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The role of influenza-A virus and coronavirus viral 
glycoprotein cleavage in host adaptation
Miriam R Heindl and Eva Böttcher-Friebertshäuser

While receptor binding is well recognized as a factor in 
influenza-A virus (IAV) and coronavirus (CoV) host adaptation, 
the role of viral glycoprotein cleavage has not been studied in 
detail so far. Interestingly, recent studies suggest that host 
species may differ in their protease repertoire available for 
cleavage. Furthermore, it was shown for certain bat-derived 
CoVs that proteolytic activation provides a critical barrier to 
infect human cells. Understanding the role of glycoprotein 
cleavage in different species and how IAV and CoVs adapt to a 
new protease repertoire may allow evaluating the zoonotic 
potential and risk posed by these viruses. Here, we summarize 
the current knowledge on the emergence of a multibasic 
cleavage site (CS) in the glycoproteins of IAVs and CoVs in 
different host species. Additionally, we discuss the role of 
transmembrane serine protease 2 (TMPRSS2) in virus activation 
and entry and a role of neuropilin-1 in acquisition of a multibasic 
CS in different hosts.
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Introduction
Influenza-A viruses (IAVs) and coronaviruses (CoVs) are 
pathogens with a broad host spectrum (Figure 1b, c) and a 
significant potential for zoonotic transmission. Both IAVs 
and CoVs are enveloped viruses and possess the major 
surface glycoproteins hemagglutinin (HA) and spike (S), 
respectively, that initiate infection by facilitating receptor 
binding and fusion of viral and cellular membranes [1,2]. 
HA and S are class-I viral fusion proteins and are 
synthesized as inactive precursors that must be cleaved 

post-translationally by a host cell protease to gain their 
fusion capacity. Cleavage exposes the fusion peptide (FP) 
and is essential for virus infectivity [2–4]. The IAV HA 
has to be cleaved at one cleavage site (CS) to be primed 
for membrane fusion (Figure 1a). Proteolytic cleavage of 
CoV S has been a puzzling question, but it is now ap
preciated that CoV S must be proteolytically primed to 
mediate membrane fusion and several (if not all) CoV S 
proteins require sequential processing at two sites, S1/S2 
and S2′ (Figure 1a, c) [2,5,6].

Single arginine or lysine residues designated as mono
basic CS (R/K↓) are cleaved by trypsin-like proteases. 
Most IAVs, including low pathogenic avian influenza-A 
viruses (LPAIVs) and human IAVs, possess a monobasic 
CS. The type-II transmembrane serine protease 2 
(TMPRSS2) has been identified as major IAV-activating 
protease in human airway cells [7]. In contrast, multi
basic CSs of the consensus sequence R–X–R/K–R↓ are 
processed by ubiquitously expressed furin and related 
proprotein convertases. Highly pathogenic avian influ
enza-A viruses (HPAIVs) are activated at a multibasic 
CS, supporting systemic spread in poultry [8,9].

Priming of CoV S is more complex compared with IAV 
HA but also more flexible and two CSs appear to offer 
more possibilities for additional proteases. CoVs show a 
high variety in CS motifs with different combinations of 
mono-, di-, and multibasic motifs at the S1/S2 and S2‘ 
sites (Figure 1c) [2]. It is believed that mono- (and most 
likely dibasic) motifs are cleaved by TMPRSS2 and re
lated proteases, whereas multibasic CSs are processed by 
furin. However, lack of expression of TMPRSS2 and 
other appropriate trypsin-like proteases in cell cultures 
enables CoVs to use an alternative entry route via the 
late endosome facilitating S cleavage by endosomal ca
thepsins [10,11]. Additionally, metalloproteases, in
cluding ADAM10, ADAM17, MMP-2, and MMP-9, 
have been shown to activate severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) S in vitro [11–14].

