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Abstract 

Background  Pancreatic ductal adenocarcinoma (PDAC) and prostate cancer (PCa) are among the most prevalent 
malignant tumors worldwide. There is now a comprehensive understanding of metabolic reprogramming as a hall-
mark of cancer. Fatty acid synthase (FASN) is a key regulator of the lipid metabolic network, providing energy to favor 
tumor proliferation and development. Whereas the biological role of FASN is known, its response and sensitivity to 
inhibition have not yet been fully established in these two cancer settings.

Methods  To evaluate the association between FASN expression, methylation, prognosis, and mutational profile in 
PDAC and PCa, we interrogated public databases and surveyed online platforms using TCGA data. The STRING data-
base was used to investigate FASN interactors, and the Gene Set Enrichment Analysis platform Reactome database 
was used to perform an enrichment analysis using data from RNA sequencing public databases of PDAC and PCa. 
In vitro models using PDAC and PCa cell lines were used to corroborate the expression of FASN, as shown by Western 
blot, and the effects of FASN inhibition on cell proliferation/cell cycle progression and mitochondrial respiration were 
investigated with MTT, colony formation assay, cell cycle analysis and MitoStress Test.

Results  The expression of FASN was not modulated in PDAC compared to normal pancreatic tissues, while it was 
overexpressed in PCa, which also displayed a different level of promoter methylation. Based on tumor grade, FASN 
expression decreased in advanced stages of PDAC, but increased in PCa. A low incidence of FASN mutations was 
found for both tumors. FASN was overexpressed in PCa, despite not reaching statistical significance, and was associ-
ated with a worse prognosis than in PDAC. The biological role of FASN interactors correlated with lipid metabolism, 
and GSEA indicated that lipid-mediated mitochondrial respiration was enriched in PCa. Following validation of FASN 
overexpression in PCa compared to PDAC in vitro, we tested TVB-2640 as a FASN inhibitor. PCa proliferation arrest was 
modulated by FASN inhibition in a dose- and time-dependent manner, whereas PDAC proliferation was not altered. 
In line with this finding, mitochondrial respiration was found to be more affected in PCa than in PDAC. FASN inhibi-
tion interfered with metabolic signaling causing lipid accumulation and affecting cell viability with an impact on the 
replicative processes.
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Conclusions  FASN exhibited differential expression patterns in PDAC and PCa, suggesting a different evolution 
during cancer progression. This was corroborated by the fact that both tumors responded differently to FASN inhibi-
tion in terms of proliferative potential and mitochondrial respiration, indicating that its use should reflect context 
specificity.

Keywords  FASN, Pancreatic adenocarcinoma, Prostate adenocarcinoma, Metabolism, Proliferation

Background
Cancer is characterized by metabolic reprogramming, 
and different cancer types can display very different 
metabolic phenotypes based on metabolic plasticity, 
tissue origin, and tumor microenvironment, highlight-
ing the existence of tumor-specific bioenergetic circuits 
[1–4]. Warburg first described the metabolic behavior 
of some cancers that showed increased lactic fermenta-
tion compared to traditional mitochondrial respiration, 
thus allowing ATP production and biomass required for 
tumor growth [5, 6] Altered metabolic processes con-
tribute to the development of cancer, which, as a system 
with a high rate of proliferation, needs a large amount of 
fuel to maintain the activity of its biological processes [7, 
8]. ATP, the energy currency and metabolic byproduct, 
is required for a variety of cellular processes, including 
DNA replication and the proper function of the cytoskel-
etal system [9, 10]. Pancreatic ductal adenocarcinoma 
(PDAC) and prostate cancer (PCa) are among the lead-
ing causes of cancer deaths worldwide [11–13]. In 2020, 
there were approximately 1.41 million new PCa cases at 
global level, according to GLOBOCAN [14] while PDAC 
is one of the cancer types with the highest lethality and is 
estimated to become the second leading cause of cancer-
related deaths by 2030 [15–17]. Interestingly, evidence 
of altered energetic pathways is reported for these two 
tumors. In PDAC, KRAS oncogenic signaling and inacti-
vation of tumor suppressors are directly related to altered 
glycolysis, recognized as the main metabolic alteration in 
pancreatic cancer [18–21]. In contrast, prostate tumors 
seem to favor increased oxidative phosphorylation, and 
fatty acid (FA) production appears to be linked to pros-
tate carcinogenesis [22–24]. In terms of proliferation and 
survival, de novo FA biogenesis provides tumors with a 
competitive advantage [25]. FA synthase (FASN), a cru-
cial enzyme in lipogenesis, is responsible for catalyzing 
the synthesis of the long-chain saturated FA palmitate, 
used as source for ATP production [26, 27]. In recent 
years, studies investigating antitumor strategies targeting 
metabolism regulation have increased, and FASN inhibi-
tion has shown promise in targeted cancer therapy [28–
30]. However, little is known about cancer cell sensitivity 
to FASN inhibitors, thus creating a bottleneck for their 
therapeutic application. Antimetabolic strategies are cur-
rently under investigation in PDAC and PCa, and clinical 

