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Abstract

Renal cell carcinoma (RCC) is diagnosed through expensive cross-sectional imaging, frequently 

followed by renal mass biopsy, which is not only invasive but also prone to sampling errors. 

Hence, there is a critical need for a noninvasive diagnostic assay. RCC exhibits altered cellular 

metabolism combined with the close proximity of the tumor(s) to the urine in the kidney, 

suggesting that urine metabolomic profiling is an excellent choice for assay development. Here, 

we acquired liquid chromatography–mass spectrometry (LC–MS) and nuclear magnetic resonance 

(NMR) data followed by the use of machine learning (ML) to discover candidate metabolomic 

panels for RCC. The study cohort consisted of 105 RCC patients and 179 controls separated into 

two subcohorts: the model cohort and the test cohort. Univariate, wrapper, and embedded methods 

were used to select discriminatory features using the model cohort. Three ML techniques, each 

with different induction biases, were used for training and hyperparameter tuning. Assessment of 

RCC status prediction was evaluated using the test cohort with the selected biomarkers and the 

optimally tuned ML algorithms. A seven-metabolite panel predicted RCC in the test cohort with 

88% accuracy, 94% sensitivity, 85% specificity, and 0.98 AUC. Metabolomics Workbench Study 

IDs are ST001705 and ST001706.
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INTRODUCTION

In the United States, kidney cancer is one of the most lethal urinary cancers. In 2021, 

an estimated number of 76,080 patients will be diagnosed, with a death toll of 13,780.1 

Approximately 90% of kidney and renal pelvis cancers are renal cell carcinomas (RCCs). 

RCC lacks specific symptoms in the early stages, and the latest statistics indicate that 

over 50% of patients are diagnosed incidentally.2,3 Diagnosis is typically performed via 
expensive imaging tests4,5 and biopsies, the latter being highly invasive and prone to 

sampling errors.2,6,7 Current treatments and early diagnosis, when tumors are localized, 

result in a 92.6% 5 year survival, while late diagnosis results in the decrease of 5 year 

survival to 13.0%.2 An improved, noninvasive, and cost-effective diagnostic test is urgently 

needed to diagnose RCC earlier in the course of the disease.

As early as in the Middle Ages, physical properties including taste, smell, and color of urine 

were used to diagnose diseases, and these properties are influenced by urine metabolites.8 

Today, analytical chemistry platforms such as nuclear magnetic resonance (NMR) 

spectroscopy and liquid chromatography–mass spectrometry (LC–MS) can determine the 

chemical composition of urine in a high-throughput fashion for biomarker discovery and 

diagnostics.9,10 The metabolome closeness to the phenotype of biological systems supports 

its utility to investigate the biology of cancer, which is considered by many to effectively be 

a metabolic disease.11,12 The close proximity of the RCC tumor(s) to the urine suggests that 

metabolomic alterations may be ideally detected in this noninvasively collected biofluid.
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The high-throughput nature of metabolomics experiments and the broad analyte coverage by 

both NMR and LC–MS often result in enormous datasets that frequently require machine 

learning approaches to investigate biological alterations.13 Machine learning is a branch 

of artificial intelligence that uses algorithms to uncover patterns in complex data without 

explicit programming.14 These models allow for the prediction of output(s) based on a set of 

inputs, such as the prediction of RCC status using a panel of metabolite abundances selected 

from the urine feature dataset.

Several previous studies have investigated urine metabolome changes associated with 

RCC.15–30 Kim et al. found 4-hydroxybenzoate, quinolinate, and gentisate to be 

differentially expressed at a false discovery rate of 0.28 between RCC (n = 29) and controls 

(n = 33) using ultra-high-performance liquid chromatography–mass spectrometry (UHPLC–

MS) and gas chromatography–mass spectrometry (GC–MS).23 Monteiro et al. reported a 

32-metabolite resonance signature from NMR urine metabolomics that discriminated RCC 

patients (n = 42) from controls (n = 49) using unsupervised learning.20 Urinary volatile 

metabolic profiling using GC–MS led to the discovery of a panel of 21 volatile organic 

compounds correlated with RCC when 30 RCC patients were compared to 37 controls, 

with 2,5,8-trimethyl-1,2,3,4-tetrahydronaphthalene-1-ol and 2-oxopropanal subsequently 

validated as potential RCC biomarkers in a small independent sample set.21 In 2019, 

Liu et al. used LC–MS to identify androstenedione, 7α-hydroxy-3-oxochol-4-en-24-oic 

acid, and lithocholyltaurine to be the most significantly altered metabolites between RCC 

(n = 100) and controls (n = 129).22 In 2020, Zhang et al. identified aminoadipic acid, 

2-(formamido)-N1-(5-phospho-D-ribosyl) acetamidine, and α-N-phenylacetyl-L-glutamine 

to be predictive of RCC in a cohort of 68 healthy controls and 39 RCC patients using 

LC–MS.15 Unfortunately, none of these highlighted studies made their data widely available, 

complicating progress in the field.