Not much attention was drawn on the role of viral gly
coprotein cleavage in adaptation of IAVs and CoVs to a 
new host until recently. In general, it is assumed that 
orthologous proteases support virus activation in dif
ferent host species and, therefore, no adaptation is ne
cessary. TMPRSS2 from chicken, duck, swine, and 
nonhuman primates has been shown to support proteo
lytic activation of IAV in vitro [15–18]. However, 
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expression levels and tissue distribution as well as sub
strate specificity of TMPRSS2 have not been in
vestigated in these species and its role in IAV activation 
remains to be demonstrated. Even less is known about 
furin orthologs in different species. It is believed that 
the important physiological role of furin leads to a highly 
conserved expression and activity in vertebrates and, 
therefore, also in virus activation. Studies in fruit bat 
cells, however, revealed that differences in subcellular 
localization or activity of furin orthologs may exist [19]. 
With the emergence of SARS-CoV-2, it has become 
more recognized that viral glycoprotein cleavage may 
play a role in CoV transmission and adaptation to new 
host species, primarily due to the fact that SARS-CoV-2 
has acquired a multibasic S1/S2 CS that is not found in 

the closely related SARS-CoV and BatRaTG13 (Figure 
1c) [20,21]. 

In this review, we focus on the current knowledge on the 
role of TMPRSS2 in IAV and CoV activation and be
yond, the prevalence and emergence of a multibasic CS 
in IAV and CoVs in different host species, and neuro
pilin-1 (NRP1) as a host factor that may be involved in 
the emergence of a multibasic CS and tissue spreading. 

Transmembrane serine protease 2: virus 
activation and beyond 
TMPRSS2 was identified as IAV HA-cleaving protease 
in 2006 and since then has been shown to activate the 
fusion proteins of a broad number of respiratory viruses, 

Figure 1  
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Cleavage of IAV and CoV fusion proteins and CS motifs common in different host species. (a) IAV HA and CoV S protein are synthesized as precursors 
and need to be cleaved by host cell proteases to gain their fusion capacity. HA is cleaved at one distinct site immediately upstream of the FP, while S 
needs to be processed successively at two sites, S1/S2 and S2′, to expose the FP. RBD: receptor-binding domain, TMD: transmembrane domain. (b) 
Wild aquatic birds are the natural reservoir of IAV subtypes H1–H16 and provide a source of zoonotic transmission to a broad range of avian and 
mammalian hosts. Genome sequences of subtypes H17 and H18 have only been found in bats. LPAIV and mammalian IAVs possess a monobasic HA 
CS (R↓). LPAIV can convert into HPAIV via acquisition of a multibasic CS (RXR/KR↓) in poultry. (c) CoV are classified into four genera: alpha, beta, 
gamma, and delta CoV [75]. Beta-CoV are further divided into four lineages (A–D). CoVs are found in diverse mammalian and avian animal species. Bat 
and rodent CoV are suggested to serve as sources of alpha- and beta-CoVs, while wild bird CoV are sources of gamma and delta CoVs. The table 
compares the S1/S2 and S2′ CS motifs of human-pathogenic CoV originating from bats or rodents via potential intermediate hosts with different 
animal-derived CoV. MHV: murine hepatitis virus.   
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including influenza-B virus, human metapneumovirus, 
and various CoVs at monobasic CSs [4]. Lack of 
TMPRSS2 expression prevents multicycle replication 
and pathogenesis of IAVs as well as SARS-CoV, Middle 
East respiratory syndrome coronavirus (MERS-CoV), 
and SARS-CoV-2 in mice [22–25]. This demonstrates 
that TMPRSS2 provides a promising drug target for 
therapeutic treatment [26]. Interestingly, multicycle re
plication of a chimeric MERS-CoV bearing the S protein 
of a MERS-like virus from Ugandan bats required ad
dition of exogenous trypsin to human Caco-2 cells, 
whereas MERS-CoV replicated trypsin independent in 
the cells, most likely due to S cleavage by TMPRSS2. 
The data indicated that S cleavage may be a critical 
barrier that needs to be overcome by CoVs to infect a 
new host [27]. 

Recent studies suggest that human and murine lung may 
differ in their protease repertoire available for HA clea
vage. Activation of certain human H3N2 IAVs was in
dependent of TMPRSS2 expression in mice, whereas 
TMPRSS2 was crucial for virus activation in primary 
human airway cells [6,23,24,28]. This may be due to 
expression of a larger number of appropriate proteases in 
murine lung and hence cleavage of H3 by a mouse- 
specific protease. The mouse degradome (complete set 
of proteases present in an organism) consists of more 
protease genes (672) compared with human (588) and 
chicken (460) degradomes [29]. Furthermore, differ
ences in the substrate specificity of orthologous pro
teases from human and mouse have been described and 
might contribute to the observed differences in H3 ac
tivation [28,30]. Even though mice are not a natural host 
for IAV, the broader repertoire of trypsin-like proteases 
could play a role in CoV evolution in rodents. 