trials are evaluating how the disruption of lipid signaling 
may contribute to an improvement in patient outcomes 
[24, 31].

Here, we investigated differences in FASN expression 
in PDAC and PCa using a multi-omic approach. We also 
explored the effect of FASN inhibition on proliferation 
and mitochondrial respiration in these two cancer set-
tings. Our results show a different role for FASN in the 
two tumor types, suggesting a different bioenergetic evo-
lution. FASN expression differs significantly in PDAC 
and PCa, with a worse prognosis associated with PCa and 
high expression. FASN protein–protein interaction anal-
ysis indicated that its interactors are mainly involved in 
mitochondrial respiration. In line with this finding, Gene 
Set Enrichment Analysis (GSEA) on RNA sequencing 
(RNA-seq) TCGA data identified mitochondrial respira-
tion- and lipid-related genes as differentially expressed 
and particularly enriched in PCa. This was corroborated 
by the fact that the two tumors responded differently to 
FASN inhibition in terms of proliferative potential and 
mitochondrial respiration, suggesting that FASN inhibi-
tion might represent a more effective therapeutic strategy 
in PCa.

Methods
Exploration of gene expression patterns in different 
cancers
Gene Expression across Normal and Tumor tissue 
(GENT) is a web-accessible resource where gene expres-
sion patterns in different human cancers and normal tis-
sues are explored [32]. To obtain differential expression 
patterns of FASN in normal vs cancer tissues, we applied 
a set of default parameters on datasets, samples, and 
probes.

Extensive analysis of methylation expression data
UALCAN is a publicly available tool for the in-depth 
analysis of TCGA gene expression data [33]. Using the 
UALCAN database, we analyzed the methylation pro-
file of the FASN promoter in PDAC, PCa, and normal 
tissues.

Chemicals
TVB-2640 was purchased from Selleckchem Chemi-
cals (Houston, TX, USA, #S9714) and was used at a 
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final concentration of 1 μM, 5 μM, 10 μM, 25 μM, and 
50 μM for proliferative assays, and 50 μM for the Mito 
Stress Test.

Cell culture
PL-45, SW1990, LNCaP, and C4-2 cell lines were pur-
chased from ATCC (Milan, Italy). PL-45 and SW1990 
were grown in Dulbecco’s Modified Eagle’s Medium 
(DMEM; Euroclone, Milan, Italy, #ECB7501L), sup-
plemented with 10% heat-inactivated fetal bovine 
serum (FBS; Sigma-Aldrich, St. Louis, USA, #F7524), 
antimicrobials (100  U/mL penicillin, 100  µg/mL 
streptomycin [Euroclone, ECB3001D], 250  ng/mL 
amphotericin B [Euroclone, ECM0009D], and 2  mM 
l-glutamine [Euroclone, ECB3000D]). LNCaP and 
C4-2 cells were grown in Roswell Park Memorial Insti-
tute culture medium (RPMI; Euroclone, ECB9006L), 
supplemented with 10% heat-inactivated FBS (Sigma-
Aldrich, F7524), antimicrobials (100  U/mL penicil-
lin, 100  µg/mL streptomycin [Euroclone, ECB3001D], 
250  ng/mL amphotericin B [Euroclone, ECM0009D], 
and 2 mM l-glutamine [EuroClone, ECB3000D]), and 
1% essential amino acids solution (MEM; Euroclone, 
ECB3054D). All cell lines were cultivated at 37 °C with 
5% CO2 and were checked for mycoplasma contamina-
tion using EZ-PCR Mycoplasma Test Kit (Biological 
Industries, Connecticut, USA; #20-700-20).