To improve our understanding of metabolome alterations associated with RCC and to 

build on prior research conducted in the field, we here report a multiplatform (NMR 

+ Hydrophilic Interaction Liquid Chromatography (HILIC) LC–MS) metabolomics study 

on a patient cohort of larger size than most previously published studies (healthy 

control = 179, RCC patients = 105). The use of custom-built machine learning models 

enabled us to investigate algorithms with different inductive biases and hyperparameter 

tuning. In addition, the dataset was not filtered to retain only endogenous metabolites, 

therefore allowing for the inclusion of xenobiotics and exposure metabolites such as 2-

mercaptobenzothiazole and dibutylamine in the discriminatory panel. We have shown that 

seven MS-derived metabolites, which discriminated RCC patients from healthy controls 

with 88% accuracy in the test cohort, could be identified. In addition, four NMR-derived 

diagnostic markers discriminated RCC patients from healthy controls with an accuracy 

of 78%. These results underlie the promise of RCC detection using urine metabolomics, 

providing additional evidence for metabolic perturbations in RCC.
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MATERIALS AND METHODS

Chemicals

Optima (ThermoFisher Scientific) LC–MS grade water and acetonitrile were used to prepare 

all mobile-phase components. Ammonium acetate (Sigma, molecular biology grade) and 

ammonium hydroxide 28–30% solution (Fisher Chemical) were used as additives for mobile 

phases. For NMR samples, D2O and 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) were 

obtained from Cambridge Isotope Laboratories (Andover, MA, USA).

Urine Collection

Patients at Emory University Hospital with a solid renal mass with potential for RCC and 

subsequently confirmed to be RCC following surgery were identified prospectively. Healthy 

controls were identified during an annual physical exam. All patients provided informed 

consents (Emory University approvals IRB00058903, IRB00054812, IRB00085068, and 

IRB00055316). Urine was collected at either a clinic appointment or at the time of surgery 

in a urine collection cup and placed on ice. Urine was mixed by turning the cup upside down 

five times, and 15 mL was transferred to a sterile tube followed by centrifugation at 1800g 
for 20 min at 4 °C. Ten milliliters of the supernatant was transferred to a clean, sterile tube, 

and one tablet of Complete Protease Inhibitor Cocktail (Sigma, St. Louis) was added to the 

tube. The tube was placed on ice for 10 min with periodic vortex mixing to dissolve the 

tablet. This urine was then transferred into 5 × 1.5 mL aliquots and stored at −80 °C.

Hydrophilic Interaction Liquid Chromatography–High-Resolution Mass Spectrometry

Urine samples were thawed on ice, and proteins were precipitated with addition of methanol 

in a 5:1 volume ratio to 50 μL of urine. Samples were vortex-mixed for 30 s, and after 

centrifugation at 21,100g for 5 min, the supernatant was transferred to a snap-on cap LC 

vial and stored at 4 °C until analysis. A sample preparation blank was analyzed jointly with 

the samples, and a pooled sample was created for use as quality control and to correct for 

instrument drift. Samples were analyzed in randomized order, and the pooled sample was 

included in approximately every tenth injection over the course of the batch.

Compounds were separated using an Ultimate3000 (ThermoFisher Scientific), fitted with 

a Waters Acquity UPLC BEH HILIC column (2.1 × 75 mm, 1.7 μm particle size). The 

compounds were eluted with the following gradient: 95:5 10 mM ammonium acetate 

with ~0.014% ammonium hydroxide: acetonitrile (mobile phase A) and acetonitrile with 

~0.014% ammonium hydroxide (mobile phase B) using the following gradient program: 

0 min 5% A; 3 min 63% A; 7 min 63% A; 7.1 min 5% A; 9.9 min 5%. The flow rate 

was set at 0.30 mL min−1 for 0–7.1 min, increased to 0.5 mL min−1 from 7.1 to 7.2 min, 

7.2–9.5 min at 0.5 mL min−1, and decreased to 0.30 mL min−1 from 9.5 to 10.0 min. The 

column temperature was set to 50 °C, and the injection volume was 2 μL. A high-resolution 

accurate mass Q Exactive HF mass spectrometry system (ThermoFisher Scientific) was used 

for all measurements. The heated electrospray ionization (HESI) source was operated at a 

capillary temperature of 275 °C, a spray voltage of 3.5 kV, and sheath, auxiliary, and sweep 

gas flow rates of 48, 11, and 2 arbitrary units, respectively. MS data were acquired in the 

70–1050 m/z range in both positive and negative ionization modes. MS/MS experiments 
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were performed by acquiring mass spectra in a data-dependent acquisition fashion. Survey 

MS spectra were collected with a resolution setting of 120,000, and the top 10 dd-MS2 were 

collected at a resolution of 30,000 and an isolation window of 0.4 m/z. Stepped normalized 

collision energies of 10, 30, and 50 fragmented selected precursor ions in the HCD cell prior 

to combining all ions for Orbitrap analysis. Dynamic exclusion was set at 10 s, and ions with 

charges greater than 2 were omitted.

Data acquisition and processing were carried out using Xcalibur V4.0 (ThermoFisher 

Scientific) and Compound Discoverer V3.0 (ThermoFisher Scientific), respectively. Pooled 

QC injections were used to adjust for instrument drift using a LOESS algorithm. 

Background peaks were filtered from the dataset when signals were less than 5× of 

corresponding features in sample blank injections. A feature was filtered if it was present in 

less than 50% of the QC sample injections or if a relative standard deviation was observed to 

be greater than 30% in the QC injections.

