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Abstract

Objective: Intracranial pressure waveform morphology reflects compliance, which can be 

decreased by ventriculitis. We investigated whether morphologic analysis of intracranial pressure 

dynamics predicts the onset of ventriculitis.

Methods: Ventriculitis was defined as culture or Gram-stain positive cerebrospinal fluid 

warranting treatment. We developed a pipeline to automatically isolate segments of intracranial 

pressure waveforms from extraventricular catheters, extract dominant pulses, and obtain 

morphologically similar groupings. We utilized a previously validated clinician-supervised active 

learning paradigm to identify meta-clusters of triphasic, single-peak, and artifactual peaks. Meta-

cluster distributions were concatenated with temperature and routine blood laboratory values to 

create feature vectors. A L2-regularized logistic regression classifier was trained to distinguish 
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patients with ventriculitis from matched controls and the discriminative performance using area 

under receiver operating characteristic curve with bootstrapping cross-validation was reported.

Results: Fifty-eight patients were included for analysis. Twenty-seven patients with ventriculitis 

from two centers were identified. Thirty-one patients with catheters but without ventriculitis 

were selected as matched controls based on age, gender, and primary diagnosis. There were 

1590 hours of segmented data including 396,130 dominant pulses in ventriculitis patients 

and 557,435 pulses in patients without ventriculitis. There were significant differences in meta-

cluster distribution comparing before culture-positivity vs during culture-positivity (p<0.001) and 

after culture-positivity (p<0.001). The classifier demonstrated good discrimination with median 

area under receiver operating characteristic 0.70 [IQR 0.55–0.80]. There were 1.5 true alerts 

(ventriculitis detected) for every false alert.

Conclusion: Intracranial pressure waveform morphology analysis can classify ventriculitis 

without CSF sampling.
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2. Introduction

37,000 patients a year receive an external ventricular drain (EVD) in the setting of acute 

hydrocephalus in the US, generating in-hospital charges of $151,672 per patient, or $5.6 

billion dollars a year1. Up to 22% of patients with EVDs develop ventriculitis2. Diagnosis 

of ventriculitis demands antibiotic treatment and can delay permanent shunt placement. 

Risk of ventriculitis increases after 9.5 days with EVD in subarachnoid and intracerebral 

hemorrhage3–5. Risk factors include craniotomy, EVD duration, frequency of cerebrospinal 

fluid (CSF) sampling, presence of intraventricular hemorrhage (IVH), superficial surgical 

site infections, CSF leakage, and insertion technique6, 7. EVD-related ventriculitis is 

associated with significant morbidity and mortality8–10. Severe disturbances in the CSF 

composition of patients with IVH limit the value of routine CSF analysis for prediction. 

Diagnosis of ventriculitis11 via the act of CSF retrieval itself contributes to the risk of 

infection. A less invasive tool for early detection of ventriculitis not reliant on frequent CSF 

collection would be an advance in the management of patients with EVDs. There are no 

studies quantifying the ICP waveform dynamics for diagnosing ventriculitis.

Ventriculitis is associated with an inflammation of the ependymal lining of the cerebral 

ventricles, affecting its functional component of cerebrospinal fluid (CSF) absorption 

directly into intercellular spaces12. Disruption of CSF absorption is mechanically reflected 

in reduced compliance of the brain parenchyma13, 14 and measurable in characteristics of 

intracranial pressure (ICP)15.

As shown in previous work, ICP waveform morphology dynamics change characteristically 

up to one day prior to clinical recognition of ventriculitis16. Our hypothesis is that there is a 

temporal quantitative signal in ICP waveform reflective of intracranial dynamics that can be 

translated into a machine learning model to detect ventriculitis.

Megjhani et al. Page 2

Neurocrit Care. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. SUBJECT/MATERIALS AND METHODS

3.1. Outcome definition (Ventriculitis Definition)

The clinical diagnosis of ventriculitis is imprecise2, 17, 18, but still demands antibiotic 

treatment and delay of permanent shunt placement. For the purpose of having a reproducible 

defined outcome in our study, ventriculitis was defined as obligate culture or Gram-stain 

positivity that warranted antibiotic treatment.

