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Summary
Background Environmental surveillance (ES) of a pathogen is crucial for understanding the community load of
disease. As an early warning system, ES for SARS-CoV-2 has complemented routine diagnostic surveillance by
capturing near real-time virus circulation at a population level.

Methods In this longitudinal study conducted between January 2022 and June 2022 in 28 sewershed sites in Ben-
galuru city (∼11 million inhabitants), we quantified weekly SARS-CoV-2 RNA concentrations to track infection
dynamics and provide evidence of change in the relative abundance of emerging variants.

Findings We describe an early warning system using the exponentially weighted moving average control chart and
demonstrate how SARS-CoV-2 RNA concentrations in wastewater correlated with clinically diagnosed new COVID-19
cases, with the trends appearing 8–14 days earlier in wastewater than in clinical data. This was further corroborated by
showing that the estimated number of infections is strongly correlated with SARS-CoV-2 RNA copies detected in the
wastewater. Using a deconvolution matrix, we detected emerging variants of concern up to two months earlier in
wastewater samples. In addition, we found a huge diversity in variants detected in wastewater compared to
clinical samples. The findings from this study have been discussed regularly with local authorities to inform
policy-making decisions.

Interpretation Our study highlights that quantifying viral titre, correlating it with a known number of cases in the
area, and combined with genomic surveillance helps in tracking variants of concern (VOC) over time and space,
enabling timely and making informed policy decisions.
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Introduction
Globally, the COVID-19 pandemic (infectious pneu-
monia caused by Severe Acute Respiratory Syndrome
Coronavirus 2: SARS-CoV-2) has brought wastewater-
based (sewage) epidemiology (WBE) to the forefront of
the health surveillance system. Wastewater testing can
provide a parallel and complementary snapshot of
community health. WBE has become an integral
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component of environmental surveillance in more than
60 countries covering over 3000 sites1,2 providing near-
real time information on health and community expo-
sure to COVID-19.3 Analysis of sewage identified evi-
dence of SARS-CoV-2 RNA circulating 56 days in
advance of the first clinically confirmed case in South
America and 91 days in advance of the first clinically
confirmed case in Brazil,4 highlighting the crucial role
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Research in context

Evidence before this study
Quantification of SARS-CoV-2 in wastewater by RT-qPCR has
been demonstrated as a cost-effective surveillance tool to
monitor the pandemic. However, wastewater-based
epidemiology of SARS-COV-2 has not been used in making
policy decisions in India. Many studies are limited by the lack
of information in real-time on the diversity and abundance in
SARS-CoV-2 driving the spike in viral load.

Added value of this study
Wastewater-based epidemiology is a powerful approach
where epidemiological data must combine with genomic
surveillance to gain insights into how the virus populations
are changing, and how the virus is evolving. Our real-time

analysis shows that genomic surveillance is central to
identification of new variants in densely populated cities
where tracking pandemic relies heavily on testing
symptomatic individuals for the presence of SARS-CoV-2 RNA
and counting the positive tests over time.

Implications of all the available evidence
From science to policy perspective, our study is first
comprehensive study in India where real-time data was
utilised by the municipal government for making policy
decisions. Our study highlights that real-time genomic
surveillance is the key to understanding the emerging
patterns in viral load and variants in the city.
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of WBE in disease surveillance. Mostly, detection of
SARS-CoV-2 in wastewater was correlated with local
COVID-19 incidence, preceding the increase in clinical
cases, locally by 1–3 weeks. Furthermore, WBE has also
been used to detect regionally prevalent variants of
SARS-CoV-2.5 Given its potential to be a relatively
widespread, economical, and rapid surveillance tool,
WBE provides an excellent opportunity for a developing
country like India, where issues such as unprecedented
population growth (especially in urban centres),
migrating populations, lack of public health systems and
lack of integrated health surveillance are a reality.

WBE was first identified as an effective population
wide monitoring technique over 40 years ago– with a
high capacity for retrospective indication of poliovirus,
norovirus, influenza, hepatitis, and measles outbreaks.6

Nonetheless, it has rarely been integrated into the health
surveillance system in India except for environmental
surveillance of poliovirus (e.g. Global polio eradication
initiative).7 Environmental surveillance played a crucial
role in poliovirus eradication in India in 2012 and
continues to provide vital support in documenting the
absence of the polio virus in conjunction with active
surveillance of acute flaccid paralysis (AFP) cases.7–9

In India, tracking of the COVID-19 pandemic relies
heavily on testing symptomatic individuals for the
presence of SARS-CoV-2 RNA and counting the positive
tests over time. With high population density, many
SARS-CoV-2 infected persons are likely to be asymp-
tomatic or oligosymptomatic. They are generally not
clinically tested, leading to underestimation of COVID-
19 trends and prevalence. There is a need for new
strategies to track the emergence and spread of SARS-
CoV-2 variants. Currently, epidemiological surveillance
relies on testing symptomatic cases using the respira-
tory tract as the principal site for virus replication.
However, the virus also replicates in the gastrointestinal
tract leading to a high viral load in excreta.10 The Reverse
Transcriptase - quantitative PCR (RT-qPCR)-based
approach has revealed a strong correlation between
SARS-CoV-2 incidence rates and the viral load in
wastewater.11–13 With the continued emergence of new
variants, we also need new approaches to identify the
diversity between variants that might have escaped in-
dividual testing. Alternatively, emerging variants in
wastewater suggests that a significant proportion of in-
dividuals in the community are infected with it and
thus, shedding the virus.