Once a panel of discriminant features were selected, additional experiments were conducted 

with an Orbitrap IDX Tribrid mass spectrometer (ThermoFisher Scientific) using data-

dependent acquisition methods to collect MS2 data for features that were missed during the 

original DDA data collection. For these experiments, a Waters Acquity UPLC BEH amide 

column (2.1 × 150 mm, 1.7 μm particle size) was used with the following mobile phases: 

80:20 10 mM ammonium formate with 0.1% formic acid: acetonitrile (mobile phase A) and 

acetonitrile with 0.1% formic acid (mobile phase B). The gradient used was as follows: 0 

min 5% A; 0.5 min 5% A; 8 min 60% A; 9.4 min 60% A; 11 min 5% A. The flow rate was 

set to 0.40 mL min−1, the column temperature was set to 40 °C, and the injection volume 

was 2 μL. Tandem MS spectra were collected for an inclusion list of precursors if they were 

above an intensity threshold of 6.0 × 103, using an isolation window of 0.8 m/z. Survey mass 

spectra were collected with a resolution of 60,000. Stepped normalized collision energies of 

15, 30, and 45 fragmented the precursors in the HCD cell followed by Orbitrap analysis at a 

resolution of 30,000. Precursor ions were also sequentially fragmented with a CID collision 

energy of 45 and analyzed in the ion trap.

Data processing was performed with Compound Discoverer v3.0 (ThermoFisher Scientific), 

which included elemental formula prediction based on exact masses and isotope patterns. 

When elemental formula prediction was not achieved in the automated fashion via 
Compound Discoverer, the feature was manually analyzed using Xcalibur v3.0 to assign the 

elemental formula. Tentative annotations were assigned based on searches against literature 

and metabolomic databases, such as the Human Metabolome Database (HMDB), Metlin, 

mzCloud, and MassBank. Elemental formulas and exact masses with a mass error of 10 

mDa were used in this case. Fragmentation patterns were also analyzed and matched against 

tandem MS databases such as mzCloud and locally built mzVault libraries in order to assign 

annotations.

Nuclear Magnetic Resonance Spectroscopy

Urine samples were thawed in a 4 °C cold room followed by centrifugation at 20,200 

relative centrifugal force (rcf) for 20 min at 4 °C to remove any precipitated materials. A 

sample preparation robot (SamplePro, Bruker Biospin, Rheinstetten, Germany) was used 
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to dispense 60 μL of NMR buffer into 5 mm SampleJet NMR tubes (Bruker Biospin, 

Billerica, MA, USA) followed by the transfer of 540 μL of urine sample and sample mixing. 

The NMR buffer used was 1.5 M KH2PO4/K2HPO4 buffer with a pH of 7.0 in D2O, 

containing 0.11 mM 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS). DSS is used as a 

chemical shift reference (0.0 ppm). Quality assurance and quality control for this study 

are described in Supporting Information Section S1. NMR spectra were acquired using 

an Avance III HD 600 MHz Bruker NMR spectrometer with a Bruker SampleJet cooled 

to 5.6 °C. The following NMR experiments were conducted: one-dimensional nuclear 

Over-hauser effect pulse sequence with presaturation of water resonance (NOESYPR1D), 

two-dimensional (2D) 1H-13C heteronuclear single quantum correlation (HSQC), and 

HSQC-TOCSY (HSQC-total correlation spectroscopy). For 1D 1H NMR metabolomics 

spectra, phase and baseline correction and referencing were carried out with Bruker’s 

TopSpin software. Referencing to DSS was confirmed using the Edison laboratory in-house 

MATLAB scripts (https://github.com/artedison/Edison_Lab_Shared_Metabolomics_UGA). 

In addition, the ends of NMR spectra (less than −0.50 ppm, greater than 10.0 ppm) 

and water regions (between 4.89 and 4.68 ppm) were removed from all samples. Urine 

NMR spectra were aligned using constrained correlation optimized warping (CCOW)31 

and normalized using probabilistic quotient normalization (PQN).32 NMRPipe was used to 

preprocess the 2D NMR Data (HSQC and HSQC-TOCSY).33 Metabolites were identified 

using the AssureNMR software (Bruker Biospin, USA) with the BBiorefcode metabolite 

database and COLMARm.34 Metabolites were assigned a confidence score from 1 to 5, 

with 5 as the highest confidence score. The scores were defined as follows: (1) putatively 

characterized compound classes or annotated compounds, (2) matches from 1D NMR to the 

literature and/or 1D BBiorefcode compound (AssureNMR) or other database libraries such 

as BMRB35 and HMDB,36 (3) matched to HSQC, (4) matched to HSQC and validated by 

HSQC-TOCSY (COLMARm), and (5) validated by spiking the authentic compound into 

the sample. Fifty metabolomic features in the aligned and normalized 1D 1H NMR spectra 

were quantified by taking spectral areas for integration and combined with MS features for 

downstream analysis (see Supporting Information Section S1 and Scheme S1 for NMR peak 

picking and integration details). Of the 50 metabolomic features quantified via NMR, 30 

metabolites were identified with some metabolites having multiple resonances quantified, in 

addition to 11 unknown resonances.