TMPRSS2 was identified as major activating protease of 
LPAIV HA of almost all subtypes in human airway cells, 
suggesting that the transmission of IAV from avian 
species to humans does not require adaptation to a new 
protease repertoire [15]. Interestingly, infection studies 
in murine lung explants showed that the protease de
pendency can differ between human- and avian-derived 
HAs. While a virus with human-derived H3 replicated in 
lung explants of both TMPRSS2-deficient mice and 
wild-type animals, a virus containing a duck-derived H3 
was not able to replicate in lung explants lacking 
TMPRSS2 expression [15]. However, this has not been 
analyzed for other HA subtypes. Further investigations 
are needed to conclude whether avian-derived HAs rely 
more on TMPRSS2 in proteolytic activation compared 
with human-derived HAs and if so, whether this affects 
avian IAV adaptation to new host species. 

Some IAV HA subtypes such as H3, H4, LPAIV H5, H9, 
and H14 possess a basic amino acid in position P4 of the 

CS motif (K/R–X–X–R↓) that may facilitate activation by 
additional proteases. The type-II transmembrane serine 
protease matriptase/ST14 that is broadly expressed 
among epithelial tissues preferentially cleaves substrates 
at a R–X–X–R motif [31,32]. Accordingly, H9 with 
R–S–S–R but not V–S–S–R CS was cleaved by matriptase 
in addition to TMPRSS2 in vitro and virus activation by 
matriptase was associated with replication of H9N2 IAV 
in primary chicken embryo kidney cells [31]. 

Cleavage of IAV HA by TMPRSS2 takes place in
tracellularly before release of progeny virus from the 
infected cell [33]. In contrast, priming of CoV S by 
TMPRSS2 occurs upon virus entry and is believed to 
facilitate virus-membrane fusion at or close to the plasma 
membrane (early entry) [34,35]. In the absence of 
TMPRSS2, SARS-CoV-2 is taken up by endocytosis and 
entry occurs via fusion in late endosomes upon S2′ site 
cleavage by cathepsins (late entry) [10,11]. Using the 
early entry route may allow CoVs to avoid endosomal 
restriction by interferon-induced transmembrane 
(IFITM) proteins, which block viral membrane fusion 
by preventing hemifusion [36,37]. However, both anti
viral and proviral effects have been described for 
IFITMs in CoV replication [37–40]. Interestingly, 
TMPRSS2 has been shown to be beneficial for the virus 
in either way. Thus, in addition to avoiding endosomal 
restriction by IFITMs, TMPRSS2 expression was shown 
to switch IFITM3 activities at the plasma membrane 
toward enhancement of SARS-CoV-2 infection via yet 
unknown mechanisms [40]. 

Rather unexpectedly, the SARS-CoV-2 Omicron var
iants BA.1 and BA.2 were found to be less efficiently 
activated by TMPRSS2 compared with other variants in 
vitro and seem to favor an endosomal entry via cathe
psins [41–43]. Altered TMPRSS2 usage is believed to 
contribute to the change in tissue tropism of Omicron 
that replicates well in human nasal cells, but demon
strates significantly less replication in human lung cells 
compared with the Delta variant [41,42]. Replication of 
Omicron BA.1 in nasal and lung cells of TMPRSS2- 
knockout mice, however, was significantly reduced 
compared with wild-type animals, indicating that 
TMPRSS2 is involved in virus activation in mice [44]. 
Whether or not there are discrepancies in utilizing 
TMPRSS2 for Omicron S priming in humans and mice 
remains open. Interestingly, Omicron lineage BA.5 
shows increased TMPRSS2 usage when compared 
with BA.1 and BA.2 [45]. Thus, one may speculate that 
switching from the TMPRSS2-facilitated entry to a ca
thepsin-dependent entry route was disadvantageous (in 
respect of efficient S priming or avoiding restriction by 
IFITMs or both) and ongoing evolution of Omicron 
shows a reversion back to TMPRSS2 usage for S 
priming. 
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Origin of the multibasic cleavage site in 
coronaviruses 
A multibasic CS is not necessarily linked to enhanced 
pathogenicity. Two out of four human coronaviruses 
(HCoVs) associated with common cold contain a multi
basic CS at the S1/S2 junction, while the other two 
HCoVs but also SARS-CoV that causes severe disease 
possess two monobasic CSs (Figure 1c). Feline enteric 
coronaviruses (FECVs) possess a multibasic S1/S2 CS 
and can chronically infect cats for long periods. Feline 
infectious peritonitis (FIP) viruses that cause deadly FIP 
arise from FECVs by mutation. Interestingly, among 
other mutations, amino acid substitutions at the S1/S2 
CS modifying the furin cleavage motif, are observed 
upon development of FIP [46]. The avian infectious 
bronchitis virus (IBV) harbors a multibasic S1/S2 CS and 
some strains possess a tribasic S2′ CS motif. IBV causes a 
highly contagious respiratory disease in chickens. Mor
tality is usually low, but can vary depending on the 
strain [47]. 

