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Abstract

Cardiovascular disease is the leading contributor to years lost due to disability or premature death 

among adults. Current efforts focus on risk prediction and risk factor mitigation‚ which have 

been recognized for the past half-century. However, despite advances, risk prediction remains 

imprecise with persistently high rates of incident cardiovascular disease. Genetic characterization 

has been proposed as an approach to enable earlier and potentially tailored prevention. Rare 
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mendelian pathogenic variants predisposing to cardiometabolic conditions have long been known 

to contribute to disease risk in some families. However, twin and familial aggregation studies 

imply that diverse cardiovascular conditions are heritable in the general population. Significant 

technological and methodological advances since the Human Genome Project are facilitating 

population-based comprehensive genetic profiling at decreasing costs. Genome-wide association 

studies from such endeavors continue to elucidate causal mechanisms for cardiovascular diseases. 

Systematic cataloging for cardiovascular risk alleles also enabled the development of polygenic 

risk scores. Genetic profiling is becoming widespread in large-scale research, including in health 

care–associated biobanks, randomized controlled trials, and direct-to-consumer profiling in tens 

of millions of people. Thus, individuals and their physicians are increasingly presented with 

polygenic risk scores for cardiovascular conditions in clinical encounters. In this scientific 

statement, we review the contemporary science, clinical considerations, and future challenges 

for polygenic risk scores for cardiovascular diseases. We selected 5 cardiometabolic diseases 

(coronary artery disease, hypercholesterolemia, type 2 diabetes, atrial fibrillation, and venous 

thromboembolic disease) and response to drug therapy and offer provisional guidance to health 

care professionals, researchers, policymakers, and patients.
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AHA Scientific Statements; atrial fibrillation; diabetes, type 2; genome-wide association studies; 
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Cardiovascular disease is the leading cause of morbidity and mortality in the United States 

and globally.1 In the United States, 121.5 million people have cardiovascular disease1 and 26 

million have diabetes (estimates from 2013 to 2016 data), each with continually increasing 

prevalences.1 Furthermore, cardiovascular diseases and their complications contribute to the 

substantial and ever-increasing health care costs in the United States.1

In an effort to reduce cardiovascular disease prevalence and its complications, much effort 

has focused on prevention.2 The cornerstone of prevention is early risk prediction coupled 

with risk mitigation. The Framingham Risk Score, now nearly 25 years old, represents an 

early example of synthesizing multiple clinical risk factors into a single estimated risk for 

coronary artery disease (CAD) and stroke.3,4 With the incorporation of additional cohorts, 

including individuals of non-European ancestry, the Pooled Cohort Equations (PCE) provide 

the contemporary 10-year risk estimator for atherosclerotic cardiovascular disease (ASCVD) 

recommended by cardiovascular professional societies in the United States.5,6 However, 

the PCE may systematically underperform in some groups and has reduced discrimination 

among younger adults and older adults.7–11

Incorporation of genetics into risk prediction frameworks offers the opportunity to refine 

risks, potentially earlier in life, toward the creation of earlier and tailored risk reduction 

strategies.11a Having a parent with a history of premature CAD is associated with an ≈50% 

higher odds of developing cardiovascular disease independent of clinical risk factors.12 

Furthermore, twin studies (comparing monozygotic twins with dizygotic twins) have shown 

that variation in the development of CAD,13 atrial fibrillation (AF),14 and diabetes15,16 
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is attributable to common genetic variations. These observations support the notion that 

genetics may be additive in risk prediction.13,14,16,17

Monogenic risk variants (defined in Table 1) are typically rare and confer a large risk 

of disease (such as low-density lipoprotein [LDL] receptor variants causing familial 

hypercholesterolemia [FH]).These variants have been recognized for decades and represent 

the current scope of clinical cardiovascular genetics.18 However, monogenic risk variants 

are present in only a small minority of patients and explain only a small proportion of 

heritable cardiovascular disease risk in familial aggregation studies (eg, many families do 

not have monogenic variants and still have cardiovascular disease).19,20 This phenomenon, 

as well as evidence from twin studies,21 supports the polygenic basis of the development 

of cardiometabolic diseases: Common genetic variation (ie, present in at least 1% of the 

population) contributes substantially to risk.

Indeed, over the past 15 years, increasingly larger genome-wide association studies (GWAS) 

have confirmed the polygenic basis of cardiometabolic diseases. GWAS has shown that 

many single nucleotide variants (SNVs) scattered across the genome are associated with 

many cardiometabolic diseases. Each of these variants is of individually small risk, but 

collectively, they account for substantial cardiovascular disease risk.20,22,23

GWAS showed the association of many SNVs and cardiometabolic disease. Polygenic risk 

scores (PRSs; also known as polygenic scores) are the weighted summations of these SNVs. 

The summation of these SNVs (eg, PRS) has been shown to confer significant risk (Figure 

1). For multiple cardiovascular diseases, PRSs are independently associated with respective 

cardiovascular diseases.20 Thus, PRSs are proposed as tools to improve the prediction of 

common, complex cardiovascular diseases.24

Universities, academic medical centers, and direct-to-consumer genetics companies are 

now able to provide PRSs to research participants, patients, and consumers.25,26 This 

scientific statement reviews the current science, clinical implementation considerations 

(eg, efficacy and cost) across stakeholders (health care professionals, patients, and 

health care administrators), and outstanding questions about the clinical use of PRSs 

for selected cardiovascular diseases. We focus on 5 cardiometabolic diseases (CAD, 

hypercholesterolemia, type 2 diabetes [T2D], AF, and venous thromboembolic disease) 

and offer provisional guidance to health care professionals, researchers, policymakers, and 

patients on the use of PRSs in cardiovascular disease risk assessment and risk reduction.

In line with the National Heart, Lung, and Blood Institute 2020 guidelines on the use and 

reporting of race, ethnicity, and ancestry27 and the American Heart Association (AHA) 

presidential advisory on structural racism,28 throughout this scientific statement, we use the 

term ethnicity to refer to social categories including both race and ethnicity. We support 

the AHA presidential advisory definition of race as “a social construct primarily based on 

phenotype, ethnicity, and other indicators of social differentiation that results in varying 

access to power and social and economic resources.”28 The term ancestry is used for 

inferences from genetic data. When we state the ethnicity or ancestry of participants, we 
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attained this information directly from the primary literature. Last, we note that the concepts 

of ethnicity and ancestry are not synonymous but may be correlated.29

WHAT ARE PRSs?