Sample Cohort Selection

Propensity score matching37 was used to reduce the sample selection bias effect while 

balancing potential confounders among control and RCC patient groups. The covariates 

considered included age, gender, BMI, race, and smoking history. The propensity score was 

computed via a logistic regression model using the default parameters of the Scikit-learn38 

linear model module in Python. A one-to-one propensity score matching with the caliper 

method, which allowed for a maximum distance of 1 × 10−5 between the propensity scores 

of matched pairs, resulted in the selection of 31 control subjects and 31 subjects with RCC 

to form the model cohort.
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Feature Selection for RCC Prediction

Features were selected using the 62-model cohort. The normalized abundances of the 50 

metabolomic features that were quantified by NMR and the 7097 normalized MS features 

were merged into one feature table in Python. The combined feature table was subjected 

to both filtering and wrapper feature selection methods.39,40 The features were filtered 

via the following sequential criteria: (1) features with a greater than 1-fold difference 

between the two groups were retained; (2) features with a q-value lower than 0.05 were 

retained (the q-value is defined as the p-value obtained from Student’s t test followed 

by Benjamini–Hochberg false discovery rate correction41); and (3) one of the two highly 

correlated features was removed, with a Pearson correlation coefficient cutoff of 0.8. The 

resulting features were autoscaled prior to further feature selection. A recursive feature 

elimination method under stratified fivefold cross validation conditions was implemented 

using random forests (RF-RFECV). The Scikit-learn38 default hyperparameters were used 

with the number of estimators set to 100 decision trees. In addition, a PLS regression 

method was applied on the same reduced feature set using the default PLS regression 

method in the cross-decomposition module in Scikit-learn. For each method, features were 

ranked based on importance for discriminating RCC patients from healthy controls. The 

Gini index was used in RF-RFECV, while variable importance in projection (VIP) scores 

were used in PLS regression. Finally, a voting-based system for potential biomarkers was 

used; the overlapping features among the top features from each method were selected as the 

final potential biomarkers. Variants of this method were used for selecting only upregulated 

biomarkers and NMR biomarkers in the study.

Machine Learning (ML) Methods for RCC Prediction

Random forest (RF), k-nearest neighbors (k-NN), linear kernel support vector machine 

(SVM-Lin), and radial basis kernel support vector machines (SVM-RBF) were used for 

predictions. Optimized hyperparameters for each ML method used the model cohort and the 

selected metabolite panel. A linear search for a single hyperparameter or a grid search for 

two (or more) hyperparameters was used under fivefold cross validation conditions. These 

tuned ML models were used to predict RCC status in the test cohort.

Random Forest.—Random forests are a collection of decision trees built using 

bootstrapped training samples, where decision trees are constructed using a random subset 

of metabolomic features as candidates for node splitting. The decision tree is an inverted tree 

starting with the root node at the top of the tree followed by internal nodes and finally leaf 

nodes. The root node and internal nodes are assigned specific metabolomic features, while 

the leaf nodes indicate the final prediction.

k-Nearest Neighbor.—k-NN classifiers are an instance-based learning algorithm that 

classifies samples via the vote of the majority of k (to be defined) closest neighbors. 

Distance measures considered for determining nearest neighbors during hyperparameter 

tuning include Euclidean (E) and Manhattan (M) distances.
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E = ∑
i = 1

k
xi − yi

2

M = ∑
i = 1

k
xi − yi

Linear Kernel Support Vector Machine.—For binary classification, the goal of SVM-

Lin is to generate a separating hyperplane that separates the classes in a j-dimensional space, 

where j is the number of features. Given n numbers of training samples x1, …xn ∈ Rj with a 

class membership of y1, …, yn ∈ (−1,1), where −1 represents controls and 1 represents RCC, 

the function of the separating hyperplane, defined here as the RCC metabolic score, is given 

by the following

RCCmetabolic score  = β0 + ∑
j = 1

j
βjxij

where β0 and βj are the bias and the weight parameters, respectively, determined during 

training. The class membership of a new observation was defined by the sign of the RCC 

metabolic score (negative for control and positive for RCC). The function β0 + βx′ = 0 is the 

separating hyperplane that maximized the margin between the two classes, while the margin 

is defined as the following

β0 + βx′ ≥ 1, c = + 1

β0 + βx′ ≤ − 1, c = − 1

The only hyperparameter to be tuned in the SVM-Lin is the non-negative regularization 

parameter cost (C), which allows for the flexibility of misclassification by the hyperplane 

margin. C in SVM controls the bias-variance tradeoff associated with statistical learning 

algorithms.

Radial Basis Function Kernel Support Vector Machine.—The RBF kernel is a 

kernel method that projects data in a higher-dimensional space for the purpose of linear 

separation, which is equivalent to a nonlinear decision boundary in the original feature 

space. SVM-RBF is defined by the following function

K xixi′ = exp −γ ∑
j = 1

j
xij − xi′j

2
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where xi are the training data, xi′ are the test data, and γ (gamma) is a positive tuning 

parameter. γ and C are the hyperparameters considered for tuning.

See Supporting Information Section S2 for model evaluation metrics.