Western blot analysis
Cell pellets were suspended in lysis buffer (50 mmol/L 
Tris–HCl pH 7.4, 150  mmol/L NaCl, 1% NP40, 
10 mmol/L NaF, 1 mmol/L PMSF, and protease inhibi-
tor cocktail). Next, the lysis reaction was carried 
out for 15  min at 4  °C, samples were centrifuged at 
13,000  rpm for 30  min at 4  °C, and protein concen-
tration quantified by Bradford assay (Bio-Rad Protein 
Assay Dye Reagent Concentrate, Bio-Rad, Hercules, 
CA, USA, #5000006). A total of 30 μg of each sample 
was loaded on 8% polyacrylamide gels and electro-
blotted on nitrocellulose membranes. Immunoreactive 
signals were detected with the horseradish peroxidase-
conjugated secondary antibody (Bio-Rad, #1705046, 
#1705046). Primary antibodies were: FASN (C20G5), 
GAPDH (D16H11), ACSL1 (D2H5), Lipin 1 (D2W9G), 
purchased from Cell Signaling Technology (Danvers, 
MA, USA). Tubulin (sc-5286) was purchased from 
Santa Cruz Biotechnology. All antibodies were used 
according to the manufacturer’s instructions. Semi-
quantitative analysis was performed using ImageJ 

software (version 1.44), and the relative abundance is 
reported in Fig. 4A.

Cell viability assay
Cell viability was determined on PL-45, SW1990, 
LNCaP, and C4-2 cell lines using thiazolyl blue tetra-
zolium bromide [3-(4,5-dimethylthiazol-2-yl)-2,5-di-
phenyltetrazolium bromide] (MTT; Sigma-Aldrich, 
Schnellendorf, Germany) assay, following the manu-
facturer’s instructions. A total of 8 × 103 cells/well 
were plated in a 96-well plate and then treated with 
TVB-2640; experiments were performed in triplicates 
and repeated for three times. The FASN inhibitor TVB-
2640 was used at different concentrations (1 μM, 5 μM, 
10 μM, 25 μM, 50 μM) for 24 h, 48 h, and 72 h. Absorb-
ance was read at a wavelength of 570 nm with a TECAN 
M200 reader (Tecan, Männedorf, Switzerland).

Cellular mitochondrial stress
Metabolic status was investigated on a Seahorse XF96 
Analyzer (Agilent Technologies, Santa Clara, CA, USA) 
with standard 96-well Seahorse microplates. A Mito 
Stress Test Kit (Agilent Technologies, #103015) was 
used to assess oxygen consumption ratio (OCR) after 
TVB-2640 treatment. In brief, 8 × 103 cells were seeded 
into plates 24 h prior to analysis. The medium was then 
replaced with 175 µl of non-buffered RPMI and DMEM 
containing 10 mM glucose, 2 mM glutamine, and 1 mM 
pyruvate. The cells were then treated with 50 μM TVB-
2640 for 6 h at 37 °C and incubated in a CO2-free incu-
bator at 37 °C for 1 h to allow for temperature and pH 
equilibration before being loaded into the XF96 Ana-
lyzer. The injection sequence was programmed as fol-
lows: 1st, oligomycin (1 µM at final concentration); 2nd, 
carbonyl cyanide m-chlorophenylhydrazone (FCCP; 
1 µM at final concentration); 3rd, rotenone and antimy-
cin A (1 µM and 0.5 µM at final concentrations, respec-
tively). Data were analyzed with Wave software (version 
2.2.0, Seahorse Bioscience, Agilent Technologies, Santa 
Clara, CA, USA). Experiments were performed in trip-
licates. p-values were calculated using t-test. Statistical 
significance is expressed as *p < 0.05. Standard devia-
tions are reported as error bars.