3.2. Study Population

At Columbia University Irving Medical Center (CUIMC), patients with EVD were identified 

from a prospective outcomes study of subarachnoid and intracerebral hemorrhage from 2009 

to 2019. Ventriculitis patients were identified and matched to control patients based on 

placement of EVD, age, gender, and primary diagnosis.

At University of Maryland (UMD), patients with EVD and treated ventriculitis patients were 

identified from a clinical electronic medical record between 2015 and 2019. These patients 

were matched to control patients based on placement of EVD, age, gender, and primary 

diagnosis.

3.3. Patient consent

The study was approved by the Institutional Review Boards at the respective centers. In 

CUIMC, written informed consent was obtained from the patient or a surrogate. In UMD, an 

exemption for consent was granted because data was deidentified, data was retrospectively 

analyzed, and no outpatient follow up was sought.

3.4. Monitoring and Data Acquisition

At Columbia, acute hydrocephalus was treated and ICP was monitored using the 

Integra® External Drainage and Monitoring System with antibiotic impregnated Medtronic® 

VentriClear II® ventricular drainage catheter or non-antibiotic impregnated Medtronic® 

large translucent ventricular catheter. EVDs were placed following cefazolin prophylaxis 

for symptomatic hydrocephalus. In settings of significant intraventricular blood, an acute 

care clinical decision would call for non-antibiotic coated trauma EVD catheters. CSF was 

sampled three times a week by protocol, and further based on clinical suspicion in the work-

up of fever or unexplained alterations in mental status. Physiologic data for the duration of 

the intensive care unit stay was acquired using a high-resolution acquisition system. From 

2009 to 2013, BedmasterEX (Excel Medical Electronics Inc., Jupiter, FL, USA) was used 

to acquire physiologic data from General Electric Solar 8000i monitors (Port Washington, 

NY, USA) at 240 samples per second. From 2014 to 2019, ICM+ (Cambridge, UK) was 

used to acquire physiologic data from Philips Intellivue MP70 monitors (Amsterdam, The 

Netherlands) at 125 samples per second.

At University of Maryland, ICP was monitored using the Medtronic (Dublin, Ireland) 

Duet™ External Drainage and Monitoring System with antibiotic impregnated Codman® 

Bactiseal® EVD Catheter Set (Integra Neurosciences). EVDs were placed following 

cefazolin prophylaxis for symptomatic hydrocephalus. CSF was sampled selectively based 
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on clinical suspicion in the work-up of fever or unexplained alterations in mental status. 

BedmasterEX was used to acquire physiologic data for the duration of the intensive care unit 

stay at 240 samples per second.

BedmasterEx proprietary file format (STP) and ICM+ format (DTA) were converted into the 

Hierarchical Data Format, version 5 (HDF5; 1997–2018, http://www.hdfgroup.org/HDF5/) 

and MATLAB 2016a (Mathworks, Natick, MA) was utilized for data analysis.

3.5. Data Analysis

The framework of our approach to classify ventriculitis using ICP morphology is 

summarized in Figure 1 & 2 and described below.

3.5.1. ICP waveform segmentation using wavelet analysis—Common EVD 

practice in the management of acute hydrocephalus leaves the EVD system unclamped for 

much of the time. This allows extravascular blood and excess CSF (beyond a pressure 

threshold) to drain into a collecting system. As a fluid-filled manometer, the EVD 

only transmits a pressure waveform when the system is clamped; this is done at both 

centers according to protocol (hourly on an average) by nurses to document the pressure 

often as any other vital sign. The frequency compositions of the ICP signals (when the 

system is clamped) and the artifacts (when the system is open) are different. Leveraging 

this difference, wavelet analysis was used to detect uninterrupted short periods of ICP 

waveforms from longer periods of non-measurement data19. Further details are provided in 

Appendix A.