Unsupervised Learning Methods

Hierarchical clustering analysis was conducted on 435 metabolic features, which were the 

top differential metabolites between RCC and controls, with greater than 1-fold change 

and q-value lower than 0.05. Of the 435 features, 433 were from LC–MS and 2 features 

were from NMR. The cluster map function in Seaborn was used.42 The linkage method 

for calculating clusters was weighted, while the distance metric was Euclidean. All features 

were autoscaled prior to analysis.

Data Availability and Implementation Environment

NMR data analysis was carried out using the Edison Lab in-house MATLAB scripts 

(https://github.com/artedison/Edison_Lab_Shared_Metabolomics_UGA, Matlab R2017b, 

The Mathworks, Inc.). Post metabolic features normalization computations were carried out 

in the Python 3.7.0 programming language using the following packages: Pandas for data 

handling,43 Matplotlib/Seaborn for data visualization,44 Numpy and Scipy for numerical 

computations,45,46 Statsmodel for statistical computations,47 and Sci-kit learn for machine 

learning.38 A Jupyter notebook was used as the integrated development environment 

(IDE).48 All Jupyter notebooks used in this study can be found here: https://github.com/

artedison/RCC_MLprediction. The datasets collected in this work are available through the 

NIH Metabolomics Workbench49 with the project ID of PR001091 and study IDs ST001705 

and ST001706. The dataset can be accessed via http://dx.doi.org/10.21228/M8P97V.

RESULTS AND DISCUSSION

Patient Selection

NMR measurements were conducted on 179 controls and 105 renal cell carcinoma (RCC) 

patient urine samples, while LC–MS measurements were conducted on 178 controls and 

102 RCC patient urine samples. The subset of controls (n = 174) and RCC (n = 82) 

samples that were analyzed by both methods was selected for further investigation. While all 

control urine samples were collected in the clinic, RCC patient urine samples were collected 

both in the clinic and in the operating room. Preoperative procedures added cofounders 

to the samples collected in the operating room and were therefore not ideal for use in 

feature selection due to the potential for introducing bias in the RCC group. However, these 

operating room samples still had utility as part of the test cohort and were retained. The 

strategy for grouping of the samples into either model or test cohorts is presented in Figure 

1. In the model cohort used for training purposes, 31 RCC urine samples collected in the 

clinic were matched via one-to-one propensity score matching (PSM)37 to 31 control urine 

samples. PSM seeks to balance the population characteristics of the case versus control 

samples in terms of characteristics, such as age, BMI, and smoking history, and is essential 

to obtain unbiased machine learning results and robust biomarker panels. In general, the 

model cohort consists of samples collected in the clinic. As such, features were selected, 

Bifarin et al. Page 10

J Proteome Res. Author manuscript; available in PMC 2023 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/artedison/Edison_Lab_Shared_Metabolomics_UGA
https://github.com/artedison/RCC_MLprediction
https://github.com/artedison/RCC_MLprediction
http://dx.doi.org/10.21228/M8P97V


and models were trained solely using clinic samples. This addresses any sample collection 

bias concerns as model training was not carried out using the test cohort. Moreover, all 

discriminating features identified in the study were statistically insignificant (independent t 
test, BH-FDR q ≥ 0.05) when RCC samples collected in the clinic versus those collected in 

the operating room were compared (Figure S1).

Figure 2a and Table S1 show the comparative statistics of the pre-PSM and post-PSM 

model cohorts. Adjusted covariates included gender, age, BMI, race, and smoking history. 

Following PSM, the cohorts were gender-matched (17 males, 14 females) and had 

statistically insignificant differences in age (p-value = 0.64) and BMI (p-value = 0.06). 

Smoking history and race statistics also improved considerably when compared to the 

prematched cohort. In addition, all RCC stages were represented in the model cohort: 

early-stage RCC (Stages I and II) represented 55% of the cohort, while late-stage RCC 

(Stages III and IV) represented 45% (Figure 2b, Table S2). The second subcohort in the 

study, the test cohort, was constructed from the remainder of the samples following removal 

of the model cohort. It was composed of 143 controls and 51 RCC patients (Figure 2c and 

Table S3.) The imbalance of gender, age, BMI, and smoking history in the test cohort made 

it a good candidate for a challenging test of the utility of the metabolic panel selected by 

modeling the PSM-adjusted model cohort.

Metabolomics Analysis and Machine Learning Pipeline

After NMR data collection, ends of spectra and water regions were removed. Several 

alignment methods were attempted with CCOW31 giving the most reliable alignment, 

followed by data normalization. A total of 50 metabolic features were quantitated with 

NMR, and 30 metabolites were confirmed with 1H NMR and/or HSQC and HSQC-TOCSY 

as described in Materials and Methods (Table S4 and Figure 3a). A total of 7097 features 

were detected with LC–MS (4623 from positive mode and 2474 from negative mode), as 

described under Materials and Methods (Figure 3b).