WBE is a powerful approach where epidemiological
data must combine with genomic surveillance to gain
insights into how the virus populations are changing,
and how the virus is evolving. How long does it take for
new variants to emerge and spread across cities (major
hubs with international airports) and to rural or subur-
ban areas? Wastewater samples are a mixed represen-
tative of local lineages circulating in the community.
Monitoring SARS-CoV-2 lineages using wastewater has
remained challenging due to low-quality reads, frag-
mented sequences, and the inability to estimate the
relative lineage abundance based on patchy variant-
defining mutations in a mixed community sample.
Furthermore, SARS-CoV-2 lineages classification using
pangolin14 and Ultrafast Sample placement on Existing
tRees (UShER),15 designed for clinical samples often
contain a single dominant variant and tend to under-
estimate the relative abundances of multiple SARS-CoV-
2 lineages in samples with mixtures of viral genomes
such as wastewater.

Using longitudinal testing of wastewater and
quantitative epidemiological modelling, we aimed to
investigate the relationship between wastewater SARS-
CoV-2 concentrations, and COVID-19 cases. In addi-
tion, we used high throughput sequencing techniques,
to quantify the prevalence and genetic diversity
including the newly emerging SARS-CoV-2 variants in
Bengaluru city (12.9716◦ N, 77.5946◦ E, Karnataka,
India). Wastewater samples from the inlet of 28
sewage treatment plants covering over 11 million
www.thelancet.com Vol 11 April, 2023
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people were monitored for SARS-CoV-2 from August
2021 to June 2022. We used next-generation
sequencing of SARS-CoV-2 RNA and modelling of
viral concentration from wastewater to explore the
dynamics in diversity and abundance of SARS-CoV-2
lineages in Bengaluru city. Our longitudinal study
was initiated post second wave (Delta wave) from
August 2021 through to the third wave (Omicron
wave). Here we present results from January 2022 to
June 2022 to show diversity in lineages of SARS-CoV-2
in wastewater and their comparison with the clinical
data. This allowed us to test the relationship between
an increase in viral concentrations in wastewater with
observed variant diversity across spatiotemporal
scales. We hypothesise that high variant diversity is
expected during a low viral load or low infection rate
period. However, there should be a transition in the
lineage of the dominant variant at the peak of infection
period during high infection rates. In addition, we
explore the emergence of new variants that would have
escaped identification in clinical surveillance.
Furthermore, we evaluate the lag between emerging
new lineages in symptomatic individuals and waste-
water samples representing community data.
Methods
Wastewater sample collection
We sampled influent wastewater from 28 sewage treat-
ment plants (STPs) in Bengaluru, India. Grab samples
were collected once a week from each STP (January
2022–June 2022) and twice a week from 14 STPs during
0800–1400 h. The details of inflow rate, STP capacity
(volume of water), population size is provided in Table 1
and Fig. 1.

Samples were collected in 200 mL plastic bottles,
tightly sealed upon collection, and stored at 4 ◦C in the
field. All samples were processed within 24 h at a
biosafety level 2 facility following protocol (modified
from 11–13,16–19) to provide near real-time information on
viral concentrations in sewage. Briefly, samples were
subjected to heat inactivation and incubated in a 200 mL
bottle at 60 ◦C for 90 min and divided into three repli-
cates. Subsequently, 40 mL of master sample (total
140 mL from 200 mL bottle) was transferred to three
50 mL centrifuge tubes containing 0.9 g NaCl and 4 g
polyethylene glycol (PEG; 8000 MW). The PEG and
NaCl mixture in the samples was vortexed until it dis-
solved, and the solution was centrifuged at 11,000 rpm
for 30 min at 4 ◦C. After discarding the supernatant,
600 μL of lysis buffer was added to resuspend the pel-
lets. Finally, the solution was transferred to a centrifuge
tube and briefly vortexed to dissolve the pellet. Viral
RNA was extracted using Qiagen Viral RNA mini kit
protocol following the manufacturer’s instructions and
50 μL of elution was stored at −80 ◦C until subsequent
analysis.
www.thelancet.com Vol 11 April, 2023
Reverse transcriptase-quantitative PCR (RT-qPCR)
Using GenepPath Dx CoViDx One v2.1.1TK-
Quantitative multiplex RT-qPCR kit, each sample was
screened for the presence of SARS-CoV-2 RNA. The kit
targets three viral genes: N-gene, RdRp-gene, and E-
gene along with a human control gene (RNAase P gene).
Since the kit is designed for a qualitative analysis (pos-
itive or negative), COVID-19 Viral Load Calculation Tool
(RUO; https://coviquant.genepathdx.com/) was used for
the quantifying viral load in the samples. For viral load
calculation, three standards provided within the kit were
used: high standard = 5000 copies/μL, medium stan-
dard = 500 copies/μL and low standard = 50 copies/μL.
The online tool uses the Ct values (cut-off 35) of high,
medium and low and calculate the unknown in copies/
μl of each sample. A negative extraction control and
RNA extraction control was analysed with each plate. In
order to eliminate the false negative, RT-qPCR was
performed on three extracted replicates of each sample
and any replicate that generated a result defined as
‘positive’ by the test manufacturer was considered pos-
itive. Samples with invalid results were repeated as per
the manufacturer’s instructions (Supplementary
Table S1).

Early warning SARS-CoV-2 detection modelling
By investigating viral RNA concentrations in the
wastewater and correlating it with community testing
data on a weekly basis, we generated an early warning
and real-time map of COVID-19 infection dynamics in
the city. We conducted two main analyses using the raw
and normalised viral load. At the citywide level, we used
consolidated weekly and biweekly data (except invalids)
and weekly data for each STP. We calculated the daily
viral load, VL (copies/d) for SARS-CoV-2, by normal-
izing raw viral load, C (copies/mL) to the average daily
STP flow, Q(L/d) using Equation (1)19 and P is the
population of inhabitants the catchment of the respec-
tive sewershed site.