The fact that SARS-CoV-2 acquired a multibasic S1/S2 
CS due to insertion of four amino acids started a debate 
of whether the emergence of a furin-cleavable CS ap
pears to be specific for different host species. Bats and 
rodents are a major natural reservoir of CoV and a source 
of zoonotic transmission to other host species. While a 
multibasic S1/S2 CS is common in rodent-derived CoVs 
(78%), it is rare in bat-derived CoVs (6%) [48]. SARS- 
CoV-2 probably originated from bats via a potential, yet 
unknown, intermediate host and probably involving re
combination events between different CoVs [25,38,49]. 
Thus, its multibasic S1/S2 CS represents rather an ex
ception for a bat-derived CoV. 

Importantly, the multibasic CS of SARS-CoV-2 was 
identified as a critical determinant of virus transmission 
in ferrets. Loss of the multibasic S1/S2 CS attenuated 
SARS-CoV-2 and prevented transmission [50]. In 
agreement with that, deletions of the S1/S2 CS have 
been shown to arise naturally only at very low levels, and 
all variants of concern have retained the R–R–A–R motif 
at the S1/S2 junction [26,50]. The underlying molecular 
mechanism remains to be determined. S1/S2 cleavage by 
furin occurs during egress and may allow for near-com
plete cleavage and thus efficient receptor binding upon 
infection of a new host cell. Notably, S1/S2 cleavage is 
required for angiotensin-converting enzyme 2 (ACE2) 
binding [51]. ACE2 binding, in turn, enables exposure of 
the S2′ site and subsequent cleavage by TMPRSS2 [52]. 
Of note, the P–R–R–A–R↓ motif is suboptimal for furin 
cleavage due to alanine in P2 position. Several SARS- 
CoV-2 variants acquired mutations (P681R/H) at P5 
predicted to enhance furin cleavage [50,53]. Whether 
this represents ongoing adaptation to humans warrants 
further investigation. 

Interestingly, serial infection of Vero cells leads to a loss 
of the multibasic S1/S2 CS already at low passage 
numbers, indicating that the multibasic CS has a selec
tive disadvantage for the virus in Vero cells. Loss of the 
multibasic CS is associated with lack of TMPRSS2 ex
pression. Although it appears illogical that absence of the 
protease that cleaves at the S2′ site results in mutations 
at the S1/S2 site, a recent study suggested that it might 
support more efficient cleavage of the S1/S2 site by ca
thepsins upon endosomal uptake of the virus [54,55]. 
Intriguingly, passaging of the Vero-adapted SARS-CoV- 
2 with mutated S1/S2 CS resulted in prompt reversion to 
the original multibasic sequence in human Calu-3 airway 
cells or Caco-2 colon carcinoma cells both expressing 
TMPRSS2 [55]. The data indicate that SARS-CoV-2 is 
not critically dependent on TMPRSS2 and furin but 
able to adapt to another host protease repertoire. 
Nevertheless, furin and TMPRSS2 seem to be the best 
option in human cells. 