All 7147 metabolomic features from both platforms were merged, and data analysis 

proceeded according to the ML pipeline shown in Figure 4. The dataset was filtered to 

include 435 features with greater than 1-fold change between RCC and controls, and 

Student’s t test with Benjamini–Hochberg false discovery rate correction (q < 0.05) was 

performed. Figure 5 shows the hierarchical clustering of the 435 features selected in this 

analysis. To minimize the effect of feature multi-collinearity, one out of a pair of highly 

correlated features (Pearson correlation, r > 0.8) was retained resulting in 128 features 

for further analysis. The top 20 features with PLS-DA ranked by VIP scores and the top 

20 features with RF-RFECV ranked by the Gini index were selected from this set of 

128 features. Ten features were present on both feature lists selected by PLS-DA and RF-

RFECV, leading to the 10-metabolite panel (Table S5 and Figure S2). This voting strategy 

was used to minimize bias from using only one machine learning algorithm for feature 

selection. Also, as a way of comparison with a more conventional workflow that relies less 

on machine learning, features with the top 10 highest q-values from the univariate analysis 

were selected, and a classification task was performed for the model cohort with logistic 

regression using the Metaboanalyst 5.0 biomarker analysis platform. Classification results 
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showed an AUC of 0.86 and an accuracy of 83.3% (Figure S3). These were low performance 

scores compared to the 10 features selected via the voting-based feature selection methods 

and employed in the k-NN classifier (0.96 AUC and 95% accuracy) for the model cohort 

(Table S7). As such, we proceeded with the vote-based ML-derived features.

For predicting RCC status, four machine learning (ML) algorithms were used: random forest 

(RF), k-nearest neighbor (k-NN), support vector machine with radial basis function (SVM-

RBF), and linear kernel support vector machine (SVM-Lin). Selected hyperparameters were 

tuned using the 62-model cohort under fivefold cross validation conditions (Table S6). The 

tuned ML models were then used to predict RCC status in the test cohort. Overall, k-NN 

gave the best prediction with an AUC of 0.96, accuracy of 87%, specificity of 83%, and 

sensitivity of 96% (Table S7).

Eight of the 10 selected markers were in lower relative abundance in RCC samples (Figure 

S2) versus control samples, so we identified another panel containing features with higher 

relative abundance in the RCC patients’ urine versus control urine, as measuring increased 

abundance upon the appearance of disease is favored in clinical practice. Figure S4 describes 

the machine learning pipeline for upregulated metabolic features in RCC, which resulted 

in a five-metabolite panel (Table S8 and Figure S5). Again, selected hyperparameters were 

tuned using the 62-model cohort under fivefold cross validation conditions (Table S9). The 

tuned ML models were then used to predict RCC status in the test cohort. It was found 

that k-NN yielded the best prediction of the test cohort with an AUC of 0.92, accuracy of 

81%, sensitivity of 86%, and specificity of 79% (Table S10), which was a slightly lower 

performance than for the 10-metabolite panel (Table S7).

High-resolution MS and tandem MS experiments were performed for metabolite annotation. 

Through standard procedures such as analyzing exact masses, isotopic relative ion 

abundances, and fragmentation patterns, five metabolites in the 10-metabolite panel (Table 

S5) and four of the five in the upregulated metabolite panel (Table S8) were annotated. 

A third metabolite panel was formed to include only annotated features from the first 

two panels. Table 1 and Figure 6 show the results using this last panel, namely, a 

seven-metabolite panel for RCC that included 2-phenylacetamide, Lys-Ile (or Lys-leu), 

dibutylamine, hippuric acid, mannitol hippurate, 2-mercaptobenzothiazole, and N-acetyl-

glucosaminic acid (Table S11). ML hyperparameters were tuned using the 62-model cohort 

as described above (Table S12). ML models were used to predict RCC status in the test 

cohort with the most accurate model being linear SVM with an AUC of 0.98, accuracy of 

88%, sensitivity of 94%, and specificity of 85% (Table 2).

When combined with the 7097 LC–MS features, the 50 NMR features were not selected 

by machine learning procedures in any of the final panels. This is likely caused by the 

over-representation of MS features in the final feature list. To further investigate the utility 

of NMR features, the dataset was filtered with Student’s t test with Benjamini–Hochberg 

false discovery rate correction (q < 0.05). Following that, metabolomic features representing 

the same metabolites were removed via a Pearson correlation cutoff of 0.80 to retain only 

one feature representing a metabolite (Figure S6). This gave rise to a four-metabolite panel 

consisting of hippurate, trigonellinamide, lactate, and mannitol (Figure S7). As with other 
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panels, selected hyperparameters were tuned using the 62-model cohort under fivefold cross 

validation conditions (Table S13). The tuned ML models were then used to predict RCC 

status in the test cohort. SVM-RBF yielded the best prediction in the test cohort with an 

AUC of 0.89, accuracy of 78%, sensitivity of 86%, and specificity of 76% (Table S14).