VL=C×Q×103

P
Equation (1)

Spatial and temporal dynamics in viral load copies by STPs
and at the citywide level
To understand spatial and temporal changes in viral
load, we used an Exponentially Weighted Moving
Average (EWMA)20 as the monitoring algorithm to
detect moderate and persistent shifts in cases. The
EWMA is calculated as follow:

Zt = λXt + (1 − λ)Zt−1, t= 1, 2,⋯

Where, λ is the smoothing parameter with condition 0<
λ ≤ 1 and Xt is the mean of the process at time t
(considered 7-days and 4-days lag; see below).
3
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Citywide positivity of samples (%) 55.77%

Total size of STP (MLD) 1142.5

Total size of STP Inflow (MLD) 926.15

Population size 11425000

Citywide EWMA using 7-Day Time Lag

Rate of Change (%) LCL–Mean Days LCL–Mean Date Rate of Change (%) Mean–UCL Days Mean–UCL Date

Raw viral load 20.83% 14 June 3-June 17, 2022 32.95% 7 June 17-June 24, 2022

34.32% 21 May 6-May 27, 2022

Normalised viral load 9.52% 14 June 3-June 17, 2022 19.40% 7 June 17-June 24, 2022

17.60% 21 May 6-May 27, 2022

Estimated infected individuals 22.93% 14 May 6-May 20, 2022 26.81% 7 June 17-June 24, 2022

Covid positive cases 13.22% 14 June 3-June 17, 2022

Estimated lead time of wastewater to clinical metric = 14 days

Citywide EWMA using 4-Day Time Lag

Raw viral load 50.50% 4 May 18-May 22, 2022 60.67% 4 June 19-June 23, 2022

49.22% 16 May 30-June 15, 2022

Normalized viral load 21.85% 4 May 18-May 22, 2022 30.54% 4 June 19-June 23, 2022

21.06% 16 May 30-June 15, 2022

Estimated infected individuals 22% 4 May 10-May 14, 2022 44.43% 4 June 19-June 23, 2022

13.92% 16 May 30-June 15, 2022

Covid positive cases 10.21% 8 June 3-June 11, 2022 7.26% 12 June 11-June 23, 2022

Estimated lead time of wastewater to clinical metric = 8 days

Sewershed Site EWMA

Sewershed site (Population)

Kempambudhi (10,000) 58% positivity

1 MLD; 0.97 MLD Inflow 26.55% 7 June 16-June 23, 2022

Lalbagh (15,000) 61.54% positivity

1.5 MLD 48.74% 7 May 31-June 7, 2022

Halasuru (20,000) 68% positivity

2 MLD; 1.97 MLD Inflow 179.70% 14 April 4-April 19, 2022

Cubbon Park (40,000) 43.48% positivity

4 MLD; 0.97 MLD Inflow 52.27% 14 May 24-June 7, 2022

Chikkabanavara (50,000) 60% positivity

5 MLD; 4.97 MLD Inflow 110.19% 21 May 23- June 13, 2022

Mallathahalli (50,000) 37.50% positivity

5 MLD; 3.76 MLD Inflow 42.74% 7 June 20-June 27, 2022

Chikkabegur (50,000) 60% positivity

5 MLD; 3.57 MLD Inflow 99.37% 14 May 26- June 9, 2022 53.69% 7 June 16-June 23, 2022

Sarakki (50,000) 53.58% positivity

5 MLD; 3.29 MLD 87.35% 14 May 26-June 9, 2022 118.81% 7 June 16-June 23, 2022

Yelahanka Ph-I (100000) 68.97% positivity

10 MLD; 10.21 MLD Inflow 38.35% 7 May 31-June 7, 2022

Hulimavu (100000) 57.69% positivity

10 MLD; 7.49 MLD Inflow 82.17% 14 May 19-June 2, 2022 49.42% 7 June 16-June 23, 2022

Yele Mallappa Chetti Kere (150,000) 65.38% positivity

15 MLD; 14.66 MLD Inflow 50.09% 14 May 25-June 8, 2022

Jakkur (150,000) 43.33% positivity

15 MLD; 15.34 MLD Inflow 103.75% 14 May 27-June 10, 2022

K R Puram (200,000)a 68% positivity

20 MLD; 16.21 MLD Inflow 32.20% 14 May 25-June 8, 2022 33.33% 7 June 15-June 22, 2022

Nagasandra (200,000) 45.83% positivity

20 MLD; 13.48 MLD Inflow 100.52% 14 May 23-June 6, 2022 61.65% 7 June 6- June 13, 2022

Nagasandra Ph-I (200,000) 36.36% positivity

20 MLD; 10.2 MLD Inflow 338.96% 14 June 13-June 27, 2022

Horamavu Agara (200,000) 58.33% positivity

20 MLD; 18.69 MLD Inflow 267.42% 7 May 25-June 1, 2022 83.57% 7 June 15-June 22, 2022

(Table 1 continues on next page)
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(Continued from previous page)