The role for cathepsins in CoV S activation in natural 
infections is still under debate. Although cathepsins 
seem to be not crucial for CoV activation in human cells, 
they may play an important role in virus activation in 
other host species. Interestingly, a number of bat-de
rived viruses (e.g. Hendra virus, Nipah virus, and Ebola 
virus) utilize endosomal cathepsins during their re
plication cycle [56,57]. A cathepsin-L orthologous pro
tease has been shown to support Hendra virus F-protein 
activation in fruit bat cells [19]. Additionally, furin-like 
proteases were described in the cells and shown to 
support proteolytic activation of parainfluenza virus 5. 
However, differences in the response of fruit bat cells 
versus Vero cells to a potent furin inhibitor indicated 
that subtle differences in subcellular localization or ac
tivity of furin may exist between different mammalian 
species [19]. Whether expression or activity of cathe
psins and furin orthologs drives the evolution of specific 
CS motifs in bats remains unknown, but should be in
vestigated in future studies. 

Neuropilin-1 and the multibasic cleavage site 
Some viruses that require proteolytic activation of their 
envelope proteins by furin such as the herpesvirus 
Epstein–Barr virus or human T-cell lymphotropic virus 1 
(HTLV-1) and HTLV-2 have been shown to utilize 
NRP1 as an additional entry factor [58]. NRP1 is a cell 
surface receptor with disseminated expression that plays 
important roles in growth factor signaling, vascular an
giogenesis, axonal guidance, and immune function  
[59,60]. Intriguingly, NRP1 binds peptides with a mul
tibasic sequence (R/K–X–X–R/K) at the C-terminal end 
(C-end rule) and executes cellular uptake via a me
chanism similar to micropinocytosis [59,61,62]. The C- 
terminus of the cleaved S1 subunit of SARS-CoV-2 also 
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conforms to the C-end rule and can therefore interact 
with NRP1 (Figure 2a). Correspondingly, NRP1 was 
shown to enhance entry of SARS-CoV-2 into human 
cells but not that of a mutant virus lacking the multibasic 
CS [63,64]. Virus entry via NRP1 may compensate for 
the relatively low expression levels of ACE2 in the 
human respiratory tract and may facilitate infection of 
multiple organs and tissues, including neurons and en
dothelial cells [64–66]. NRP1, not ACE2, was shown to 
mediate astrocyte infection by SARS-CoV-2 in brain 
organoids [65]. Additionally, binding of S1 to NRP1 was 
predicted to stimulate separation of S1 and S2 and 
thereby may increase virus infectivity [67]. Cells isolated 
from human bronchoalveolar lavage fluid from COVID- 
19 patients showed that NRP1 was upregulated in 
SARS-CoV-2-infected cells [64]. Mutations at P5 and P7 
position of the S1/S2 CS of SARS-CoV-2 variants, 
namely P681H (Alpha), P681R (Delta), or N679K + 
P681H (Omicron) enhance the overall basicity of the C- 
terminus of S1 and may affect NRP1 binding. Based on 
an in silico molecular docking analysis, Omicron S but 
not Delta S shows increased binding to NRP1 in com
parison to Wuhan S [68]. 

HA cleavage has been identified as the prime determi
nant of avian IAV pathogenicity in poultry for a long 
time. HPAIVs emerge from LPAIVs by acquisition of a 
multibasic CS due to insertion of multiple basic amino 
acids at the CS. Natural HPAIVs are restricted to sub
types H5 and H7 [69,70]. Proteolytic activation by furin 
supports systemic spread of infection with often-fatal 

outcome. Replication of LPAIVs, on the other hand, is 
confined to epithelial cells of the respiratory and in
testinal tract due to the restricted expression of appro
priate trypsin-like proteases. HPAIVs mostly infect 
endothelial cells in chickens, whereas they are still epi
theliotropic in ducks [71]. It is generally assumed that 
the restricted expression of trypsin-like HA-cleaving 
proteases serves as primary positive selection pressure 
for LPAIV to HPAIV conversion. Interestingly, HPAIV 
are rarely isolated from wild aquatic birds and are be
lieved to emerge after introduction into poultry [70,72], 
indicating that a multibasic HA CS provides an ad
vantage in poultry that is not relevant in waterfowl. The 
C-terminus of the cleaved HA1 subunit of HPAIV is also 
qualified as a NRP1 substrate, while HA1 of LPAIV is 
not (Figure 2b). A recent study by Steele and Short 
suggests that NRP1 might be a trigger for HPAIV gen
esis in poultry (L.E. Steele et al., abstract The Eighth 
ESWI Influenza Conference, Virtual Edition, 4–7 De
cember 2021). The data by Steele et al. indicate that a 
higher endogenous expression level of the natural NRP1 
ligand semaphorin 3a (Sema3a) in duck versus chicken 
endothelial cells blocks binding and uptake of cleaved 
HA in duck cells, whereas HA is taken up efficiently in 
chicken-derived endothelial cells (Figure 2b). Thus, 
efficient binding of HPAIV HA1 to NRP1 on endothelial 
cells supporting systemic spread of infection occurs only 
in chicken but not in duck. This might provide the 
positive selection pressure for LPAIV to HPAIV con
version in chicken. In contrast to chickens, vascular 
tropism is not a prominent feature of HPAIV 

