, it has been 

postulated that K13 acts as a ubiquitin ligase adapter that mediates ubiquitin-dependent 

targeting of proteins for proteasomal degradation [19]. Several analyses have associated 

K13 mutations with upregulation of chaperones and pathways involved in the unfolded 
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protein response and oxidative stress, and downregulation of ubiquitinating enzymes 

[25•,27,29•,41]. These factors, in addition to reduced hemoglobin uptake, may explain 

lower levels of oxidative stress observed in ART-resistant parasites, both at baseline and 

in response to ART exposure [42]. Increased survival of K13 mutant parasites following 

ART-induced dormancy may also involve increased baseline phosphorylation of eIF2α and 

extended ring-stage development [13,32].

Several other interesting phenotypes have been observed in ART-resistant parasites. 

Enhanced DNA damage repair pathways associated with K13 mutation may aid recovery 

from ART-induced DNA damage [43]. Mitochondrial proteins are also heavily involved in 

the ART stress response [44,45], and mutant K13-mediated resistance can be reversed by 

the mitochondrial electron-transport chain inhibitor atovaquone [29•]. K13 mutant parasites 

have also been observed to asynchronously reinitiate growth 18–24 hr after removal of 

DHA pressure, a feature that may be separate from the effect of mutant K13 on restricting 

hemoglobin endocytosis in ring stages, raising the question of how parasites emerge from 

their state of ART-induced quiescence [29•].

The degree of protection to ART offered by K13 mutations varies considerably by parasite 

background, suggesting that secondary determinants contribute to resistance [25•,26,46]. 

Gene-editing studies recently provided evidence of a greater fitness cost resulting from the 

introduction of K13 mutations into African strains compared with Asian strains, suggesting 

that the latter have additional genetic factors that compensate for mutant K13 fitness costs 

[26]. Mutations in several other proteins have been reported to mediate in vitro resistance 

to ART, several of which (PI3P, AP-2μ, UBP1, and KIC7) have been colocalized or 

associated with K13 [33••], and others that are also thought to play a role in vesicular 

trafficking (coronin, falcipain 2) [19,21,47]. These studies underline the importance of 

research into K13 and other potential ART-resistance mediators, particularly in light of the 

recent emergence of resistance in Africa [24••,48–50].

The spread of mutant K13-driven artemisinin partial resistance

ART partial resistance and causative K13 mutations are now widespread across the GMS, 

which together with partner-drug resistance, has resulted in high ACT failure rates [1]. Over 

200 nonsynonymous K13 mutations have been identified in parasite populations globally, 

of which 12 are validated to confer ART resistance and 10 are associated with resistance 

(Table 2) [3,21]. The C580Y allele dominates most of the GMS, with the exception of 

Myanmar where the F466I allele is more common [51•]. The C580Y allele also emerged 

independently in Guyana and Papua New Guinea, but at low frequency and with no apparent 

effect as yet on ACT efficacy [52,53].

Initial signs of ART partial resistance are now emerging in sub-Saharan Africa. The 

K13 mutation R561H, which is a validated marker of resistance in the GMS, emerged 

independently in Rwanda and has rapidly attained a prevalence of 22% in some sites 

[24••,50]. R561H was significantly associated with day-3 parasitemia [48] and a longer 

parasite-clearance half-life following AL treatment [50]. Gene editing has shown that 

R561H can confer a degree of in vitro ART partial resistance similar to that of C580Y 

Ward et al. Page 4

Curr Opin Microbiol. Author manuscript; available in PMC 2023 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and is fitness-neutral [26], indicating that the Rwandan R561H lineage has the potential to 

predominate in this region.

A recent study from northern Uganda reported an increased prevalence of the K13 mutations 

C469Y and A675V, attaining 23% and 41%, respectively [54]. Both mutations were 

associated with delayed parasite clearance following intravenous artesunate monotherapy 

[49••]. Although A675V demonstrated ex vivo ART resistance [49••], both C469Y and 

A675V mediated either no significant shift, or only a modest increase in ring-stage survival 

in a subsequent gene-editing study [46], highlighting the importance of the parasite genetic 

background in mutant K13-mediated resistance. Continued surveillance across Africa 

of K13 polymorphisms, parasite-clearance times, and in vitro partial resistance will be 

extremely important in the coming years.