Analysis of protein–protein interaction and functional 
protein partners
STRING was used for protein–protein interaction 
analysis. STRING is an extensive database of functional 
association data documenting both physical and func-
tional protein–protein interactions [34]. This database 
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was used to determine the functional protein partners 
of FASN.

Gene set enrichment analysis
Enrichment analysis was performed with GSEA (ver-
sion 4.3.1) using Reactome as the gene set database. 
PDAC and PCa RNA-seq from the TCGA database 
were uploaded as normalized counts.

Identification of mutations
The cBioPortal for Cancer Genomics is a web platform 
for exploring and analyzing cancer genomics datasets 
[35, 36]. In this study cBioPortal was used to explore 
mutations of FASN with defined parameter settings.

FASN‑SREBF1 correlation
Expression values of FASN and SREBF1, as positive 
regulator of FASN transcription, reported as TPM were 
downloaded from UALCAN using the TCGA database. 
Pearson correlation was evaluated with GraphPad Prism 
(version 8.3.0).

Bulk RNA‑seq analysis
PDAC and PCa TCGA RNA-seq data were downloaded 
from UCSC Xena. Statistical analyses were performed 
with DESeq2 [37] using R (version 3.6.4). To com-
pare sample subgroups in terms of gene expression, the 
DESeq2 package that utilizes a negative binomial model 
was used to detect differentially expressed genes from 
count data. Expression differences in genes were consid-
ered statistically significant if the p-value was < 0.05.

Kaplan–Meier analyses analysis
UALCAN and cBioportal platform have been used for 
survival analysis of PDAC and PCa patients based on 
FASN expression. High expression group collects sam-
ples with gene expression values equal to or more than 
the 3rd quartile value and Low/Medium expression 
group, samples with gene expression values less than the 
3rd quartile.

Colony formation assay
LNCaP were treated with TVB-2640 50  μM for 72  h. 
Then, the cells medium was changed and cells were cul-
tured for additional 7 days in a drug-free medium. Col-
onies were stained with crystal violet (abs 595  nm) and 
counted to assesses the proliferative capability.

Quantification of lipids with oil red o Staining
LNCaP were plated in 12-well and treated with TVB-
2640 at 50 μM for 24 h. Cells were fixed with 4% forma-
lin in PBS for 1 h and rinsed with distilled water at RT. 

The fixed cells were treated with 60% isopropyl alcohol 
for 5 min and then stained with 0.3% Oil Red O in 60% 
isopropyl alcohol solution for 15  min at RT and subse-
quently washed with distilled water. Lipis droplets were 
quantified by isopropanol extraction for 15  min and 
absorbance measured with Infinite M1000 microplate 
reader (TECAN) at 540 nm.

Cell cycle and cell death analysis
Treated and untreated LNCaP cells were (2 × 105  cells/
mL) harvested with PBS, centrifuged at 1200  rpm for 
5  min, and resuspended in 500  μL of a hypotonic solu-
tion (1X PBS, 0.1% sodium citrate, 0.1% NP-40, RNAase 
A, and 50  mg/mL PI). Cell death was studied by evalu-
ating hypodiploid sub-G1 peak on fixed cells and PI 
incorporation on live cells to assess DNA fragmentation 
(early apoptotic event) and dead-cell membrane per-
meabilization (late apoptotic event), respectively. For 
sub-G1 evaluation, samples were prepared as described 
above. For PI evaluation, cells were plated (2 × 105 cells/
mL) and treated with TVB-2640 at 50 μM for 24 h. After 
treatment, cells were harvested with PBS, centrifuged at 
1200 rpm for 5 min, and resuspended in 500 μL 1X PBS 
and 0.2  mg/mL PI. The results were acquired on a BD 
Accuri TM C6 flow cytometer system (BD Biosciences 
New Jersey, U.S.A.).