Agaram (350000)a 61.54% positivity

35 MLD; 33.8 MLD Inflow 75.91% 21 May 18-June 8, 2022 32.83% 7 June 15-June 22, 2022

Rajacanal (400000) 70% positivity

42 MLD; 42.92 MLD Inflow 35.53% 7 May 3-May 10, 2022 4

Doddabelee (400000) 43.48% positivity

40 MLD; 40.46 MLD Inflow 122.06% 14 May 16-May 30, 2022

Kadabeesanahalli Ph-I (500000) 56% positivity

50 MLD; 42.94 MLD Inflow 52.81% 14 June 16-June 30, 2022

KC Valley 2 (600000)a 57.69% positivity

60 MLD; 60.72 MLD Inflow 26.86% 7 May 11-May 18, 2022 93.71% 7 June 15-June 22, 2022

Kengeri (600000) 58.33% positivity

60 MLD; 34.29 MLD Inflow 50.55% 7 May 30-June 6, 2022

Mailasandra Ph-I (750000) 57.69% positivity

75 MLD: 64.9 MLD Inflow 58.32% 14 May 23-June 6, 2022

Hebbal (1000000) 66.67% positivity

100 MLD; 78.52 MLD Inflow 65.69% April 26-June 7, 2022

Bellandur Amani Kere (900000) 76% positivity

90 MLD; 94.7 MLD Inflow 49% 14 April 28-May 12, 2022 23.38% 7 May 12-May 19, 2022

K & C Valley 1 (2480000)a 73.08% positivity

248 MLD; 219.2 MLD Inflow 37.10% 7 May 25-June 1, 2022 33.10% 7 June 15- June 22, 2022

V. Valleyb (1,800,000) 31.25% positivity

180 MLD; 83 MLD Inflow 77.56% 21 June 2-June 23, 2022

Kadugodib (60000) 27.27% positivity

6 MLD; 3.57 MLD Inflow

EWMA = Exponentially Weighted Moving Average; MLD = million litres per day. aSewershed sites showed ‘red alert’ with viral load crossing the upper-class limit (UCL). bSewershed sites with PCR inhibitors/
poor quality data.

Table 1: Lead time of normalised SARS-CoV-2 viral RNA signal weekly SARS-CoV-2 percent positivity.
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We used the control limits of the EWMA chart for
detecting a mean shift as follow:

M = μ0

UCL = μ0+ρ
̅̅̅̅̅̅̅̅
λ

2−λ

√
σ

LCL = μ0−ρ

̅̅̅̅̅̅̅̅
λ

2−λ

√
σ

Where, M is the mean (centreline), UCL is the upper
control limit, LCL is the lower control limit, σ is the
process standard deviation, ρ is the width of the
boundary of the control and EWMA chart values are
computed by using the R package “qcc.”21

The EWMA control chart, as the surveillance algo-
rithm, triggers an alarm of outbreak once themonitoring
statistic exceeds the control limit, which is computed
based on the design of the control chart. The most sig-
nificant advantage of the EWMA chart is that it can be
used to detect small shifts in the process mean, which is
important for early detection and faster response. The
EWMA gives themaximumweightage to themost recent
observations and exponentially gives less weight to all
earlier observations. Since there was no previous waste-
water data available from the city and due to the high
infectivity of COVID-19, we give more weightage to the
most recent observations; therefore, we consider the
www.thelancet.com Vol 11 April, 2023
smoothing parameter λ = 0.7, and ρ = 2 is the width of
the boundary of the control chart (Supplementary
Table S2). Similar parameter values have been used for
monitoring the COVID-19 outbreak in earlier studies.22,23

We use the mean line as the threshold, and the ‘early
warning’ signal is triggered when the weekly viral load/
incidence exceeds the threshold. If predicted data points
are below/above the average line, this indicates a lower/
higher risk of COVID-19 infection. However, if predicted
data points are greater than the projected line (upper
control limit), this indicates a ‘red alert’ of infection with
COVID-19. The EWMA control chart is robust and can
accommodate missing data points (up to 15%). Also, the
inconsistency in the data points can be tackled by using
the log scales and the above-mentioned smoothing pa-
rameters in the EWMA analysis.

SARS-CoV-2 viral load copies in the wastewater can
potentially be affected by the incubation period of a
particular variant, population susceptibility, and differ-
ences in degradation rates in the sewer system. Themean
incubation period of the ancestral SARS-CoV-2 variant is
6.4 days,24 the SARS-CoV-2 delta variant is 4.8 days,25,26

and the omicron variant is 3.6 days.26 To compare the
SARS-CoV-2 wastewater signal with COVID-19 cases at
the citywide level, we used time lags of 7-days and 4-days
to accommodate variable incubation periods of multiple
variants seen in the wastewater (see section on variant
analysis). Daily reports detailing the number of samples
5
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Fig. 1: Location (red dots) of sewage treatment plants sampled in Bengaluru.
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tested and positive for COVID-19 were collected from the
BBMP COVID-19 portal (https://apps.bbmpgov.in/
Covid19/en/mediabulletin.php). The omicron and delta
SARS-CoV-2 variants shed culturable virusmore thanfive
days after symptom onset or first positive test,27 and virus
in faeces can remain formore than 20 days, in which case
prolonged sheddingmay contribute a significant signal to
wastewater.27,28 We modelled EWMA with time lags of 4-
days and 7-days. Time-step (4-days and 7-days lag) Pear-
son’s R correlation analyses were performed to evaluate
the fit between log-transformed SARS-CoV-2 viral copies
in wastewater and reported clinical data. We did not
conduct this analysis at the STP level as the clinical testing
data for each sewershed catchment size was unavailable.
Using citywide clinical testing data gives a biased estimate
due to varying inflow and catchment size of each
sewershed.

Estimation of infected individuals by STP and citywide
We estimated the number of infected individuals by
each STP and citywide. The prevalence of SARS-CoV-2
infection within the catchment of each STP was esti-
mated using the total number of viral RNA copies in
wastewater each day, as measured in wastewater by
RT-qPCR, and the number of SARS-CoV-2 RNA copies
shed in stool by an infected following Ahmed et al.10

Equation (2).