Figure 2  
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a b

NRP1 acts as an alternative entry receptor for SARS-CoV-2 and HPAIV. (a) Both SARS-CoV and SARS-CoV-2 utilize ACE2 as entry receptor. 
Following S1/S2 cleavage, the multibasic motif at the C-terminus of S1 conforms to the C-end rule and is bound by NRP1 and taken up by the cell. 
Utilizing NRP1 as additional receptor may enhance entry into human respiratory cells and expand the tissue tropism of SARS-CoV-2. The monobasic 
motif of the C-terminus of SARS-CoV S1 does not facilitate binding to NRP1. (b) The multibasic motif at the C-terminus of HA1 of a HPAIV provides a 
NRP1 substrate, whereas HA1 of a LPAIV does not. The higher expression level of the natural NRP1 ligand Sma3a in duck-derived endothelial cells 
may block binding of HPAIV HA1 to NRP1 and prevent viral uptake, while lower endogenous expression of Sma3a in chicken endothelial cells does not 
compete with HPAIV HA binding to NRP1 and therefore promotes virus entry. Efficient uptake of HPAIV HA in chicken endothelial cells might support 
HPAIV genesis in poultry (L.E. Steele et al., abstract The Eighth ESWI Influenza Conference, Virtual Edition, 4–7 December 2021).   
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pathogenesis in mammals including humans [71,73]. It 
will thus be of interest to investigate NPR1-dependent 
uptake of HPAIV HA into mammalian vascular en
dothelial cells. Notably, carboxypeptidase B has been 
shown to remove basic amino acids from the C-terminus 
of HA1 upon cleavage of HA0 into HA1 and HA2 [7,74]. 
Carboxypeptidase B also eliminates the multibasic 
amino acid motif of the HA1 subunit of fowl plague 
virus, although not quantitatively, and therefore might 
interfere with recognition of HA1 as a NRP1 substrate. 
However, the biological significance of carboxypeptidase 
trimming of HA1 (and cleaved envelope proteins of 
other viruses) remains to be investigated in more detail. 

Overall, these findings underline that a multibasic CS 
may not only be beneficial in facilitating virus activation 
by ubiquitously expressed furin, but also in promoting 
virus entry into a wide range of tissues and vascular 
spreading by using NPR1. 

Concluding remarks 
There are many open questions about the evolution and 
benefits of distinct CS motifs and protease usage in 
different IAV and CoV host species. Recent studies 
suggest that host differences may exist in the virus-ac
tivating protease repertoire. Whether these variations 
play a role in virus activation and provide a barrier that 
needs to be overcome by IAV and CoV in host adapta
tion remains to be further investigated. Importantly, 
viral glycoprotein cleavage has been recognized as 
a factor that is not only essential for virus infectivity but 
furthermore may promote virus infection via facilitating 
binding to additional receptors or by allowing the virus 
to avoid cellular restriction factors. 

Understanding the role of glycoprotein cleavage and 
proteases involved in different host species may allow to 
evaluate the zoonotic potential and risk posed by IAVs 
and CoVs. Much attention is devoted to bats and rodents 
in determining the role of viral glycoprotein processing 
in host adaptation of zoonotic viruses, particularly CoVs. 
However, bats and rodents harbor a number of other 
viruses and comparative analyses of proteolytic activa
tion of different viruses in these hosts might unravel 
basic mechanisms that drive the evolution of distinct 
CSs. Moreover, birds are an important host reservoir for 
IAV and CoV and should be included in future studies. 
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