3.5.2. Dominant Pulse Extraction—A validated technique, morphological clustering 

analysis of ICP pulse (MOCAIP)20, was used to extract dominant pulses and allow 

quantitative comparison between pulses. Dominant pulse extraction consists of three 

components to detect and characterize waveforms. The first step was identification of ICP 

pulses using QRS complexes in the electrocardiogram (ECG). The second step grouped 

individual ICP pulses into morphologically similar clusters in short time segments (6 

seconds) and applied an averaging and cross-correlation process to extract a representative 

“dominant” pulse. In the third step of MOCAIP, all dominant pulses would be compared 

against an expert-validated reference library of non-artifactual pulses. However, for the 

purposes of this study this third step was eliminated as selection bias could be introduced 

against certain pulses at the extreme of decreased intracranial compliance. This would 

erroneously remove physiologically valid single-peak pulses. Artifactual waveform detection 

and removal is instead addressed later in analysis using a semi-supervised active learning 

method. ICP waveform segmentation and dominant pulse extraction were performed in 

MATLAB 2016a (Mathworks, Natick, MA).

3.5.3. Clustering Analysis—After the extraction of dominant pulses, dynamic time 

warping (DTW)21, 22 and hierarchical k-means (k = 20) were applied to identify waveforms 

with similar morphology. DTW is a method for measuring similarity between two temporal 

sequences that may vary in speed; this allowed for comparison of ICP waveforms between 

patients with varying heart rate. Clusters were further split if the mean within-cluster 

Megjhani et al. Page 4

Neurocrit Care. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.hdfgroup.org/HDF5/


distance (measuring the closeness of waveforms to centroid of the cluster) times the variance 

(measuring the dispersion of waveforms in the cluster group around the centroid) was 

greater than a threshold of 1, or if the number of waveforms within the cluster group was 

>1000. The resulting leaf nodes were then used to determine meta-clusters.

Meta-clusters were identified using an active-learning approach with clinician input 

(Appendix B–D) 23. Distribution of the meta-clusters before, during, and after periods 

of culture-positive ventriculitis and in matched control subjects were compared using the 

chi-square test of independence.

3.5.4. Machine Learning Analysis—A machine-learning model was developed to 

classify ventriculitis, using the meta-clusters, body temperature, and routinely available 

intensive care laboratory values (i.e. basic metabolic panel, white and red blood cell counts). 

These laboratory values were considered during feature selection because in experimental 

sepsis, disturbances of the hypothalamic-pituitary-adrenal axis affect plasma electrolytes 

(including sodium, potassium, chloride, magnesium)24. The approach was adapted from a 

Bag of Words (BoW) model, developed for natural language processing25, 26. To construct 

the BoW feature representation, the occurrences in the ICP data of each of the three meta-

clusters, before, during, and after the culture-positivity period were determined for patients 

with ventriculitis, and for the entire duration of EVD for patients without ventriculitis. 

These features were then concatenated with median ICP and median, min and max of 12 

additional clinical features from blood laboratory values that were universally available for 

these patients (sodium, potassium, chloride, glucose, calcium, magnesium, HCO3, blood 

urea nitrogen (BUN), creatinine, white blood cell (WBC) count, red blood cell (RBC) 

count) and temperature, resulting in total of 40 features. Data from the two institutions 

were combined to train a L2-regularized logistic regression classifier for the occurrence of 

ventriculitis (during vs control). Three-fold cross-validation was performed on 80% of data 

to tune model parameters and a hold-out set of 20% was used to report the accuracy. This 

process was repeated for 500 iterations.

The area under the receiver operating characteristic curve (AUROC) and confusion matrix 

(indicating true positive, true negative, false positive and false negative) was used to describe 

the performance of the models27. We reported the median [IQR] over 500 iterations. 

Clustering analysis and machine-learning models were developed using the Python scikit-

learn library 28.

3.5.5. Data availability—All relevant data are presented within the article and its 

supporting information files. Additional information can be obtained upon reasonable 

request to the corresponding author.

4. Results

At CUIMC between June 2009 and June 2019, 118 patients with EVD were diagnosed with 

clinically-defined ventriculitis that warranted antibiotic treatment. Positive CSF Gram stain 

or cultures were identified for 18 of these patients (15% of clinical ventriculitis). At UM 
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between July 2015 to July 2019, 9 patients with EVD were diagnosed with clinically-defined 

ventriculitis.

Control patients with EVD and similar age, gender and primary diagnosis were identified 

during this time frame. Both cohorts were combined into a single dataset (27 ventriculitis, 

31 control) and characteristics were statistically compared (Table 1, Appendix F). Due to 

missing ICP data, the number of control patients was greater than the number of ventriculitis 

patients included in the final analysis.