PRSs (or polygenic scores) are the weighted sum of the risk conferred by multiple disease-

associated SNVs across the genome. Constructing a PRS requires a list of SNVs with their 

accompanying effect sizes (a quantification of the association of the SNV with the disease) 

from an external data set, typically acquired from a GWAS (Figure 1). Next, methods are 

used to account for the extensive correlation between SNVs throughout the genome (known 

as linkage disequilibrium [LD]).18 Common methods include P value thresholding (only 

including SNVs that are below a predefined P value), LD pruning (randomly removing a 

SNV from a pair that are in LD, in which LD is typically classified by the correlation 

between SNVs, quantified by r2), and clumping (similar to LD pruning but the SNVs with 

the lower P value [of the pair] is selected). All of these earlier methods exclude several 

SNVs on the basis of an arbitrarily selected P value threshold or at random. Advances 

in statistical genetics have led to a number of new methods that do not exclude SNVs. 

These methods include bayesian approaches (such as LDpred,22 Bayesian Sparse Linear 

Mixed Models,30 AnnoPred,31 LDpred-funct,32 PRS-CS,33 and PleioPred34) and penalized 

regression (Lassosum35) and include all SNVs but with reweighted effect sizes baselined on 

at least the P and r2 values.

Current research is focused on ensuring equity of PRS use and predictive ability across all 

ancestry groups. Transethnic PRSs from meta-analyses of GWAS across multiple ancestries 

may help with portability.36,37 Large biorepositories such as the UK Biobank, Million 

Veteran Program, and Electronic Medical Records and Genomics Network have aided in 

the performance of high-throughput and high-sample-size genome-wide discovery efforts of 

a wide range of cardiometabolic disease.20,38 In addition, biobanks located in areas with 

higher levels of ancestry diversity have contributed a critical view of genetic association in 

understudied populations.39,40

POLYGENIC VERSUS MONOGENIC RISK VARIANTS

Monogenic risk variants are rare (minor allele frequency <1%, defined as the frequency 

of the second most common allele that occurs within a selected population41) and are 

typically disruptive or truncating coding sequence variants that confer a large risk of 

disease. In this scientific statement, rare variants are denoted as minor allele frequency <1%; 

common polygenic risk variants are denoted as minor allele frequency ≥1%. Monogenic 

risk variants follow classic mendelian patterns of inheritance. For example, monogenic 

risk variants in the genes encoding the LDL receptor (LDLR), apolipoprotein B (APOB), 

and proprotein convertase subtilisin/kexin type 9 (PCSK9) are examples of causes of 

FH, a monogenic disease that causes severe hypercholesterolemia and is a significant 

risk factor for early-onset myocardial infarction.42–45 Other examples of monogenic risk 

variants include variants in GCK for diabetes,46 KCNQ1 for AF,47 and F5 for venous 

thromboembolic disease.48,49
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The risk of developing a disease is influenced by both monogenic and polygenic 

risk variants. In those with FH monogenic risk variants, LDL cholesterol (LDL-C) 

concentrations varied, as did their risk of developing CAD. This variation aligned each 

participant’s LDL-C PRS; that is, those with a low LDL-C PRS and monogenic FH had, on 

average, lower LDL-C and a lower risk of CAD compared with those with a high LDL-C 

PRS and monogenic FH.19,50 This concept has also been extended to cardiomyopathies; 

for example, the risk of developing hypertrophic cardiomyopathy depends on monogenic 

risk variants (eg, MYH7) and a person’s PRS.51 These observations support the liability 

threshold model, that is, the notion that multiple factors—monogenic, polygenic, and 

nongenetic—may each contribute to a threshold necessary for disease development.18

Because genetic testing for monogenic causes of suspected inherited cardiovascular 

conditions was covered in a prior scientific statement,52 we focus on PRSs in the present 

scientific statement.

Atrial Fibrillation

AF is the most prevalent cardiac arrhythmia in the United States, with >12 million 

individuals projected to be diagnosed with AF by 2030.1,53 AF prevalence increases with 

age and commonly coexists with other cardiovascular diseases.54 It is a well-recognized 

independent risk factor for stroke55 and can contribute to and worsen heart failure.56

Although many common cardiovascular diseases are risk factors for developing AF,57 

genetic variation also has been shown to contribute.20,58 Loss-of-function variants in the 

Titin (TTN) gene are enriched among individuals with early-onset AF (2.1% prevalence) 

versus control subjects (1.1% prevalence; odds ratio, 1.76 [95% CI, 1.04–2.97]).59,60

Common genetic variation also contributes to AF risk. The first appreciation of this was in 

twin studies, which showed that the likelihood of developing AF was higher in monozygotic 

twins compared with dizygotic twins (hazard ratio [HR], 2.0 [95% CI, 1.3–3.0]).14 More 

recently, 134 distinct AF-associated loci have been identified through GWAS meta-analyses, 

all of which are common and of individually small effect.61,62

The increasing number of common genetic variants associated with AF has enabled the 

development of AF PRSs (Table 2).23,63 PRSs constructed to date have shown a consistent 

predictive benefit (C statistic, or area under the receiver-operating characteristics curve 

[AUC], varying from 0.61–0.78).20,23,64–69 Recent advancement in statistical methods, most 

notably the liberalizing of included SNVs in PRSs, has led to increased predictive accuracy 

(see the What Are PRSs? section).23,64,65 These improvements contributed to the accuracy 

of risk prediction in 2 ways. First, they improve the accuracy of the prediction of AF in 

the absence of clinical risk factors (eg, early-onset AF). Second, they enhance prediction 

when PRSs and clinical risk factors are combined. Concerning the latter, AF prediction is 

improved with the addition of PRSs to clinical risk factors (age, height, weight, systolic 

and diastolic blood pressures, smoking status, blood pressure–lowering medication, diabetes, 

heart failure, and history of myocardial infarction) through both discrimination (the C 

statistic changed from 0.725 [95% CI, 0.719–0.732] to 0.734 [95% CI, 0.728–0.741]) and 

reclassification (net reclassification index [NRI], 10% (95% CI, 4.2%–15.7%]) metrics 
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(Figure 2).23,63 Concerning the former, PRSs are consistently predictive of early-onset 

AF23,70; 1 study showed that those in the top 10th percentile of PRS risk had an odds 

ratio of 5.70 (95% CI, 2.60–13.95) for developing early-onset AF compared with those in 

the bottom 90th percentile of PRS risk.70 Another study showed that those in top 2.5th 

percentile of PRS risk developed the disease ≈6.64 years before those in the 20th to 

80th percentile.23 Similarly, of those who developed AF before 60 years of age, 27.9% 

were at high PRS risk (>5% 5-year risk of developing AF determined by the PRS model 

only), whereas only 4.9% of these participants with early AF were deemed high risk by 

the common clinical risk tool, CHARGE-AF (Cohorts for Heart and Aging Research in 