DISCUSSION

Machine learning enabled the accurate selection of metabolite markers that accurately 

distinguished urine samples from RCC patients to those from controls following propensity 

score matching of the cohorts. Because different machine learning techniques are driven 

by different induction biases, we used a variety of feature selection strategies to better 

down-select biomarkers. As initial feature filters, univariate statistical methods such as t 
tests, fold changes, and Pearson correlations were used for downsizing the metabolic feature 

set. The last few steps of the machine learning pipeline were based on two ML methods with 

differing inductive biases. PLS-DA assumes linear statistical relationships,50 while random 

forests can model more complex relationships in the dataset.51 This step was followed 

by voting for the top ranking overlapping metabolic features from the different methods 

tested. For the classification tasks, hyperparameter tuning of machine learning algorithms 

was carried out, culminating in excellent predictions of the test cohorts. These data 

analysis pipelines resulted in a 10-metabolite panel, a five-metabolite panel including only 

metabolites upregulated in RCC, and a four-metabolite marker containing only metabolites 

detected by NMR. The seven-identified metabolite biomarker proposals in the study gave 

an accuracy of 88% and an AUC of 0.98. This is likely a conservative assessment of the 

robustness of the biomarker given the small size of the training dataset versus a relatively 

large test cohort, given the constraint of patient selection. In general, many of the markers 

identified in these panels were novel, but a handful of markers have already been reported in 

the literature, validating the approach used in this study.

Examination of the biological role of the metabolites in the various panels constructed 

led to new insights into potential origins and mechanisms of disease progression in 

RCC. The metabolite 2-phenylacetamide decreased in RCC urine samples, indicating a 

downregulation of phenylalanine metabolism. Indeed, downregulation of phenylalanine 

metabolism has been reported in RCC cancer cells,52 while RCC urine metabolomics studies 

have also reported the downregulation of metabolites in the phenylalanine pathway such as 

4-hydroxyphenylacetate and phenylacetyl-L-glutamine.15,20

The dipeptide lysyl-isoleucine/lysyl-leucine (Lys-Ile/Lys-leu) was observed to be increased 

in RCC urine samples. Upregulation of other types of dipeptides has been linked 

to RCC.22,53 For example, in a paired normal/clear cell renal cell carcinoma tissue 

metabolomics study by Hakimi and co-workers, numerous dipeptides were detected as 

being upregulated in RCC.53 In addition, dipeptides such as aspartyl-phenylalanine and 

glutamyl-threonine have been reported to be upregulated in a urine RCC metabolomics 

study.22 Increased dipeptide abundances are typically associated with the increased protein 

degradation/reutilization processes in tumors.53
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Reduced levels of hippuric acid and feature C15H21NO9, likely a hippurate and mannitol 

derivative, in RCC patient urine were in line with the disrupted renal function that arises 

as a result of a disease, which may lead to the disruption of hippurate elimination or 

production.54 Hippurate is formed via the conjugation of glycine and benzoic acid, which 

takes place in the kidney, and this metabolite has been reported to have a strong association 

with diet and the gut microbiota.54 Reduced levels of hippurate in RCC patient urine were 

also reported in studies with smaller cohorts.20,28 In addition, reduced levels of hippurate 

have been reported in several RCC-predisposing conditions such as obesity55,56 and high 

blood pressure.57

N-Acetyl-D-glucosaminic acid, an acylaminosugar, was elevated in RCC in our study. 

Increased glucose uptake might be driving the elevation of the acylaminosugar via the 

hexosamine biosynthetic pathway (HBP). This increased HBP flux has been implicated 

in many cancer types58–62 as this pathway plays a central role in DNA repair, cellular 

signaling, and metastasis.63

In addition to endogenous metabolites, two exogenous metabolites were also selected as 

markers, 2-mercaptobenzothiazole (2-MBT) and dibutylamine. 2-MBT was found at higher 

levels in RCC patients’ urine. 2-MBT is used in acceleration of vulcanization; as such, it can 

be found in car tires. Other commodities that might contain 2-MBT include cables, rubber 

gloves, shoes, rubber bands, and toys.64,65 Humans are exposed to 2-MBT via inhalation and 

dermal or oral intake, and the compound has been detected in human urine.64,65 It has been 

identified as a marker for traffic intensity because of the tire tread wear linked to car usage, 

and calls were made for the revision of the risk assessment to 2-MBT.66 The International 

Agency for Research has classified it as “probably carcinogenic to humans”,66 while it has 

also been linked to an increased risk of bladder cancer.65

Higher levels of dibutylamine (DBA) were also present in RCC patient urine. Dibutylamine 

is a precursor to N-nitrosodibutylamine (NDBA), a nitrosamine.67 Nitrosamines are 

environmental carcinogens that can produce tumors in many organs in the body,68 with 

NBDA being one of the most potent bladder cancer carcinogens.69 Increased human urinary 

excretion of nitrosamines, including NBDA, has also been associated with esophageal 

cancer.70,71 Sources of amines and nitrosamines include drinking water67 and meat 

products.72,73

Hippuric acid, lactate, trigonellinamide, and mannitol were selected as markers in the NMR-

only panel. Hippuric acid was also selected in the 10-metabolite panel, making the selection 

in the NMR-only panel unsurprising. The reduction in abundance of trigonellinamide (1-

methylnicotinamide) in RCC patient urine could be indicative of a dysregulated nicotinate 

and nicotinamide metabolism,74 particularly considering that our study also identified 

a reduced level of trigonelline, a metabolite that showed a similar trend in a separate 

NMR study.20 Increased levels of lactate might reflect the activation of oncogenic aerobic 

glycolysis, the Warburg effect, which is a hallmark of cancerous cells.75 In addition, 

upregulation of lactate dehydrogenase A levels has been reported in RCC cells and tissues.76 

Decreased mannitol excretion in RCC patients might be caused by dysregulations in energy 

metabolism, with this trend being reported in a separate urine metabolomics study.29
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CONCLUSIONS

We have shown the potential utility of a urine assay in the clinical setting for RCC detection. 