Results
FASN expression in PDAC and PCa compared to normal 
tissue
FASN expression was investigated in normal and tumor 
tissues by analyzing microarray data from two differ-
ent databases, GLP96 and GLP570 (Additional file  1: 
Figure S1). In total, 484 PDAC samples (normal = 119, 
cancer = 365) and 762 PCa samples (normal = 142, can-
cer = 620) were analyzed (Table  1) (Additional file  2: 
Table S1). FASN was differently regulated in PDAC and 
PCa compared to their normal tissue (NT) counterparts. 
Our analysis revealed no statistical difference in FASN 
expression in PDAC and NT (Fig.  1A), whereas FASN 
resulted statistically overexpressed in PCa compared to 
NT (Fig.  1B). A more detailed analysis based on tumor 
grade showed a significant reduction in FASN expression 
in advanced stage PDAC (Fig. 1C). An increase in expres-
sion of FASN was observed in PCa (Fig. 1D), although the 
result was not statistically significant. To correlate FASN 
expression with the methylation profile at its promoter 
in PDAC-NT and PCa-NT, we analyzed the methylation 
levels of FASN using the UALCAN platform with the 
TCGA database. Methylation levels were significantly 
higher in PDAC than in NT (Fig. 1E). In contrast, meth-
ylation of FASN was significantly downregulated in PCa 
compared to NT (Fig. 1F). Taken together, the reduction 
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in FASN expression observed in PDAC was associated 
with increased methylation at its promoter, whereas the 
opposite was found in PCa, where higher expression lev-
els of FASN were coupled with lower methylation. These 
findings suggest different roles and functions for FASN in 
PDAC and PCa systems.

FASN expression and mutational profile in PDAC and PCa
To better investigate the difference in FASN expression 
in PDAC and PCa systems, we analyzed transcriptomic 
data using the TCGA database. In total, 182 PDAC and 
551 PCa RNA-seq samples were analyzed and clustered 
into groups for DGE analysis (Fig. 2A). FASN was upreg-
ulated in PCa compared to PDAC (Fig.  2B) (Additional 
file 3: Table S2). These data were validated using several 
available platforms (Additional file  1: Figures  S2 and 
S3), which all corroborated these differential expression 
patterns. The spliced transcripts of FASN also resulted 
overexpressed in PCa (Additional file  1: Figure S4). The 
prognosis in PDAC and PCa patients was then inves-
tigated based on its association with FASN expression 
levels. Although no significant correlation was observed 
between FASN expression and prognosis in PDAC and 
PCa (Additional file  1: Figure S5), different expression 
patterns were observed in the two cancer types. FASN 
expression was associated with a worse prognosis in 
PCa than in PDAC (Fig. 2C). The incidence of mutations 
in FASN was also low in both cancer types (Additional 
file 1: Figure S6). A total of 5 (990 samples) and 19 (9501 
samples) studies investigating PDAC and PCa were ana-
lyzed, respectively; missense mutations were the most 
common mutations identified (Fig.  2D). In PDAC and 

PCa tumors, FASN single nucleus polymorphisms were 
associated with an altered functional property of 75% 
and 51.42%, respectively (Fig.  2E). Together, these data 
corroborate and strengthen the differential expression 
of FASN in PDAC and PCa, a higher expression of FASN 
was observed in PCa than in PDAC and correlated with a 
worse prognosis in this cancer setting (Additional file 4: 
Table S3).

FASN protein interactions and their association 
with mitochondrial respiration and prognosis
To clarify the difference in FASN expression in PDAC 
and PCa, we interrogated TRRUST2, a public database 
of transcription factors, and identified SREBF1 as a posi-
tive regulator of FASN transcription. FASN and SREBF1 
expression data were analyzed from the UALCAN TCGA 
database (Additional file 5: Table S4) to correlate their co-
expression. The analysis revealed a stronger correlation in 
PCa (Pearson correlation = 0.63) than in PDAC (Pearson 
correlation = 0.21) (Additional file 1: Figure S7). To bet-
ter understand the biological context of FASN, its func-
tional protein interactors were also investigated using 
STRING. The Top 10 list based on score (Additional 
file 6: Table S5) was mainly related to proteins involved 
in the metabolic processes (Fig. 3A), such as ACACA and 
SREBF1. Most of these interactors were overexpressed in 
PCa compared to PDAC (Fig. 3B), supporting the idea of 
a higher activity for the metabolic lipid branch in PCa. 
To validate this hypothesis, GSEA was performed using 
the Reactome database matching TCGA RNA-seq from 
PDAC and PCa data. Mitochondrial FA beta oxidation 
was statistically enriched in PCa (Fig. 3C). These findings 
support a functional role for FASN expression in PCa.