Genomic Epidemiology model for AF).23

Diversity of included participants remains an issue; only 1 study of AF PRS focused 

primarily on non-European participants. This study included Japanese participants and 

showed results consistent with the studies focused on Europeans (the AUC for the model 

combining clinical risk factors and PRSs in Japanese participants was 0.84 [95% CI, 0.80–

0.86], 6% higher than the model including clinical risk factors alone without PRS).64

In addition to the prediction of AF, AF PRSs may have a role in the prediction of AF-

associated complications such as ischemic stroke.71 Evidence from GWAS shows a shared 

genetic cause between AF and ischemic stroke: Loci at the PITX2 and ZFHX3 genes are 

associated with risk of AF and ischemic stroke.72,73 Several AF PRSs are predictive of 

stroke.62,74,75 Similarly, ischemic stroke PRSs appear to be predictive of strokes specifically 

in patients with AF, even beyond conventional clinical risk factors (eg, CHA2DS2-VASc 

score).71 Early analyses of the ability of PRSs to predict AF recurrence are inconclusive, 

with larger studies likely required to investigate whether PRSs play a role.69

For adult patients, established AF risk prediction tools (CHARGE-AF76) are improved with 

the addition of PRSs (across sexes and age groups [18–85 years]; Figure 2).23 Furthermore, 

given the lack of clinical risk factors, only PRSs can predict the development of early-onset 

AF.23,70 Future studies should focus on AF surveillance and risk mitigation strategies for 

high AF PRSs, as well as cost-effectiveness. The decreasing costs of genetic testing and the 

ability to calculate PRSs for a large number of diseases from 1 test increase the likelihood of 

cost-effectiveness, but this is yet to be formally studied for AF.

Coronary Artery Disease

Given the aggregation of CAD in families, particularly when occurring earlier in life, 

genetic variation has long been expected to influence CAD risk.77 CAD heritability, or the 

proportion of phenotype explained by the additive sum of genetic factors, is estimated to be 

40% to 60%.13,78

FH is a well-recognized monogenic condition.44 Retrospective analyses indicate that those 

with FH variants have a greater relative and absolute clinical benefit from statins for the 

prevention of incident CAD.79 Current guidelines and US Food and Drug Administration 

(FDA) labels support additionally aggressive pharmacological LDL-C lowering among 

individuals recognized to have FH.80
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GWAS of CAD in the general population has shown that common genetic variation also 

influences the risk for CAD.81 Increasingly large CAD GWAS continues to identify novel 

genomic loci; 167 separate genomic loci have been identified to be significantly associated 

with CAD to date.82 Systematic pleiotropy analyses indicate that the majority of these loci 

do not influence CAD risk through well-recognized risk factors.83

The discovery of common genetic variants associated with CAD has enabled the 

development of PRSs for the prediction of CAD (Table 2).23,63 Initial PRSs focused 

on the simple summation of significantly associated independent CAD risk alleles, and 

subsequent PRSs weighted these alleles by predicted CAD effects. Contemporary scores 

have focused on liberalizing variant inclusion through varied statistical approaches.20,38 

Scores have been shown to be strong predictors of subclinical coronary atherosclerosis 

and independently prognostic of CAD risk (1.4- to 1.6-fold per SD of the CAD PRS), 

including self-reported family history and comparable or more powerful predictors of CAD 

than individual clinical risk factors (smoking, T2D, lipid measures, hypertension; Figure 

3).20,23,38,63,84–88 Because the top fifth percentile of CAD PRS is associated with an 8–

mg/dL increase in LDL-C, conventional clinical risk scores do not readily detect high 

CAD PRSs.85,89 Furthermore, the top 95th percentile (1 in 20) of a CAD PRS score is 

associated with a 3-fold odds for CAD, similar to that associated with FH (1 in 313) 

without accompanying severe hypercholesterolemia.20,85 Furthermore, in analyses among 

individuals with prevalent ASCVD, a CAD PRS was independently associated with incident 

major cardiovascular events (1.1- to 1.2-fold per SD of the CAD PRS).90–92 An initial 

study in ARIC (Atherosclerosis Risk in Communities) and MESA (Multi-Ethnic Study of 

Atherosclerosis; n=7237) showed little improvement in the C statistic with the addition of 

PRSs to PCE to predict incident events.93 More recent studies using more contemporary 

statistical approaches and validation in larger cohorts (n=352 660 and n=≈250 000) have 

shown slightly greater performance.63,94 Furthermore, it is likely that different age groups 

will derive varying benefit from PRSs. For example, NRI reached a peak of 15.4% (95% 

CI, 11.6%–19.3%) for younger subgroups and an improvement of the C statistic of 5% (0.05 

[95% CI, 0.03–0.07]).

Although they represent vastly different technologies, comparisons are often made with 

coronary artery calcium (CAC) scoring and PRSs. These diagnostic approaches have not 

been compared directly. However, data suggest that both technologies improve the predictive 

accuracy of clinical risk factors alone (PCE),63,95 and their predictable abilities appear to 

be at least comparable. For example, in a cohort of 1688 middle-aged adults, CAC scoring 

improved prediction when combined with the PCE: the C statistic increased from 0.633 with 

clinical risk factors alone (PCE) to 0.678 with PCE and CAC (ΔC, 0.045 [95% CI, 0.015–

0.101]). Furthermore, there was significant improvement in NRI when CAC was added to 

the PCE: NRI, 6.7% (95% CI, 1.8%–11.6%).95 In comparison, a recent PRS validated in 

186 451 participants showed that the C statistic increased from 0.76 with clinical risk factors 

alone (PCE) to 0.79 (ΔC, 0.03 [95% CI, 0.02–0.04]), and there was significant improvement 

in NRI when combined with the PCE (C statistic, 0.76 [95% CI, 0.75–0.76]; NRI, 5.8% 

[95% CI, 4.7%–7.0%]).63 These data were ascertained from different cohorts of varying 

sample sizes and not directly compared. Evidence also suggests a correlation between PRS 
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and CAC scores.96,97 This indicates that stratified use of the respective technologies may be 

beneficial, but this topic requires further prospective study.