P. falciparum chloroquine-resistance transporter and P. falciparum 

multidrug-resistance protein-1 as modulators of susceptibility to 

artemisinin combination therapies partner drugs

ASAQ and AS-MQ have been used extensively in the GMS, and high failure rates to 

both have been reported [3,55•]. Artesunate-pyronaridine (AS-PND), the most recently 

deployed ACT, shows excellent efficacy against DHA-PPQ-resistant infections [56]. AL 

is the predominant first-line ACT in Africa, and there is no concrete evidence of 

lumefantrine (LMF) or pyronaridine (PND) resistance. The 4-aminoquinolines amodiaquine 

(ADQ) and PND act primarily by inhibiting hemozoin formation in the DV, whereas the 

arylaminoalcohols mefloquine (MFQ) and LMF only partially inhibit hemozoin formation, 

with their primary targets thought to be located in the cytosol [21,57].

Resistance to ACT partner drugs is mostly associated with point mutations in the P. 
falciparum chloroquine-resistance transporter (pfcrt) and P. falciparum multidrug-resistance 

protein-1 (pfmdr1) genes that encode two DV membrane transporters, or amplification of 

pfmdr1 (Table 2). These mutations often have opposing effects on susceptibilities to partner 

drugs. Treatment with ASAQ selects for PfCRT K76T, a mutation critically required for 

chloroquine (CQ) resistance, and PfMDR1 N86Y, a modulator of CQ resistance, while 

AL treatment selects for the wild-type alleles [58,59]. In vitro, PfMDR1 N86Y reduces 

susceptibility to ADQ and PND and increases susceptibility to LMF, MFQ, and DHA 

[60,61]. Additionally, pfmdr1 amplification is the most important determinant of MFQ 

resistance in Southeast Asia [62,63].

One endogenous function of PfCRT appears to be proton-dependent transport of 

hemoglobin-derived peptides out of the DV [64,65], while PfMDR1 is predicted to 

transport solutes into the DV. Wild-type PfMDR1 has been reported to transport diverse 

pharmacophores, including LMF, MFQ, DHA, PPQ, ADQ, and CQ, and PfMDR1–86Y 

reduces transport of these compounds [66•]. In contrast, wild-type PfCRT cannot efflux 

these compounds, and only drug-resistant PfCRT isoforms transport CQ, LMF, and MFQ 

[66•]. As a result, mutant isoforms of PfCRT and PfMDR1 are thought to decrease 

accumulation of antimalarials in the DV and increase their concentration in the cytosol, 
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thereby conferring altered drug susceptibility based on the location of the drug targets 

(Figure 1).

The collateral drug sensitivity of pfcrt and pfmdr1 alleles is reflected in changes of allele 

frequencies in response to replacement of first-line therapies. The prevalence of multicopy 

pfmdr1 in the GMS decreased dramatically upon withdrawal of AS-MQ [67,68]. The 

prevalence of pfcrt-76T and pfmdr1-86Y, which increased in Sub-Saharan Africa under CQ 

pressure, decreased dramatically from 2004 to 2018 in response to widespread uptake of AL 

[54,69,70]. Worryingly, ex vivo parasites recently collected from patients in Eastern Uganda 

had a small but significant decrease in susceptibility to LMF, which was accompanied 

by a significant increase in the prevalence of pfmdr1-N86 to > 99% [71•]. This suggests 

an increasing prevalence of LMF-tolerant parasites, which is concerning, given the recent 

emergence of ART partial resistance in east Africa.

Piperaquine resistance associated with multiple plasmepsins 2/3 and novel 

mutations in P. falciparum chloroquine-resistance transporter

DHA-PPQ replaced AS-MQ as the first-line ACT in Cambodia in the midst of emerging 

ART resistance, and within a few years, high treatment-failure rates were reported [3]. 