No. of infected individuals=
(RNA copies

L water ) ∗ (L water
day )

(g faeces
day ) ∗ (RNA copies

g faeces )
Equation (2)

Briefly, SARS-CoV-2 RNA copies/L of wastewater
were modelled as point estimates for each date of
detection. The daily flow rate of wastewater was calcu-
lated for each sewershed using the product of the pop-
ulation of each catchment area and the observed average
per capita wastewater rate of 100 L/person/day. The
daily stool mass of 128 g was used as per Rose et al.29

and one person shedding SARS-CoV-2 RNA
107copies/g of faeces was used as per Foladori et al.30

Spearman’s correlation coefficient was used to calcu-
late the sensitivity of the estimated number of cases and
the normalized viral load of each sewershed.
www.thelancet.com Vol 11 April, 2023
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SARS-CoV-2 genome amplification and sequencing
All samples positive with the RTqPCR kit were
sequenced at the Next Generation Genomics Facility in
National Centre for Biological Sciences, Tata Institute
for Fundamental Research, Bengaluru. The libraries
were prepared using the Illumina COVIDSeq Test kit
(Cat no: 20043675, Illumina Inc, USA). Extracted RNA
samples were primed by random hexamers for reverse
transcription. The complementary DNA (cDNA) prod-
ucts were amplified using ARTIC V3 primer set tar-
geting the entire SARS-CoV-2 genome and human
cDNA targets in two different multiplex PCR reactions.
The amplified product was later processed for tagmen-
tation, and adapter ligation using IDT for Illumina
Nextera DNA Unique Dual Indexes Sets A–D IDT for
Illumina-PCR Indexes Sets 1–4 (384 Indexes, Cat no:
20043137, Illumina Inc, USA). Further enrichment and
clean-up were performed as per the manufacturer’s
instructions.31

Pooled libraries were quantified using a qubit 4.0
fluorometer (Invitrogen, USA), and library sizes were
analysed using TapeStation 4200 (Agilent, USA). The
libraries were normalised to 2 nM and denatured with
0.1 N NaOH. 8.1 pM of denatured libraries were loaded
onto HiSeq Rapid SR flow cell v2 followed by dual
indexed Hiseq 2500 - 1 × 50 or custom 1 × 120 cycle
workflow as per the manufacturer’s instructions
(Illumina Inc).

Bioinformatics
Wastewater samples consist of a mixture of variants
circulating in a population in contrast with clinical
samples which might be infected with a single variant.
In the first step, the raw reads were aligned with the
reference genome of SARS-CoV-2 (MN908947). The
processed reads are aligned with the reference genome
by BWA Mem32 and various coverage statistics are
taken by SAMtools coverage/bedcov.33 The alignment
was used for a single nucleotide variant (SNV) calling
using iVar.34 The iVar tool was used to trim the
primers and generate a table for each sample with
mutation frequency data and an adj p-value (Fisher’s
test) for altered positions of SARS-CoV-2 from the
BAM files. iVar was run with a minimum base quality
filter of 20 (default value) using the reference
genome of SARS-CoV-2 and the feature file Sar-
s_cov_2.ASM985889v3.101.gff3 from NCBI. For
predicting the lineage abundances, a deconvolution
matrix was generated using Freyja (https://
github.com/andersen-lab/Freyja)35 - a dedicated bio-
informatic pipeline for wastewater analysis. From
measurements of SNV frequency and sequencing
depth at each position in the genome, Freyja returns an
estimate of the true lineage abundances in the sample.
We cross-validated the efficiency of the deconvolution
tool in reliably inferring the mixed samples with
clinical data. We first applied the pipeline to clinical
www.thelancet.com Vol 11 April, 2023
data from the study by Bhoyar and colleagues31 and
Bengaluru – derived sequences from clinical samples
submitted to the GISAID EpiCoV database (hereafter,
GISAID; https://www.gisaid.org/). Frejya used the
UShER tree with WHO designation and outbreak.info
metadata.36

Virus richness and diversity
For community diversity analyses, we used lineage
abundances (normalized by the read depth within-
sample relative abundances using Freyja) to generate
Shannon diversity indices and Bray–Curtis dissimilarity
matrices with vegan v2.5-7.37 We also ran Adonis
permutational multivariate analysis of variance (PER-
MANOVA) tests on the distance matrices and per-
formed nonmetric multidimensional scaling on the data
and compared the relative abundances of lineages over
time with “lmerTest” v3.1-3 using STP as a random
effect.38

Role of the funding source
The funders had no role in study design, data collection,
data analysis, interpretation, writing of the report.
Results
Longitudinal wastewater sampling can predict
SARS-CoV-2 rise 1–2 weeks in advance
The normalised temporal trend of SARS-CoV-2 RNA in
wastewater and new positive cases in Bengaluru city are
shown in Fig. 2. Pearson’s correlation for citywide viral
load showed a marginally stronger correlation with
citywide COVID-19 cases with a time lag of 7-days than
for 4-days (R2 = 0.87, p = 0.00001; Fig. 3A & B). The
sensitivity analysis showed that the estimated number of
infections strongly correlates with the log SARS-CoV-2
RNA copies detected in the wastewater (Fig. 3C and D).

We used EWMA of RNA concentration in waste-
water (smoothing parameter = 0.7, ρ = 2) and new
clinical cases (smoothing parameter = 0.7, ρ = 2) to
show the qualitative trend in the city. Evidently, there
were two major outbreaks- January 2022 and June 2022.
The EWMA captured the increased viral load and asso-
ciated estimated infection during the peak of the SARS-
CoV-2 wave in January 2022. The EWMA showed an
increased viral trend in June as a ‘red alert’ and an
associated estimated number of infections at least 14
days and 8 days in advance using time-lags of 7 days and
4-days, respectively (Table 1, Supplementary Table S3).
SARS-CoV-2 was detected throughout the period with a
low viral load of 6.38 copies/person/day (log scale) from
March 27, 2022–April 8, 2022. While the pattern of viral
load mirrored the clinical data, COVID-19 positive cases
appeared to remain underreported in the city. The
estimated number of infected cases remained high
indicating viral detection in wastewater in the early stage
(below LCL) of the local outbreak (Fig. 2). Our EWMA
7
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Fig. 2: Temporal dynamics of normalized viral load in wastewater and COVID-19 cases in Bengaluru. The dark centre red line shows the mean
viral load, the dotted line above the mean is the upper control limit and the dotted line below the mean is the lower control limit. The 3rd wave
started in late December 2021 with peak in January 2022 and dropped down in February 2022.
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analysis showed that using a time lag of 7 days, the
increased estimated infected individuals trend reached
red alert levels (UCL ∼ 23,106 cases/week) whereas
COVID-19 cases were near the mean (threshold value
∼2847 cases/week). Using a time lag of 4 days, the
estimated infected individuals reached the red alert
(UCL ∼ 14,803 cases/4 days) whereas COVID-19 cases
were near the mean and were rising to reach the red
alert (UCL ∼2310 cases/4 days).