Observational analyses in epidemiological studies or post hoc analyses within completed 

randomized controlled trials for CAD prevention have yielded hypotheses for strategies 

to reduce CAD risk in the setting of a high CAD PRS. Because a CAD PRS is largely 

additive of nongenetic factors, adherence to a healthful diet mitigates CAD risk regardless 

of CAD PRS; however, given the worse prognosis, the absolute risk reduction from a 

healthful diet among those with a high CAD PRS may be greater than for those without 

a high CAD PRS.88,98 In a single-arm study, disclosure of a higher CAD PRS may 

influence favorable lifestyle behaviors.99 Beyond lifestyle changes, it appears that PRS risk 

correlates with medication efficacy. Subgroup analyses in primary prevention statin trials 

indicated that those with high CAD PRS versus others derived greater relative and absolute 

clinical benefit from statins versus placebo (46% versus 26%; Pheterogeneity=0.05) without 

differences in LDL-C reduction.86,91 Similarly, among individuals with established ASCVD 

on statins, greater benefit from PCSK9 monoclonal antibodies was observed among those 

with high versus low CAD PRS (37% versus 13%; Pinteraction=0.04).90,92 Data exploring 

the correlation between PRS and medication efficacy are further explored in the PRSs for 

Pharmacogenomics section. Similarly, a healthy lifestyle has been shown to reduce disease 

risk across all deciles of PRS risk, although the greatest reductions are in those with 

highest PRS risk.100 A randomized controlled trial among patients without CAD showed 

that disclosure of a high CAD PRS versus low CAD PRS or no PRS disclosure to patients 

and clinicians led to lower LDL-C concentrations.101

The integration of PRS for CAD into clinical practice will likely rely on its inclusion 

in current cardiovascular risk prediction tools. Currently, the AHA, American College of 

Cardiology (ACC), and many other international organizations recommend determining 

the 10-year cardiovascular risk for all adult patients 40 to 75 years of age with the 

AHA/ACC ASCVD risk calculator.2 For adult patients, the addition of PRS to the 

AHA/ACC ASCVD risk calculator significantly improves prediction for cardiovascular 

events (Figure 2).23,38,63,89,94 This enhanced prediction is independent of conventional 

clinical risk factors (Figure 3), is detectable before the emergence of clinical risk factors, 

and is appreciable across a spectrum of ages, sexes, and, increasingly, ancestries and 

ethnicities (South Asian, Black/African American/Black Caribbean/Black African, Chinese, 

and Japanese).23,36,38,63,84,94,102,103 The inclusion of PRS in the AHA/ACC ASCVD risk 

calculator significantly improves prediction, and early evidence suggests that targeted 

screening may be cost-effective (further discussed in the Considerations for Payers 

section),104 particularly because evidence suggests that conventional tools are missing 

participants at high PRS risk.89

Among asymptomatic middle-aged adults at borderline/intermediate risk by conventional 

clinical risk factors, a high CAD PRS has been shown to aid in reclassifying statin 

prescriptions.89 Among asymptomatic younger adults, a high CAD PRS may prompt more 

intensive earlier efforts for lifestyle modification and potentially earlier statin initiation akin 

to severe hypercholesterolemia to mitigate high lifetime risk for CAD.105
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Hypercholesterolemia

Lipids, or cholesterol and triglycerides, are carried in the blood by lipoprotein 

macromolecules such as LDL and high-density lipoprotein. The properties of circulating 

lipoproteins are dictated by the relative concentrations of cholesterol, triglycerides, 

phospholipids, and proteins and biochemical alterations thereof. A reduction of 

apolipoprotein B–containing lipoproteins such as LDL-C is associated with a reduction 

in major adverse cardiovascular disease events through multiple pharmacological classes in 

randomized controlled clinical trials.37,106–109

Common genetic variants, summed as a PRS, can also predict lipid concentrations (Table 3). 

For example, the top 95th percentile of an LDL-C PRS carries an LDL-C effect (≈30 mg/dl) 

similar to that in individuals with an FH variant among those of European ancestry. Among 

those with severe hypercholesterolemia, 2% have an FH variant, whereas 23% are in the top 

fifth percentile of an LDL-C PRS.111 Furthermore, an LDL-C PRS explains some variation 

in LDL-C concentrations among individuals with FH variants.50

LDL-C PRSs, in addition to predictive LDL-C concentrations, are predictive for ASCVD 

events.19,112 Recent work has indicated that an LDL-C PRS may predict ASCVD event risk 

in addition to cross-section LDL-C measures. Among nearly 49 000 participants of the UK 

Biobank, ASCVD risks were compared for those with FH variants, the top 95th percentile 

of an LDL-C PRS, and those with hypercholesterolemia to a similar degree without 

the aforementioned genetic factors.113 Compared with nongenetic hypercholesterolemia, 

FH and polygenic hypercholesterolemia were associated with a 1.93- and 1.26-fold 

risk, respectively, for ASCVD events (coronary and carotid revascularization, myocardial 

infarction, ischemic stroke, and all-cause mortality).

LDL-C PRSs have also been correlated with risks for other cardiovascular disease, including 

aortic stenosis,114 abdominal aortic aneurysm, peripheral arterial disease, and venous 

thromboembolic disease.110 However, the prognostic capabilities of LDL-C PRSs that are 

independent of LDL-C measurement for these conditions have not been well studied to date.

PRSs for other lipid fractions also have been evaluated for ASCVD risk prediction. High-

density lipoprotein cholesterol PRSs have limited prognostic utility for ASCVD prediction. 

Although triglyceride PRSs generally support an association with CAD events, the clinical 

utility of a triglyceride PRS is not well established. Lipoprotein(a) is a highly heritable LDL-

like lipoprotein, additionally harboring apolipoprotein a, which is independently predictive 

of ASCVD events.115 An LPA PRS is strongly predictive of both lipoprotein(a) and 

ASCVD events.116 In fact, an LPA genetic risk score performs similarly to lipoprotein(a) 

measurement for the prediction of CAD events.117

For individuals undergoing genetic testing for severe hypercholesterolemia, comprehensive 

evaluation for monogenic and polygenic determinants will increase genetic testing 

diagnostic yield compared with FH gene panel testing alone and may refine CAD risk 

prediction beyond conventional lipid measures. Lipid and CAD PRSs will likely have 

distinct yield, according to the presence and extent of hypercholesterolemia. Both may have 

roles in identifying individuals for whom aggressive and early lipid-lowering therapies are 
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indicated; this hypothesis requires prospective evaluation. Future work focusing on lipid 

and lipoprotein PRSs in the context of therapeutic interventions may better clarify clinical 

relevance.