Patients with ventriculitis had worse GCS at admission, more CSF cultures, fewer antibiotic-

coated catheters and multiple EVDs placed. Patients with ventriculitis also had longer 

lengths of stay in the hospital by a median of four days compared to controls (p = 0.019).

1590 hours of segmented data were extracted, and 953,565 dominant ICP pulses were 

identified. Of those, 396,130 (41.5%) dominant pulses were identified in patients with 

ventriculitis, with 132,586 (33.5%) dominant pulses before culture-positivity, 144,728 

(36.5%) during culture-positivity, and 118,816 (30%) after culture-positivity. A total of 

557,435 (58.5 %) dominant pulses were identified in control patients (Figure 3A).

4.1. Cluster Analysis

Using k-means hierarchical clustering, 311 centroid clusters (leaf nodes) were found. An 

active learning algorithm with clinician input was then used to identify meta-clusters 

as triphasic, single-peak or artifactual. 35 (11%) leaf nodes were classified as triphasic, 

97 (31%) leaf nodes as single-peak and 179 (58%) leaf nodes as artifact (Figure 3B). 

32.1% of the dominant pulses were triphasic before culture positivity, when compared to 

20.5% during culture positivity. 61.3% of the dominant pulses were single peaks during 

culture-positivity when compared to 52% before and 55.6% after culture-positivity. The total 

percentage of single-peak pulses after culture-positivity (55.6%) was similar to that of the 

control cohort (53.9%) (Figure 3A).

A chi-square test of independence showed that there were significant differences among the 

distribution of these clusters between during ventriculitis and control groups (p=0.045), as 

well as after ventriculitis and control groups (p=0.045) (Figure 3A).

4.2. Model Performances

L2-regularized logistic regression was applied to ascertain the power of ICP-derived 

measures for classifying ventriculitis. Ventriculitis positivity was classified with a median 

[IQR] AUROC of 0.70 [0.55–0.80], true positive 0.6 [0.4–0.8], false positive 0.4 [0.2–0.6], 

false negative 0.33 [0.17–0.5] and true negative 0.67 [0.5–0.83] (Figure 4). In other words, 

there were 1.5 true alerts (ventriculitis detected) for every false alert. We also performed an 

ablation analysis with and without the lab values and as expected, our model performed best 

when we include all the features (Appendix G).

The weights of the classifier indicate the discriminative power of the features in separating 

the two classes revealing C1 (triphasic morphology), potassium, calcium, magnesium, red 

blood cell count and temperature to be relevant for classifying ventriculitis (Appendix E).
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5. Discussion

In previous work, we discovered significant changes in ICP waveform morphology with 

ventriculitis, reflective of worsening compliance16. This difference was seen a day before 

diagnostic cultures were sent, suggesting ICP morphology has potential as a diagnostic tool. 

Early antibiotics are a mainstay of infectious disease management; delay of antibiotics in 

meningitis can adversely impact mortality and neurologic deficits29–34. Sampling CSF daily 

paradoxically increases the risk of ventriculitis8. A model to detect early ventriculitis which 

bypasses or reduces CSF sampling would be useful for management of these patients.

A machine-learning model derived from ICP morphology features and a few clinical 

variables (routine laboratory values including complete blood cell and basic metabolic 

panels and temperature) showed moderately good classification of ventriculitis with an 

AUROC of 0.70 [IQR 0.55–0.80].

To our knowledge, this is the first study leveraging characteristics of ICP waveform 

morphology to identify ventriculitis. The finding of differences in ICP morphology with 

ventriculitis is significant and by comparing to matched controls, confirmed not to be 

spurious or merely related to EVD duration.

There are some limitations to the translational piece of our study. The definition of 

ventriculitis used for inclusion was restrictive but unassailable. Unfortunately, this resulted 

in a model trained on only 58 patients. A model including patients with a broader clinical 

diagnosis of treated ventriculitis (118 vs 18 in Columbia’s cohort) would have increased the 

numbers greater than six fold, but also introduced significant bias that would potentially 

reduce generalizability. Efforts will be made instead to continue to accrue more ICP 

waveform data from patients with culture positive ventriculitis through collaboration. To 

generalize our findings further, an external or prospective validation will be required. 