Table 1  Microarray datasets used for FASN expression analysis of PDAC and PCa

Pancreas

 GSE1133 [38] GSE16515 [39] GSE2109 [40] GSE9599 [41] GSE43346 [42]

 GSE11907 [43] GSE17891 [44] GSE22780 [40] E-AFMX-5 [40] GSE46385 [45]

 GSE12630 [46] GSE18670 [47] GSE2361 [48] GSE42952 [49] GSE52171 [50]

 GSE15471 [51] GSE19281 [52] GSE2719 [53] GSE71989 [54] GSE60601 [40]

 GSE15932 [55] GSE19650 [56] GSE27890 [40] GSE7307 [40] GSE42252 [57]

 GSE34111 [58] GSE49515 [59] GSE32688 [60] GSE43288 [61] GSE42404 [62]

 GSE36076 [40] GSE50570 [63]

Prostate

 GSE1133 [38] GSE30304 [64] GSE25136 [65] GSE7307 17088532 GSE2443 [66]

 GSE12348 [67] GSE30522 [68] GSE26910 [69] GSE8218 [70] GSE6369 [40]

 GSE12630 [46] GSE3325 [64] GSE2719 [53] E-AFMX-5 [40] GSE45016 [71]

 GSE17951 [70] GSE43346 [42] GSE30174 [72] E-MEXP-1327 [40] GSE46602 [73]

 GSE2109 GPL570 GSE2361 [48] E-TABM-26 [40]
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Fig. 1  A Fatty acid synthase (FASN) transcription levels in normal pancreatic tissue and PDAC tissue from GLP96 and GLP570 databases. Statistically 
significant cal culated with paired t-test. B Statistically significant FASN transcription levels in normal prostate tissue and PCa tissue from GLP96 and 
GLP570 (**** < 0.0001) calculated with paired t-test. C FASN expression based on grade in PDAC samples. Statistical significance has been calculated 
as two-sample test across each tumor grade, (*p < 0.05) (ns not significance). D FASN expression based on grade in PCa tissue. Statistical significance 
has been calculated as two-sample test across each tumor grade (ns not significance). E Statistically significant FASN methylation levels in normal 
pancreatic tissue and PDAC tissue p < 0.05) calculated with paired t-test. F Statistically significant FASN methylation levels in normal prostate tissue 
and PCa tissue (**p < 0.01) calculated with paired t-test. Boxes indicate the median, and 25th and 75th percentiles. Red boxes indicate tumor tissues; 
blue boxes indicate normal tissues
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Fig. 4  A FASN expression by Western blot analysis in PL-45, SW1990, LNCaP, and C4-2 cells with relative abundance. Statistical significance with two 
sample t-test between PDAC and PCa cell lines reported as **p < 0.01. B Viability assay in PDAC systems (PL-45 and SW1990). TVB-2640 was used at a 
final concentration of 1 μM, 5 μM, 10 μM, 25 μM, and 50 μM for 24 h, 48 h, and 72 h. C Proliferation assay in PCa systems (LNCaP and C4-2). TVB-2640 
was used at a final concentration of 1 μM, 5 μM, 10 μM, 25 μM, and 50 μM for 24 h, 48 h, and 72 h. D Oxygen consumption rate (OCR) for basal 
respiration, maximal respiration, and ATP production in PL-45, SW1990, LNCaP, and C4-2 cells after TVB-2640 treatment at 50 μM for 6 h. Statistical 
significance with two sample t-test reported as *,**,*** p < 0.05, < 0.01, < 0.001
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FASN inhibition impacts on cell proliferation 
and mitochondrial respiration
Having determined the differential FASN expression 
levels in PDAC and PCa, we performed a cell viability 
assay on four different cell lines, two for each tumor type. 
Interestingly, and in agreement with our data, Western 
blot analysis showed that FASN expression was lower 
in PL-45 and SW1990 PDAC cells, and much higher 
in LNCaP and C4-2 PCa cells (Fig. 4A). We also used a 
FASN inhibitor, TVB-2640, to investigate its potential 
effects on proliferation in PCa and PDAC systems. In line 
with the newly identified differential FASN expression 
levels, no significant activity was observed in PDAC cells 
(Fig. 4B), whereas a significant reduction in proliferation 
was observed in PCa cells (Fig.  4C). In agreement, the 
IC50 values for the TVB-2640-mediated effects showed 
that a higher concentration was required in PDAC cells 
to induce a proliferative arrest of 50% of the cell popula-
tion compared to PCa cells (Additional file 1: Figure S8). 
Finally, to investigate the impact of FASN inhibition on 
mitochondrial respiration in the two cancer systems, we 
performed a Mito Stress Test. Intriguingly, the results 
indicated that FASN inhibition had a greater effect in 
PCa, where it was associated with a reduction in basal 
and maximal respiration and a drop in ATP production 
(Fig. 4D). Taken together, these data show that FASN is 
overexpressed in PCa and that its inhibition reduces pro-
liferation by regulating mitochondrial respiration in PCa.