Type 2 Diabetes

Epidemiological research has long appreciated the clustering of T2D within families.16 

The scientific pursuit of monogenic causes of T2D has identified some causal genes (eg, 

peroxisome proliferator-activated receptor γ [PPARG])118; however, recent GWAS has 

revealed that a polygenic, rather than monogenic, predisposition accounts for substantially 

more T2D heritability.119

The advent of GWAS revealed the polygenic architecture of T2D,119,120 which, in turn, 

facilitated the development of PRSs for T2D.20,121 Early T2D PRSs showed the predictive 

ability of summated genetic loci.122 With increasing GWAS sample sizes and improvements 

in PRS methodology, recent T2D PRSs have become more accurate (Table 2).20,23,63,121 For 

instance, a 2018 meta-analysis of 32 GWAS including participants of exclusively European 

ancestry included 171 249 variants and showed a 9-fold increase in risk between the lowest 

2.5% and the highest 2.5% PRSs.121 This same study showed that T2D prediction with PRS 

alone was similar to the prediction from body mass index, age, and sex (AUC reported as 

66% for both, no 95% CI reported). Similarly, a 2018 study of participants of European 

ancestry in the UK Biobank included 6 917 436 variants and showed a linear increase 

in risk with higher PRS20; participants in the highest 10% PRS had a 2.5-fold risk, and 

participants in the highest 1% PRS were at a 3.3-fold risk (compared with the remaining 

90% and 99%, respectively). This same study showed an AUC of 0.72 (95% CI, 0.72– 0.73) 

for PRS (inclusive of age, sex, genotyping array, and the first 4 principal components of 

ancestry as covariates).20 Last, a 2020 study showed those in the top 2.5th percentile risk 

were at 3.5-fold increased risk compared with those in the middle 20th to 80th percentile 

risk, and those in the bottom 2.5th percentile risk had an ≈80% reduction in lifetime 

risk compared with the middle 20th to 80th percentile risk.23 This same study showed a 

modest improvement in risk prediction when PRS was added to clinical risk factors: The 

C statistic modestly improved from 0.84 (95% CI, 0.83–0.84) with clinical risk factors 

only to 0.85 (95% CI, 0.84–0.85) with the inclusion of PRS.23 This same study showed 

more convincing improvement in prediction with the NRI metric: The addition of PRS to 

the above American Diabetes Association clinical risk factors criteria showed an NRI of 

4.5% (95% CI, 3.0%–6.1%; Figure 2).23 Although older studies previously showed little 

improvement in discrimination compared with cumulative clinical risk factor models, more 

recent studies, substantially improved with the inclusion of a larger number of SNVs and 

trained on a larger sample size, showed improvement in prediction with the inclusion of 

PRS.122–124 For example, a 2010 study that used a 40-SNV PRS123 reported an AUC of 0.54 

(95% CI, 0.50–0.58) compared with a 2020 study that used a 6 437 380–SNV PRS (0.763 

[95% CI, 0.758–0.767]).23

Nevertheless, the early identification of those at high risk of T2D is just one potential 

application of PRS and one that remains of unclear therapeutic value. Whether determined 

by clinical or genetic risk (or both), the primary benefits of early identification of T2D 
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risk are targeted prevention through lifestyle modification and more rigorous surveillance. 

Recent evidence suggests that stratifying risk by PRS may help identify high-risk subgroups 

for whom successful lifestyle modification is associated with greater absolute reduction 

in the risk of incident diabetes.125 However, older evidence suggests more modest effects 

across T2D PRS strata.98,126 Therefore, it may be argued that those who are identified as 

high risk through PRSs should be screened at a younger age or at more frequent intervals, 

but data supporting the use of PRSs for this application are needed.

A T2D PRS may also predict treatment responsiveness. This is further described in the 

PRSs for Pharmacogenomics section. In brief, a 2020 study showed that participants with 

a higher T2D PRS had greater reductions in hemoglobin A1c (HbA1c) in response to 

sulfonylurea therapy (P=0.02).127 The authors also investigated the relationship between 

PRS and glycemic surrogates of metformin response but found no association.127

In regard to glycemic control, a 2016 study showed that a PRS modified the effect of 

intensive glycemic control on cardiovascular mortality in the ACCORD randomized trial 

(Action to Control Cardiovascular Risk in Diabetes)128: Participants with a high T2D PRS 

were found to have a 3-fold risk of cardiovascular mortality with intense glycemic control 

(HR, 3.08 [95% CI, 1.82–5.21]), whereas those with a low T2D PRS had a substantial 

mortality benefit from intensive glycemic control (HR, 0.24 [95% CI, 0.07–0.86]).128

This application of genetic data to guide risk stratification of T2D complications and 

treatment response mirrors efforts to cluster patients with T2D with the use of clinical 

factors, which has demonstrated some early promise for guiding clinical care.129,130 

Five genetically defined subtypes of diabetes (severe autoimmune diabetes, severe insulin-

deficient diabetes, severe insulin-resistant diabetes, mild obesity-related diabetes, and mild 

age-related diabetes)131 have distinct underlying pathophysiologies with varying diabetes-

associated complications.130,132

The predictive accuracy of the American Diabetes Association risk tool is increased with 

the addition of a PRS.23 The cost-effectiveness of screening remains less clear. Although 

the cost of genetic testing continues to fall, the effect of therapies that may be offered 

to those at high risk remains an active area of research. Given that an advantage of PRS 

is the possibility to calculate numerous PRSs from 1 test, cost-effectiveness analyses that 

consider risk prediction of both CAD and T2D may be advantageous (because the cost 

of a PRS to calculate a number of diseases will be the same as the cost to calculate 1 

disease). Furthermore, a scientific opportunity remains for PRSs to help personalize T2D 

pharmacological management in terms of medication responsiveness and earlier prevention 

of microvascular and macrovascular complications.

Venous Thromboembolic Disease

Acute venous thromboembolism (VTE), which comprises deep venous thrombosis and 

pulmonary embolism, occurs in around 1000 000 individuals yearly in the United States1 

and is the among the leading causes of acquired harm and preventable death in hospitalized 

patients.133 Although inherited monogenic thrombophilias (eg, factor V Leiden and 

prothrombin G20210A) increase the relative risk of VTE by ≈3- to 5-fold, the role of 
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genetic testing in informing therapy has remained limited134,135 because of uncertainties 

about the effects of inherited thrombophilias on recurrent VTE risk,136–138 the lack of data 

demonstrating that thrombophilia testing improves outcomes,139 and the risks of prolonged 

anticoagulation.