Another limitation of our study is that the usefulness of the model depends on the 

availability of digitized inputs. Fortunately, informatics in hospitals and critical care is 

evolving, enabling deployment of models that rely on integrating electronic health record 

systems and physiologic monitoring systems.

As a product of this study, we have developed a pipeline to: i) identify ICP waveforms 

automatically from intermittent clamping periods using wavelet analysis, ii) normalize for 

comparison with dynamic time warping, iii) extract dominant pulses, iv) cluster dominant 

pulses, v) featurize clusters as “words in a bag” (BoW), vi) train L2-regularized LR model to 

classify for ventriculitis. Future work will involve prospective application and validation of 

this method in external and prospective settings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Overview of the approach.
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Figure 2: 
Steps for the bag-of-words (BoW) feature representation and constructing classifiers using 

BoW features for ventriculitis.
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Figure 3: 
Illustrates the changes in the distribution of the ICP waveforms. (A) Distribution of meta-

clusters (green: triphasic; yellow: single-peak; red: artifacts) in control vs before, during, 

after the culture or Gram-stain positive stage of ventriculitis. (B) Displays 311 leaf nodes, 

green color indicates triphasic, yellow single-peak and red artifacts.
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Figure 4: 
Illustrates the performance of the machine learning model. (A) Performance of the logistic 

regression model, median Area under the receiver operating characteristic curve. (B) 

Confusion matrix.
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Table 1.

Comparison of patient characteristics

CUIMC + UMD

Ventriculitis Control
p value *

n=27 n=31

Age, median (IQR) 64 (49–72) 58 (51–69) 0.488

Female Gender, n (%) 16 (59.3) 20 (64.5) 0.788

Immunosuppressed, n (%) 4 (14.8) 4 (12.9) 1

GCS on Admission, median (IQR) 7 (5–12) 11 (6–15) 0.020 

Number of CSF Cultures, median (IQR) 10 (6–16) 3 (2–6) <0.0001 

Primary Diagnosis 0.134

  ICH, n (%) 8 (29.6) 10 (32.3)

  Brain Tumor, n (%) 1 (3.7) 4 (12.9)

  Other, n (%) 6 (22.2) 1 (3.2)

  SAH, n (%) 12 (44.4) 16 (51.6)

   WFNS, 4 – 5, n (%) 9/12 (75.0) 10/16 (62.5)

Intraventricular Blood, n (%) 13 (48.1) 17 (54.8) 0.793

Ventilation, n (%) 22 (81.5) 21 (67.7) 0.368

EVD Location 0.133

  Right Frontal EVD, n (%) 20 (74.1) 23 (74.2)

  Left Frontal EVD, n (%) 4 (14.8) 8 (25.8)

  Bilateral EVD, n (%) 3 (11.1) 0 (0.0)

Antibiotic-Coated EVD, n (%) 10 (37.0) 25 (80.6) 0.001 

Total EVDs Placed, median (IQR) 1 (1–2) 1 (1–1) 0.002 

VP Shunt, n (%) 7 (25.9) 5 (16.1) 0.518

EVD Duration, d, median (IQR) 15 (10–21) 12 (7–18) 0.180

Ventriculitis Duration, d, median (IQR) 7 (4–16) N/A

EVD to Ventriculitis, d, median (IQR) 4 (0–8) N/A

ICU LOS, d, median (IQR) 20 (15–26) 18 (11–22) 0.117

Hospital LOS, d, median (IQR) 26 (21–52) 22 (15–28) 0.019 
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CUIMC + UMD

Ventriculitis Control
p value *

n=27 n=31

Mortality, n (%) 5 (18.5) 5 (16.1) 1

Discharge Destination 0.349

  Home, n (%) 4 (14.8) 7 (22.6)

  Skilled Nursing Facility, n (%) 0 (0.0) 0 (0.0)

  Subacute Rehab, n (%) 11 (40.7) 5 (16.1)

  Rehab, n (%) 2 (7.4) 4 (12.9)

  Acute Rehab, n (%) 5 (18.5) 10 (32.3)

  Hospice, n (%) 2 (7.4) 1 (3.2)

  Deceased, n (%) 3 (11.1) 4 (12.9)

*
considered significant if p<0.05
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