Multiple genome-wide association studies identified amplification of plasmepsins 2 and 3 
(pm2/3) and novel point mutations in pfcrt as being associated with clinical and in vitro PPQ 

resistance (Table 2) [21]. Multicopy pm2/3 was associated with increased parasite survival 

at elevated PPQ concentrations [72]. However, pm2 overexpression alone failed to confer 

in vitro PPQ resistance [73]. Conversely, gene editing validated that novel PfCRT point 

mutations can drive high-grade in vitro PPQ resistance, including on a pm2/3 single-copy 

background [74]. Longitudinal surveillance revealed a rapid increase in the prevalence 

of these PfCRT mutations following DHA-PPQ implementation, with > 98% of parasites 

harboring these mutations by 2017 [67]. Outside the GMS, a novel PfCRT variant causal for 

PPQ resistance emerged independently in French Guiana [75]. In China, emergence of novel 

PfCRT haplotypes conferring in vitro PPQ resistance may explain early PPQ clinical failures 

in this region [76].

PfCRT mutations that confer PPQ resistance can partially or fully reverse CQ and ADQ 

resistance based on the isoform on which they arise [74,76,77]. PPQ, a 4-aminoquinoline, 

exerts its antimalarial action by inhibiting heme detoxification in the DV [77]. Studies of 

PfCRT-mediated drug transport demonstrate that CQ-resistant isoforms, which have a large 

transport capacity for CQ, do not transport PPQ [78]. Conversely, PPQ-resistant isoforms 

efflux PPQ and reduce CQ transportation, leading to increased CQ accumulation in the DV 

[76].

Conclusions and future outlook

Recent years have seen a tremendous increase in research into the molecular basis of 

antimalarial drug resistance in P. falciparum parasites, complementing parallel efforts 

to identify new drug targets and candidate medicines. These efforts provide hope that 

within the next decade, we can substantially decrease the burden of disease, especially 
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in high-transmission settings in Africa. However, the recent detection in eastern Africa of 

mutant K13 parasites is particularly worrying, as it may lead to partner-drug resistance 

and ACT- treatment failures, as earlier occurred in the GMS in south-east Asia. To 

date, AL remains broadly effective across Africa. Detailed monitoring for resistance, both 

genotypically and measuring parasite susceptibility, is essential. Genetic crosses to map 

genetic determinants of resistance, and gene-editing methods to establish causality, provide 

powerful tools to characterize resistance [79,80]. Mathematical modeling also provides a 

key approach to optimize treatment and control measures at a national and subnational 

level [81–83]. Several new approaches are also being actively explored, including triple 

ACTs, or drug-rotation strategies with multiple ACTs, which could exploit the opposing 

selective pressures that partner drugs place on PfCRT and PfMDR1 as mediators of 

parasite susceptibility [2,84•]. These efforts extend to chemoprevention measures such as 

seasonal malaria chemoprevention or intermittent preventive treatments, whose efficacy 

can also be optimized through a detailed understanding of the genetic and molecular 

basis of antimalarial resistance [85]. The exceptional coordination between scientists in 

academia and industry, supported by multiple organizations including the Bill & Melinda 

Gates Foundation, the Medicines for Malaria Venture, the World Health Organization, and 

governmental agencies and science-based funders, is a key foundation for increasing efforts 

to regain the upper hand against malaria and dramatically reduce its global impact.
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Figure 1. 
Model of select antimalarial drug modes of action and resistance determinants. (a) K13 is 

involved in endocytosis of hemoglobin-containing host cytosol and trafficking to the DV, 

where hemoglobin is degraded by parasite proteases, including plasmepsins 2/3 to release 

peptides and heme. Fe2+ heme activates ART derivatives via cleavage of their endoperoxide 

bridge. The 4-aminoquinolines (CQ, PPQ, ADQ, and PND) act primarily by inhibiting 

biomineralization of toxic heme to inert hemozoin. LMF, MFQ, and ART derivatives 

partially inhibit hemozoin formation and are thought to act on primary targets in the cytosol. 

PfMDR1 (WT) transports diverse compounds from the cytosol into the DV. PfCRT (WT) 

does not mediate drug transport, but transports globin-derived peptide residues from the 

DV to the parasite cytosol. (b) Mutations in PfMDR1 and PfCRT (MUT) are thought to 

decrease and confer drug-transport capacity, respectively, reducing drug accumulation in the 

DV and increasing concentration in the cytosol, resulting in 4-aminoquinoline resistance and 

increased susceptibility to LMF, MFQ, and ART. Hb, hemoglobin; RBC, red blood cell.
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