FASN inhibition alters lipid signaling interfering 
with proliferative capability
FASN inhibition has an impact on lipid metabolism, cell 
viability and cell cycle. Although TVB in a in- depend-
ent manner did not alter FASN expression level, it was 
able to modulate two important lypogenesis-related 
proteins such as LIPIN1 and ASCL1, both FASN inter-
actors (Fig.  5A). This effect was correlated to increased 
lipid accumulation (Fig. 5B) (Additional file 1: Figure S9) 
and with cellular proliferation and cell death (Fig. 5C and 
D). Cell cycle analysis indicated that FASN inhibition 
reduced the transition into S/G2M phases, and induced 
cell cycle arrest accumulating in G0/G1 phase as showed 
in Fig. 5E–F. These effects on cell cycle were also coupled 

with reduced colony formation capability (Additional 
file  1: Figures  S10 and S5G). Taken together, these data 
show that FASN inhibition altered metabolic signaling 
pushing for lipid accumulation and affecting cell viability 
with an impact on the replicative processes.

Discussion
The crosstalk between metabolic deregulation and can-
cer is one of the new frontiers for the identification of 
cancer biomarkers and the design of more effective 
therapeutic strategies [74, 75]. Some studies suggest a 
tumor-specific variability in energy that benefits pro-
gression of the disease, while intervention on the meta-
bolic axis has been associated with an improvement in 
sensitivity to therapies [76] and relapse-free survival 
rates. Glutaminase inhibitors have shown efficacy in 
preclinical cancer models for triple-negative breast can-
cer [77], acute myeloid leukemia [78], and renal cell car-
cinoma [79]. The control of lipid homeostasis through 
regulation of circulating lipoprotein levels and choles-
terol metabolism disruption have already reached clini-
cal trials evaluating how lipid intake reduction impacts 
on disease progression in PCa. Indeed, as regulators of 
the LDL/HDL ratio, statins are under investigation in 
PCa (NCT02534376, NCT01821404, NCT04776889, 
NCT01992042, NCT00572468). Although less is known 
about the metabolic profile of PDAC, a clinical study cur-
rently in the recruiting stage aims to evaluate its impact 
(NCT04862260). A potentially new approach for lipid 
metabolic control is directed not at reducing the absorp-
tion (or balance) of circulating lipoproteins but at inhib-
iting FASN. TVB-2640 is the first FASN inhibitor to be 
investigated in clinical trials: nine studies are focusing 
on its potential use in monotherapy and/or combination 
therapy (NCT03808558, NCT02223247, NCT04352361, 
NCT03938246, NCT02980029, NCT04906421, 
NCT03032490411, NCT0317917517). Although these 
studies are still in the recruiting phase, preliminary 
results indicate a good tolerability and an improvement 
in anticancer action when used in combination against 
non-small cell lung cancer (NCT03808558) and breast 
cancer (NCT03179904). Despite these encouraging pre-
liminary results, there is no single metabolic phenotypic 