The viral trend showed an increase from 15th April
2022 which remained below the early warning stage, with
a consistent 30–70% rise in the following weeks reaching
the ‘early warning’ stage by June 17, 2022 (Table 1).
We detected comparable levels and variable SARS-
CoV-2 infection dynamics for sewage treatment plants
(STPs; Fig. 4). All STPs showed viral signals throughout
the study period. However, 10 STPs consistently showed
high positivity (Table 1, Supplementary Table S4). The
EWMA varied for each STP driven by the capacity,
inflow rate and catchment area. Four sewershed sites-
Agaram, KR Puram, KC Valley1 and KC Valley2 showed
‘red alert’ with the EWMA viral load higher than the
projected line (upper control limit) (Fig. 4). Seventeen
sewershed sites; Chikkabegur, Chikkabanvara, Cubbon
Park, Doddabelee, Hebbal, Horamavu Agara, Kengeri,
Mallathahalli, Rajacanal, V. Valley, Sarakki, Hulimavi,
www.thelancet.com Vol 11 April, 2023
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Fig. 3: Viral concentrations correlate with daily new Covid-19 cases with a 4-d and 7-d time lag in Bengaluru city. The Blue solid line is the linear
regression fitting. Light blue area: 95% confidence interval from standard error of the fitting.
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Yele Mallappa Chetti Kere, Nagasandra, Nagasandra-Ph-
1, Kadabeesanahalli Ph-1, and Bellandur Amani Kere
showed early warning signal with viral load projected
above the mean line (Fig. S1 a-f). The EWMA mirrored
estimated infected individuals for the catchment area of
each STP and mainly reflected with an increase in
estimated infected individuals with an increasing viral
trend.
www.thelancet.com Vol 11 April, 2023
SARS-CoV-2 abundance and diversity in wastewater
We analysed 878 wastewater samples during Jan 1,
2022–June 30, 2022. To compare wastewater genomic
surveillance with clinical surveillance, we sequenced
422 SARS-CoV-2 positive wastewater samples. The
genome coverage ranged between 1% and 99%. The CT
values showed a negative correlation with viral load
copies (r = −0.69, P < 0.0001) and genome coverage
9
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Fig. 4: The exponentially weighted moving average charts for sewershed sites showing ‘red alert’ and the relative abundance of variants by date
of collection.

Articles

10 www.thelancet.com Vol 11 April, 2023

www.thelancet.com/digital-health


Articles
(r = −0.44, P < 0.0001) (Fig. S2; Supplementary
Table S5). Therefore, we considered samples (n = 304)
above 70% genome coverage for subsequent analyses.
The low viral copies between 28th March to 8th April
2022 are reflected in our sequencing success; hence,
there is a gap in sequencing data despite continuous
sampling. The read abundance was not significantly
(P = 0.74) different across month (Fig. S3).

Using Freyja, we analysed relative abundance and
diversity in SARS-CoV-2 lineages. Our validation results
for clinical samples showed the expected lineages. In
addition, a mixture of variants that were not identified
using traditional pipeline (see Fig. S4). These clinical
samples were reported infected with only one variant,
however, we found mutations associated with other
variant suggesting mixed infections. Our follow-up
analysis using Freyja showed a total abundance of
1220 lineages representing 152 distinct lineages in
wastewater from January to June 2022 (Fig. 5). Of these
seven lineages from omicron family were in dominant.
We found BA.2.10 was the most dominant lineage
(14.83%), followed by BA.2 (10.49%), B.1.1529 (5.1%),
BA.2.12 (5%) and BA.2.10.1 (3.1%). We found signature
mutations of two recombinant lineages of BA.1.1 and
BA.2 - XM (3.9%) and XQ and XE (1%).

We analysed the Shannon indices to understand
overall alpha diversity in SARS-CoV-2 which was signif-
icantly different between months (F[5, 253 ] = 19.6,
P < 0.001) and then used Tukey’s honestly significant
Fig. 5: Relative abundance of SARS-CoV-2 lineages in

www.thelancet.com Vol 11 April, 2023
difference (HSD) post hoc pairwise comparison testing to
show that only January–April, February–April, June–
April, March–April, June–February, May–February,
June–January and May–January alpha diversities were
different from each other (adjusted P value [Padj] < 0.05)
(Fig. 6). In contrast, the alpha diversity was not signifi-
cantly different between STP (F [27, 201] = 0.65, P = 0.90).
We also compared the Bray–Curtis dissimilarities of the
samples with Adonis and found that overall beta diversity
values by month were significantly different (R2 = 0.27,
P < 0.001) but not by STP (R2 = 0.09, P = 0.93).

Finally, we used the linear-mixed effect model to
show that the relative abundance of seven dominant
lineages (VOC) showed change over time - XM (re-
combinant lineage of BA.1.1 and BA.2) showed an
increasing trend whereas BA.2.10, BA.2.10.1 decreased
from January to June 2022. BA.2 lineage remained
dominant in May along with ‘other’ lineages found in
low proportions (<1%). B.1.1.529, BA.2 BA.2.12 and XQ
showed no significant change in their relative abun-
dance (Fig. 7). BA.2.12 was the dominant lineage during
the third wave in January with high viral load copies/ml.

Comparison between wastewater and clinical data
We analysed 13,478 SARS-CoV-2 genomes submitted
on GISAID from January to June (January; 7827,
February; 3364, March; 364, April; 229, May; 642, June;
1052) from Bengaluru. Of these, 71 were distinct line-
ages that followed a similar pattern as wastewater
wastewater by date of collection in Bangalore.