This study, like others of its kind, has the limitation of numerous potential confounders that 

could impact biomarker discovery results. While randomized control trials (RCTs) are gold 

standards for epidemiology research, observational studies remain inescapable for studies 

like this as randomizing the intervention (RCC) is impossible. As such, to argue for the 

reduction in selection bias, we adjusted for five potential confounders in the study: age, 

BMI, gender, smoking history, and race. Of these, four adjustments were largely successful. 

Going forward, a much larger cohort, representing the diversity of race and geographical 

locations would be required for the validation of our biomarker proposals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flow chart for patient selection. Samples for which NMR and MS measurements were 

collected (1). A total of 284 samples, with 174 control individuals and 82 RCC patients, 

have their urine samples analyzed by both NMR and LC–MS methods (2). RCC samples 

collected in the clinic are selected for the model cohort (3a), while the operating room RCC 

samples are selected for the test cohort (3b). The model cohort was selected via propensity 

score matching from those samples collected in the clinic (31 RCC samples, 31 control 

samples) (4). The test cohort contained 51 RCC samples collected in the operating room and 

143 controls collected in the clinic (5).
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Figure 2. 
Cohort characteristics. (a) Model cohort characteristics (gender, smoking history, race, age, 

BMI in no particular order) are shown before and after propensity matching. p-Values 

were calculated for unequal and equal sample sizes using Welch’s and Student’s t tests, 

respectively. (b) Additional model cohort RCC characteristics (metastasis, nuclear grade, 

stage, and RCC subtype) show that the majority of the group was early-stage RCC and pure 

clear cell subtype. There was one nuclear grade datum that was unreported and two cancer 

stages that were not reported due to inconclusive TNM staging information. (c) Test cohort 

characteristics show differences that are useful in testing the feature panels selected using 

the model cohort. All p-values were calculated using Welch’s t test (unequal sample size). 

Three samples had unreported nuclear grades, and 10 samples did not have RCC staging 

due to inconclusive TNM staging. Abbreviations: AA: African American; BMI: body mass 

index; RCC: renal cell carcinoma; C.C. Papillary: clear cell papillary.
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Figure 3. 
Raw data for various metabolomics platforms. (a) Average 600 MHz 1H 1D 

NOESY-PR NMR spectra of all urine samples tested in the study. (1) Acetate, (2) 

dimethylamine (DMA), (3) taurine, (4) bile acid (tentative assignment), (5) lactate, 

(6) α-hydroxyisobutyrate (HIBA), (7) alanine, (8) acetyl phosphate, (9) acetone, (10) 

acetoacetate, (11) succinate, (12) pyruvate, (13) citrate, (14) methylguanidine, (15) N,N-

dimethylglycine (DMG), (16) creatine, (17) creatinine, (18) creatine phosphate, (19) cis-

aconitate, (20) dimethylsulfone (DMS), (21) ethanolamine, (22) choline, (23) betaine, (24) 

syllo-inositol, (25) trigonellinamide, (26) 4-hydroxyphenylacetate (4-HPA), (27) glycine, 

(28) mannitol, (29) guadinoacetate, (30) glycolate, (31) hippurate, (32) tatrate, (33) 

allantoin, (34) cis-aconitate, (35) urea, (36) fumarate, (37) indoxyl sulfate, (38) trigonelline, 

(39) hypoxanthine, (40) formate, (41) 3-hydroxyisovaleric acid, (42) 4-aminohippuric acid, 
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(43) 4-hydroxyhippuric acid, and (44) valine. (b) HILIC LC–MS positive ion mode data, 

displaying all samples. (c) HILIC LC–MS negative ion mode data, displaying all samples.
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Figure 4. 
Machine learning pipeline. Using the model cohort, a hybrid method of feature selection 

resulted in a panel of 10 metabolites. Hyperparameters for four different machine learning 

models were tuned using the model cohort and the 10-metabolite panel. The RCC status 

of the test cohort was predicted with four models. PLS: partial least squares; RF-RFECV: 

random forest recursive feature elimination – cross validation; FDR-BH: false discovery rate 

Benjamini–Hochberg procedure; k-NN: k-nearest neighbors; SVM: support vector machines 

(Lin: linear, RBF: radial basis function).
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Figure 5. 
Hierarchical clustering of 435 metabolomic features with q-values <0.05 and >1-fold change 

in the model cohort. z-Scores are represented as shown in the color bar. Yellow represents 

higher abundances in RCC, while dark blue represents higher abundances in the controls. 

See Table S16 for details of metabolomic features.
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Figure 6. 
Relative abundances for the seven-metabolite panel in (a) the model cohort. After selecting 

features with greater than 1-fold changes between controls and RCC groups, q-values were 

computed by taking the FDR correction (Benjamini–Hochberg) after an independent t test. 

(*q ≤ 0.05, **q ≤ 0.01, ***q ≤ 0.001). (b) Relative abundances in the test cohort, p-values 

from Welch’s t test were reported (unequal sample size). (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 

0.001). Raw data were transformed via autoscaling for visualization.
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