Recent advances in the genetics of VTE have produced increasingly robust GWAS summary 

statistics enabling the development of PRS predictive of VTE. With the use of summary 

statistics from a GWAS comprising 30 234 VTE cases, a 37-variant VTE PRS was recently 

constructed (Table 3).140 Among 6573 cases and 20 515 controls from the UK Biobank, 

individuals in the lowest fifth percentile of genetic risk had a 50% lower odds of having 

had VTE (odds ratio, 0.51 [95% CI, 0.42–0.6]), and those in the upper 95th percentile had 

a 3.2-fold odds of having had VTE (odds ratio, 3.2 [95% CI, 2.9–3.5]) compared with those 

in the intermediate range. Similarly, another recent analysis of 26 066 separate VTE cases 

ultimately yielded a 297-variant PRS for VTE, inclusive of many of the SNVs or correlated 

SNVs in the 37-variant score.110 After exclusion of the factor V Leiden and prothrombin 

G20210A variants, the 297-variant PRS was applied to an independent set of 2100 cases 

with VTE and 53 865 VTE controls.110 In the same study, across 10 975 women in the 

Women’s Health Initiative with 690 incident VTE events over 25 years, the women in the 

top 95th percentile of polygenic risk had a 2.5-fold risk of incident VTE (HR, 2.5 [95% CI, 

2.0–3.2]); this was comparable in effect size to the risk conferred by factor V Leiden (HR, 

2.4 [95% CI, 1.9–3.4]) and prothrombin G20210A (HR, 3.3 [95% CI, 1.1–10.2]).110

Current guidelines recommend prophylactic anticoagulation for patients with factor 

V Leiden in certain clinical situations (surgery, hospitalization, peripartum, and 

postpartum).141 Given the comparable risk of factor V Leiden and those at highest PRS risk, 

future research could examine whether there are groups who would benefit from VTE PRS–

aided use of prophylactic anticoagulation in high-risk scenarios. Furthermore, future studies 

can examine the predictive performance of the current risk scores (the Padua score for 

medical inpatients142 and the Caprini score for surgical inpatients143) with the integration of 

PRS. Because prophylaxis for VTE is generally anticoagulation, the potential risks should 

also be studied in prospective studies.

PRSs FOR PHARMACOGENOMICS

Evidence supporting PRSs for cardiovascular pharmacogenomics is evolving. Until recently, 

candidate gene studies including only 1 or a few genes have been the focus of most 

pharmacogenomic research studies144–146 and clinical implementation programs.147 The 

development of pharmacogenomic PRSs has been hindered by unique challenges for 

pharmacogenomic GWAS such as securing adequate sample sizes of patients treated with 

the same drug, along with the necessary drug and phenotypic data (eg, dose, frequency, 

adherence, drug response metrics).148 Large consortia are working toward overcoming this 

barrier (eg, International Clopidogrel Pharmacogenomics Consortium149 and International 

Warfarin Pharmacogenetics Consortium150). Researchers are also using creative approaches 

to calculate pharmacogenomic PRSs such as scanning multiple candidate genes151,152 or 

testing disease-associated PRSs for associations with cardiovascular drug responses.86,91 
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These efforts have led to several currently published studies applying PRSs to cardiovascular 

pharmacogenomics.

These pharmacogenomic PRSs have been applied with 4 different goals: (1) predicting 

drug efficacy, (2) predicting drug toxicity, (3) reviving drugs that failed in clinical trials 

(ie, by finding a genetic subgroup of responders, although successful examples have 

not been demonstrated to date), and (4) predicting adverse cardiovascular reactions for 

noncardiovascular drugs. For the prediction of drug efficacy, the strongest evidence currently 

supports PRSs predicting statin response. A PRS predictive of CAD risk also predicted 

the absolute and relative benefit from statins for the primary and secondary prevention of 

CAD.86,91 Similarly, a 2019 study showed that patients with a high PRS for CAD had a 

larger risk reduction (absolute and relative) in major adverse cardiovascular events and death 

when treated with alirocumab (a PCSK9 inhibitor): Participants at high PRS risk (>90th 

percentile) had a 6% absolute reduction (95% CI not reported) compared with a 1.5% 

absolute reduction in those at low PRS risk (≤90th percentile).90 Participants at high PRS 

risk had a relative risk reduction by alirocumab of 37% (HR, 0.63 [95% CI, 0.46–0.86]) 

compared with a 13% reduction in the low-PRS group (HR, 0.87 [95% CI, 0.78–0.98]).90 A 

2020 study of another PCSK9 inhibitor, evolocumab, found a similar relationship in which 

patients with higher PRS risk benefited more from evolocumab therapy.92 The absolute 

risk reduction for major vascular events improved significantly across an increase in the 

genetic risk category: 0.7%, 0.9%, and 4.0% absolute risk reduction in low-, intermediate-, 

and high-genetic-risk groups, respectively (Ptrend=0.04). Participants at high PRS risk had 

a relative risk reduction by evolocumab of 31% (HR, 0.69 [95% CI, 0.55–0.86]) compared 

with 9% (HR, 0.91 [95% CI, 0.79–1.03]) in the intermediate-PRS-risk group and 8% in the 

low-PRS-risk group (HR, 0.92 [95% CI, 0.72–1.18]; Ptrend=0.07).

Beyond CAD, there is also a building body of evidence to support the correlation between 

T2D PRS and treatment responses. A 2020 study showed that a T2D PRS was predictive 

of a reduction in HbA1c in patients taking a sulfonylurea127; for every 1-SD increase in 

T2D PRS, there was a 0.06% (0.07 mmol/mol) decrease in HbA1c level in response to 

sulfonylurea therapy (P=0.02).127 Similarly, participants in the highest decile of the T2D 

PRS had a 0.27±0.12% greater HbA1c reduction compared with those in the lowest decile 

(P=0.03).127 The authors also investigated the relationship between PRS and glycemic 

surrogates of metformin response but found no association.127

Evidence also supports PRS predicting clinical benefit from β-blockers (predicting survival 

benefit in patients with heart failure with reduced ejection fraction),153 angiotensin-

converting enzyme inhibitors (predicting cardiovascular mortality, nonfatal myocardial 

infarction, or resuscitated cardiac arrest),154 calcium channel blockers (predicting all-cause 

death, nonfatal myocardial infarction, or nonfatal stroke),155 and clopidogrel (predicting 

ischemic events and cardiovascular mortality).152 These PRSs for clinical responses to 