11
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Fig. 6: Shannon diversity (alpha diversity) in lineages across months and non-metric multidimensional scaling (NMDS) ordination of the Bray–
curtis dissimilarities in lineages by month.
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samples- BA.2.10 was the dominant lineage with
51.65% of the genomes, 26.90% of the genomes were
assigned to BA.2 and ‘unassigned’ (recombinant line-
ages) constituted 8.73% of the diversity.
Fig. 7: Relative abundance of dominant SARS-CoV-2 lineages sh
To test whether wastewater genomic surveillance can
detect changes in lineage abundance circulating at the
community level, we compared dominant Variant
of Concern (VOC; variants associated with high
owed a variable trend between January 2022 to June 2022.

www.thelancet.com Vol 11 April, 2023
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transmissibility or immune evasion) detection rates be-
tween clinical and wastewater sequenced data. We
found that the general trend in lineage abundance
remained very comparable to the dynamics between
wastewater and clinical data. Furthermore, the waste-
water genomic surveillance consistently recorded mu-
tations associated with ‘other’ lineages in low frequency
(<1%), which were otherwise not seen in the clinical
samples. There was a huge mismatch in lineage di-
versity which was significantly higher in wastewater
than recorded in clinical samples (Mann–Whitney U
test, P < 0.001; Fig. S5).

To understand if wastewater sampling can help in
the early detection of emerging variants in the city, we
compared the first detection of VOC in wastewater with
the collection dates of clinical samples sequenced as part
of genomic surveillance in Bengaluru. In contrast, the
exact collection dates for many samples were not
mentioned in the database, which prevented us from
conducting a temporal comparison across several line-
ages. Nonetheless, we compared the month of the
emergence of VOC in clinical samples from GISAID.
For example, BA.2.10.1, BA.2.12 were detected two
months prior in wastewater in January 2022 to the first
detection in clinical samples in March 2022 (Fig. 8).

Until June end, there were 12 genomes of BA.4, and
58 genomes of BA.5 were submitted on GISAID. The
first clinical sample of BA.5 was collected on May 11,
2022 and sequenced in wastewater sample collected on
May 18, 2022 from two STPs (Lalbagh and KC Valley2).
BA.5 was detected on two consecutive sampling on June
8, and June 15, 2022 from KC Valley2. Similarly, BA.4.
was first isolated on May 24, 2022 in clinical samples
and first found in wastewater on May 28, 2022 from
Fig. 8: Aggregated relative abundance of SARS-CoV-2 variants by month
genomic surveillance in the right panel. Lineages retrieved in less than 1
aggregate of lineages less than 1% − BA.1.1, BA.1.1.1, BA.1.1.16, BA.1.1.
BA.2Sublineages are aggregate of lineages less than 1% − BA.12.1, BA.2
BA.2.32, BA.2.38, BA.2.4, BA.2.40.1, BA.2.9. See Fig. S5 for details.
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Hebbal sewershed site and May 30, 2022 from Maila-
sandra subsequently sequenced in a sample collected on
June 16, 2022 in Hulimavu. In total, 73 spike mutations
were recorded in BA.4 and BA.5 in the wastewater
sample (Fig. S6). The increases in lineage detection
frequency for VOC - ‘unassigned’ (recombinant lineages
probably equates to XM, XE, XN in wastewater) showed
an increasing trend whereas BA.2.10 and BA.2 declined
with time.

Our study shows a localised increase in variant di-
versity and a spike in VOC abundance -BA.1, BA.1 sub
lineages, BA.2 sub lineages, and prevalence of ancient
SARS-CoV-2 lineages recorded in 2020 and Delta line-
ages across STPs. In addition, the lineage richness was
higher in the ‘red alert’ stage of an emerging wave than
during the ‘wave’ phase (see Fig. 2). Both wastewater
and clinical datasets showed low viral richness during
March–April 2022. However, there was a huge surge in
lineage diversity in June 2022 which corresponded with
increasing viral load both at citywide as well as STPs.
This further highlight that the increasing trend was
contributed by a shift from BA.2.10 to many BA.2 sub-
lineages rather than one dominating lineage at the
community level. BA.2.10 was the most dominant
lineage seen in both wastewater and clinical samples
during the peak of the third wave in January 2022
(Fig. 5).
Discussion
Our longitudinal study provides an in-depth analysis of
the SARS-CoV-2 viral concentration and how this relates
to the lineage dynamics in wastewater capturing data
from more than 11 million people in Bengaluru city.
in wastewater in the left panel analysed using Freyja and in clinical
% relative abundance are aggregated as ‘Other’. BA.1Sublineages are
7, BA.1.14, BA.1.15, BA.1.15.1, BA.1.17, BA.1.17.2, BA.1.18, BA.1.20.
.18, BA.2.20, BA.2.21, BA.2.23, BA.2.27, BA.2.3, BA.2.3.1, BA.2.31,
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The strong correlation between wastewater viral con-
centrations and daily reports of new clinically confirmed
COVID-19 cases (Fig. 3) – combined with the time lag
between the wastewater signal and clinical data – sug-
gests that newly infected individuals contribute signifi-
cant viral loads to the wastewater. This further suggests
that most of this shedding may occur early in infection
(asymptomatic phase), prior to the individual seeking
healthcare and being tested.39 Therefore, wastewater
surveillance can be used as a complementary tool to
clinical testing to predict trends in new COVID-19 cases.
SARS-CoV-2 concentrations in wastewater began to in-
crease exponentially in late March 2022 which led to a
mask mandate by the April 26 2022. This period coin-
cided with the opening of schools and an increase in
public movement with a reduced remote working.
Wastewater surveillance revealed the largest number of
positive cases likely to be Mahadevapura zone, East
Zone, and Bommanahalli. By June 7, 2022 (https://
timesofindia.indiatimes.com/city/bengaluru/mahadeva
pura-has-highest-viral-load-sewage-analysis/articleshow/
92117008.cms), there was renewed mask mandate
which corresponded with a surge in viral load in four
sewersheds. We note that inadequate testing, changing
criteria of testing and population seeking home tests
over RTPCR could introduce uncertainty to the reported
cases. Nonetheless, the time-lag used for modelling fits
the data and signifies the timing of infection that
wastewater signals may reflect shedding dynamics early
in infection.