Fig. 5  A Western blot analysis of FASN expression in LNCaP and C4-2 cells before and after treatment with TVB-2640 50 μM for 24 h and 48 h. Data 
were normalized based on control relative abundance. Statistical significance has been calculated with two saples t-test (treated and control) and 
reported as p** < 0.01. B Histograms reporting absorbance values of red oil assay in LNCaP cells before and after treatment with TVB-2640 50 μM for 
72 h. Statistical significance calculated with two saples t-test and reported as p** < 0.01. C–D Effects of TVB-2640-related on propidium iodide (PI) 
incorporation, LNCaP and C4-2 cells were treated with TVB-2640 at 50 μM for 24 h. Graphs of PI distribution show the alive cells (green) and death 
cells (red). E–F Effects of TVB-2640-related on cell cycle regulation. LNCaP and C4-2 were treated with TVB-2640 at 50 μM for 24 h. Graphs show 
subG1, G0/G1, S and G2M phases. G Histograms reporting absorbance values of colony formation assay on LNCaP cells before and after treatment 
with TVB-2640 50 μM for 72 h. Statistical significance has been calculated with two saples t-test and reported as p** < 0.01

(See figure on next page.)
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classification in cancers, and further studies are needed 
to characterize the energy networks associated with 
tumor progression. Our data, obtained by multi-omic 
analyses, suggest that FASN might have a greater role 
as an oncogene and metabolic regulator in PCa than in 
PDAC. The differences we observed in FASN expression, 
promoter methylation, and sensitivity to direct inhibi-
tion in PCa and PDAC strongly suggest that a compre-
hensive multi-omic and integrated molecular analysis is 
necessary to select the the most appropriate cancer con-
texts to study at molecular and pathogenetic level. The, 
at least partial, link between differentially altered FASN 
expression and its promoter methylation also suggests an 
underlying crosstalk between genome and epigenome in 
the deregulation of FASN in cancer, which often seems 
unrelated to mutational processes. Although altered 
FASN expressions levels were not significantly associ-
ated with poor prognosis, the trend suggested that its 
overexpression might be. FASN overexpression in PCa 
might also lead to a stronger deregulation in lipid metab-
olism in PCa. Analyses carried out to identify the role 
of FASN in functional protein association networks also 
identified proteins involved in lipid metabolic activity; 
GSEA showed that lipid-mediated mitochondrial respi-
ration was enriched in PCa, suggesting a role for FASN 
in metabolic deregulation occurring during PCa progres-
sion. Our in vitro results also show the potential antican-
cer action of FASN inhibition, which exhibited a strong 
antiproliferative effect in PCa, supporting the hypothesis 
that this different sensitivity might also be related to the 
onco-metabolic role of FASN in PCa. Our findings indi-
cate that FASN inhibition was able to block cell prolifera-
tion in G0/G1 phase, increasing cell death and reducing 
colony formation capability in PCa. Furthermore, inves-
tigation on mitochondrial respiration also indicate that 
FASN inhibition leads to a marked reduction in energy 
production in PCa, altering metabolic signaling and caus-
ing lipid accumulation. According to other scientific 
evidences, it is reasonable to think that FASN inhibition 
alters the metabolic axis with lipid accumulation causing 
a condition known as lipotoxicity [80, 81] with a concur-
rent impairment of the replication machinery that block 
cell proliferation in G0/G1 phase, which has been previ-
ously described as important anti-cancer effect [82, 83] 
that promotes cell death. However, the debate surround-
ing the metabolic dependency of PDAC and PCa remains 
unresolved, and a better understanding of metabolic 
features is crucial to identify more effective therapeutic 
approaches to prolong overall and progression-free sur-
vival of patients. The results of this study provide support 
at molecular level for the use of FASN inhibition in PCa 
in future treatment strategies.

Conclusions
In this study, we used bioinformatics and cell-based mod-
els to systematically analyze the expression, mutations, 
and prognostic and metabolic role of FASN in PDAC and 
PCa. We found that FASN expression differs in PDAC 
and PCa. The higher FASN expression levels observed in 
PCa, associated with lower methylation at its promoter, 
seem to affect the aggressiveness of the disease, while the 
greater sensitivity of PCa to FASN inhibition may provide 
new therapeutic insights.
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