β-blockers, angiotensin-converting enzyme inhibitors, and calcium channel blockers were 

not based on disease PRS; rather, they were derived from drug×SNV interaction tests for 

clinical outcomes in GWAS or multiple candidate genes. The PRS for clopidogrel was also 

not derived from disease PRS but rather candidate SNVs independently associated with high 

on-clopidogrel platelet reactivity.
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A further study assessed the ability of a PRS derived from a GWAS of the QT interval to 

predict the outcome of drug-induced QT interval prolongation and torsades de pointes,156 

demonstrating the potential for PRSs derived from intermediate phenotypes to predict 

cardiovascular drug toxicities. PRSs have also been used in an attempt to revive a drug 

that failed in clinical trials. However, a CAD PRS did not successfully identify a genetic 

subgroup of patients who benefited from evacetrapib, a cholesterol ester transfer protein 

inhibitor.157

CONSIDERATIONS FOR HEALTH CARE SYSTEMS

Criteria for Implementing PRSs in Cardiovascular Clinical Practice

We suggest 3 broad criteria to be considered by health care systems before implementation 

of PRSs for cardiovascular care: (1) efficacy, (2) harm, and (3) logistics. First, estimations of 

benefit overall and across subgroups from observational data sets are likely to be key initial 

driving forces. Although issuing definitive criteria for the clinical implementation is beyond 

the scope of this scientific statement, we suggest in broad terms that the clinical efficacy 

of PRS is likely appropriate when either of the following is achieved: (1) The integration 

of PRS into clinical risk tools substantially improves their accuracy, or (2) PRS risk tools 

can identify participants at a risk at least equivalent to that of individuals with monogenic 

risk variants (such as LDLR for FH; Table 4). In regard to the first point, for most of the 

disease examples in this scientific statement (AF, CAD, and T2D), the predictive accuracy 

of established clinical risk factor models is improved with the addition of PRS (ie, PRS 

improves prediction when incorporated into the PCE for ASCVD, the CHARGE-AF risk 

model [AF], and the American Diabetes Association risk model [T2D]).23,63

Furthermore, statin allocation, particularly in scenarios of clinical equipoise for primary 

CAD prevention among middle-aged adults, is harmonized with the 2019 ACC/AHA 

cholesterol guidelines.2 Therefore, recent analyses in 3 ethnically and geographically 

distinct hospital biobanks have shown the capability of using a CAD PRS to allocate 

statins for primary prevention among middle-aged adults when 10-year estimated risk by 

clinical risk factors is borderline to intermediate.89 Post hoc pharmacogenomic analyses in 

randomized controlled trials may also help with refining treatment allocation.90 Whether 

screening earlier in life identifies individuals at sufficiently high lifetime risk to treat 

with statins on the basis of a CAD PRS alone, akin to the risk conferred by severe FH, 

requires further study. Preliminary analyses indicate that disclosure alone of a CAD PRS 

may improve health-related behaviors, but results are inconsistent to date.99,101,158 Limited 

experience with T2D PRS has not shown behavioral modification after disclosure.159 

Improved risk prediction and allocation of established effective and safe therapies may be 

sufficient to motivate clinical use.

Second, with increasingly widespread availability, it is important for any guidance on 

responsible clinical use to address the potential harms. Although most current studies may 

estimate prognosis or treatment effects with retrospective analyses, estimations of harms 

remain challenging. There have been concerns about exacerbating existing racial disparities 

in health care with the use of existing PRSs. Initial and large GWAS still largely comprise 

individuals of European ancestry,40 which poses recalibration challenges, although ongoing 
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efforts to genetically profile non-Europeans and novel methods are continuing to bridge 

this gap and have shown comparable predictive accuracy between multiple ethnicities 

(Figure 3).18,84 In addition, in some scenarios such as a high AF PRS or high VTE 

PRS, higher-risk prevention strategies such as initiation or extension of the duration of 

anticoagulation prophylaxis may be considered. For these riskier protocols, prospective 

randomized controlled trials addressing both safety and efficacy are necessary.

Third, several logistical and educational considerations exist. To date, genomic data for 

PRS calculation are largely external to the health care system (ie, research study or direct-

to-consumer testing product) with few exceptions.160 Although germline genetic profiling 

is a static biomarker, associations are also functions of age and other potential nongenetic 

factors, as well evolving evidence refining interpretation of the human genome. Information 

technology systems should be robust to new knowledge to use new algorithms and to revise 

clinical decision support on the basis of static genotypes. Furthermore, population genetics 

literacy among both clinicians and patients remains limited, potentially hindering putative 

benefits and potentially exacerbating harms.1–3,5 The extent to which ancillary support such 

as specialized clinicians, including genetic counselors, is needed will likely vary across 

health systems. Last, health care systems should consider the regulatory guidance for use of 

PRSs (described in the Considerations for Commercial Genetics Organizations section)

Calibrating PRSs to the Population of a Health Care System

Similar to prediction equations based on clinical risk factors, performance of PRSs for 

disease prediction is sensitive to characteristics of the population in whom they are 

applied.39,40,161–163 Systemic underperformance will be strongly correlated with the extent 

of dissimilarity between the derivation and applied data sets. For example, ASCVD 

risk estimation from the PCE varies when applied to different cohorts.161,164,165 Cohort-

specific calibration approaches have been demonstrated to improve performance for the 

PCE for ASCVD.161,164,165 Similarly, recalibration of PRS models for distinct genetic 

ancestries in target populations has been shown to improve performance. For example, 

a T2D PRS derived from individuals of European ancestry was reweighted according 

to Latino haplotypes with resulting improvement in T2D prediction among people of 

Hispanic ancestry.166 However, simple variant filtration based on predicted functional 

impact may also improve transancestry transferability.167 Similarly, prediction approaches 

tailored separately for men and women may improve on current approaches. For admixed 

individuals, partial PRSs corresponding to deconvoluted ancestries recombined168 and linear 

combinations of ancestry-specific PRSs166 have shown recent promise.

Current PRS studies are presented in percentiles according to the cohort studied. Therefore, 

varying genotyping platforms limit the ability to generate universal raw scores. Because 

percentiles are therefore a function of cohort ethnicity, admixture, and genotyping 

platform, internal calibration procedures are likely also necessary. Nevertheless, universal 

harmonization efforts would improve generalizations of PRS applicability beyond single 

health systems. The ultimate goal for application of PRSs should be their representation in 

absolute risks, not percentiles.
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CONSIDERATIONS FOR COMMERCIAL GENETICS ORGANIZATIONS

Genetic testing in the United States falls under the College of American Pathologists 

(CAP) and the Clinical Laboratory Improvement Amendments (CLIA; part of the Centers 

for Medicare & Medicaid Services).169 The FDA has traditionally asserted its authority 

to oversee all diagnostic tests, including laboratory developed tests (LDTs). However, 

the FDA has for decades practiced “enforcement discretion,” leaving regulation of LDTs 

almost entirely to the CLIA/CAP process. The FDA clarified direct authority in 2010, 

intervening with several direct-to-consumer genetic testing companies,170 and in 2019 to 

2020 with several pharmacogenomics testing companies.171,172 In 2020, however, in a ruling 

that derived direction from a Presidential Executive Order, the Department of Health and 

Human Services made FDA regulation of LDTs harder, requiring the agency to implement 

notice-and-comment rulemaking in any regulation of LDTs.173 Although the high-level 

regulatory authority for LDTs remains unclear and unstable, in practical terms, the FDA 

is not resourced to regulate the thousands of LDTs. This means that implementation of 

tests such as PRSs currently continues to fall under CLIA/CAP regulation.173 There are no 

specific guidelines for CLIA/CAP certification of PRS tests, but CLIA/CAP certification of 

any new test has relied on peer-reviewed publications.