Each STP showed a variable viral dynamic which
could be primarily driven by individual shedding rates,
viral stability in wastewater, and flow rates of the
influent. Our sensitivity analysis indicated that the
estimated number of infected individuals at a citywide
level was four folds higher than reported cases. This
information has been crucial in enhancing testing in
targeted locations for the early detection of asymp-
tomatic cases. One of the limitations of our analysis is
the lack of clinical testing data from catchment areas of
each sewershed site which could help correlate with
viral load to devise an effective and economical strategy
to track the timing, location, and magnitude of SARS-
CoV-2 activity outbreaks. Two sewershed sites, Kadu-
godi, and V. Valley, had technical challenge in obtain-
ing high quality data and sequences from samples with
low viral load and elevated levels of PCR inhibitors
(Fig. S1f). SARS-CoV-2 is sensitive to environmental
degradation and (temperature, pH, chemicals),
processing procedures of STP which can affect the
persistence of detectable genetic material in
wastewater.40

Wastewater-based genomic surveillance of SARS-
CoV-2 has been a valuable resource in identification of
novel mutations and early emergence of new variants.41

Wastewater-based genomic data is often fragmented
and does not capture all variant-defining mutations on a
single genome. Nonetheless, with an increase in detec-
tion of multiple variant-associated mutations or muta-
tions not shared by other known variants, we classify
these lineages as variant-like upon following Freyja
which used the UShER tree with WHO designation and
outbreak.info metadata.36 Our wastewater samples con-
tained diverse SARS-CoV-2 lineages which showed sig-
nificant difference across months but not by sewershed
sites suggesting that there was no geographical variation
in viral composition in the city. Furthermore, we found
low proportion of lineages which were not reported in
the clinical data. This discrepancy highlights that clinical
testing and sequencing as per the national guidelines,
only symptomatic individuals are tested. There were
lineages only found in clinical samples but not seen in
the wastewater which probably suggests that a very low
number of individuals harboured those variants. This
further signifies that dominant VOC infecting a large
proportion of individuals exhibited similar trends in the
wastewater. Furthermore, the clinical data is analysed
using a traditional pipeline which assigns a single
variant based on the dominant mutations in the sample.
We used a pipeline designed to calculate proportions of
VOC from the environmental samples that is a highly
reproducible computational analysis pipeline with
comprehensive reports. Our validation of the pipeline
using clinical samples showed mutations associated
with mixed lineages in clinical samples (Fig. S1) which
probably highlights that the diversity in clinical data
might be underestimated and the need to consider
alternate approaches.

Given that we sequenced only 2% of wastewater
samples relative to the sequenced clinical samples,
the emergence of variants in wastewater followed a
trend that matched with other countries. For example,
the rise of BA.5 is occurring at the same time as the
decline in BA.2 in several countries. We detected
BA.2.10.1, BA.2.12 two months prior in wastewater in
January 2022 to the first detection in clinical samples
in March 2022 in Bengaluru whereas BA.4 and BA.5
were detected in 4–7 days late in wastewater. The
emergence of a variant in the wastewater implies that
a significant proportion of individuals in the com-
munity are infected with that variant and shedding the
virus. Wastewater testing can provide a less biased
snapshot of viral diversity and community health.42

Whereas a late detection in the clinical sample could
happen due to limited or biased testing, sequencing43

or a large proportion of individuals were asymptom-
atic or home testing upon COVID-19 symptoms.
Clinical samples were sequenced from a selected
hospital which is not representative of the Bengaluru
population. Karthikeyan and colleagues35 observed
varying periods of VOC lineage detection relative to
clinical genomic surveillance, which was attributed to
different virus shedding characteristics across
lineages.44
www.thelancet.com Vol 11 April, 2023
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While we saw a temporal trend in variants, there was
no geographical structure in lineages across sewershed
sites. Nonetheless, we noticed a similar pattern in viral
load and shift from BA.2.10 to BA.2 sub-lineages-we
observed a strong positive association between the
local VOC frequency and estimated number of infected
individuals which were consistent with the increased
transmissibility of this VOC identified.

Our study highlights that quantifying viral titre,
correlating with the known number of cases in the area
combined with genomic surveillance helps in tracking
of VOCs over time and space and helps inform policy-
making decisions to control new outbreaks. Several
WBE initiatives for SARS-CoV-2 monitoring were
established worldwide, and currently, the COVID-
poops19 initiative1 lists 128 dashboards and our data is
displayed as part of the Bengaluru pandemic response
initiative. The findings from this study were discussed
regularly with Bruhat Bengaluru Mahanagara Palike
(BBMP) and Bangalore Water Supply and Sewerage
Board (BWSSB) to inform policy-making decisions. Our
approach can support establishing WBE for monitoring
and early-warning system for detecting pathogens
beyond SARS-CoV-2.

We developed an early warning system, and its
performance was demonstrated by detecting and
tracking the SARS- COV-2 infections and variant di-
versity in the local community and city levels from
January 2022 to June 2022. The EWMA chart was able
to capture the historical COVID-19 infection patterns
and distinguish between endemic situations and the
outbreak patterns. Real-time genomic surveillance is
the key to understanding the emerging patterns in viral
load and variants in the city as it helps to develop a
pandemic plan as well as be prepared for future
pandemics.
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