Furthermore, commercial genetics companies need to consider how they report an 

individual’s risk and those responsible for medical follow-up when deemed necessary. The 

most easily understood and meaningful way of presenting one’s PRS remains somewhat 

unclear. Future research addressing effective PRS risk communication is needed.

Commercial direct-to-consumer genetics companies also need to consider medical follow-up 

workflows for individuals with a high PRS. For example, if an individual is determined to be 

in the top 1% of PRSs for T2D, should the commercial genetics company alert the patient’s 

primary care physician, recommend visiting with their primary care physician, recommend 

increased frequency of HbA1c screening tests, or provide some other guidance? These 

difficult-to-resolve questions highlight the advantage of commercial genetics companies 

collaborating with established health care systems.

Last, it would be advantageous if genetics companies welcomed open science practices. 

Both the advancement and integrity of genomic science have been greatly aided by 

collaborations, sharing of data (although maintaining privacy and confidentiality of the 

individuals who contributed their DNA), and open examination of methods. A continuation 

of these practices will help ensure the integrity and accuracy of both commercial and 

academic PRSs.

CONSIDERATIONS FOR PAYERS

How to Consider the Financial Integration of PRSs Into Clinical Practice

The goal for any health care system is to maximize population health, and payers are tasked 

with considering interventions that will achieve this in a financially responsible manner.174 

Once the scientific accuracy of PRS is confirmed in its intended population (described 

in the Considerations for Health Care Systems section) and the regulatory standards are 
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met (described in the Considerations for Commercial Genetics Organizations section), 

policymakers can begin to consider the financial implications.

For cost-effectiveness studies for PRS, the following costs should be considered: the one-off 

costs of genotyping (and the associated infrastructure) and algorithm development and 

ongoing costs such as laboratory and bioinformatics staff.175 Assessing these direct costs is 

particularly challenging, given the rapidly decreasing costs of genetic profiling; sequencing 

technology costs have dropped substantially over the past 10 years.176,177

Conversely, there are unique potential savings with the use of PRSs. With 1-time 

broad genetic profiling, PRSs for numerous conditions can be generated with trivial 

incremental costs. In addition, PRSs may provide health care savings through earlier 

targeted prevention and mitigation of future costly medicines or procedures, for example, 

through deimplementing screening for PRS-determined lower-risk groups. Such estimates 

are likely to vary per condition according to condition heritability, prognostic performance 

of the PRS, the intervention invoked, including efficacy by PRS, and several others.

There is a paucity of cost-effectiveness studies for cardiometabolic PRS. Those that are 

available focus largely on CAD.178–180 The existing literature uses different methodological 

approaches, includes a variety of populations, and shows mixed results. A 2018 simulation 

study of people 45 to 65 years of age examined the cost-effectiveness of a 27-SNV PRS 

guiding statin treatment in the primary prevention for ASCVD for those at low borderline 

10-year ASCVD risk (2.5%–7.5%).178 Although the authors conclude that this strategy 

is not more cost-effective than treating all at low borderline risk, secondary analyses 

indicated that the use of a 27-SNV PRS might be cost-effective in some scenarios, 

including when 10-year ASCVD risk was closer to 7.5%. Because the majority of patients 

at low borderline risk are not currently recommended for statins, this scenario may not 

suitably reflect the anticipated use of a CAD PRS. Furthermore, PRSs have become more 

sophisticated since this study; among many other advances, the inclusion of more SNVs has 

significantly enhanced predictive accuracy (contemporary CAD scores include millions of 

SNVs).35,181 These methodological advances are reflected in a 2019 study that assessed the 

cost-effectiveness of a 49 310–SNV CAD PRS.180 This study used a bayesian decision-tree 

approach based on adults >45 years of age living in Finland and found that the addition of 

a PRS to clinical risk factors may be cost saving compared with clinical risk factors alone 

for certain patient segments.180 More recent data suggest that targeted screening with PRSs 

in addition to clinical risk factors is likely to be cost-effective through the prevention of “7% 

more cardiovascular disease events than conventional risk prediction alone.”104 As PRSs 

continue to improve, this benefit is expected to increase. It is notable that a PRS alone has 

a predictive accuracy that comparable to or greater than that of many individual clinical 

risk factors (including T2D and hypercholesterolemia).38,63 Further research would likely 

be beneficial, but the decreasing costs of genetic testing, the comparable cost to current 

biomarker tests (eg, the cost of an HbA1c test is comparable to the cost of a PRS),182 

and the ability to calculate PRSs for a large number of diseases from 1 test increase the 

likelihood of cost-effectiveness. These data support cost-effectiveness among middle-aged 

adults at intermediate risk. Last, there are encouraging data on the cost-effectiveness of 

PRSs for noncardio-metabolic diseases, which has led to the inclusion of PRSs in current 
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clinical risk tools such as in the Breast and Ovarian Analysis of Disease Incidence and 

Carrier Estimation Algorithm/CanRisk for breast cancer.183,184

Interpretation and Relevance of PRSs in the Context of Insurance Policies

In the United States, the Genetic Information Nondiscrimination Act prohibits the use of 

genetic information in the provision of health insurance or employment hiring, firing, pay, or 

promotion.185 However, this protection does not extend to life and disability insurance. 

Numerous other countries have government policies (on a spectrum of government 

intervention) that protect patients from insurance exclusion while maintaining market 

sustainability.186

CHALLENGES AND FUTURE DIRECTIONS

The overarching goals of a cardiovascular PRS include disease prevention by identifying 

at-risk individuals for improved disease surveillance and better-informed treatment plans. 

Although there are promising applications for PRS, several limitations should be 

acknowledged that would benefit from future work.

One limitation is that the current state-of-the-art polygenic risk models include only 

common variants.20,22,187–189 The advantages of including rare variants in PRS models 

have yet to be investigated. Recent studies have shown how rare and low-frequency variants 

can explain a substantial fraction of heritability.190–193 The number of discoveries of this 

type of variants is limited by lack of power; for cardiovascular diseases, only a few studies 

have identified rare and low-frequency variants that confer a high risk of disease (similar 

to variants that cause monogenic disease).194–197 To be able to capture information across 

the allele frequency and effect size spectrum, PRS models built from common variants 

can be improved by incorporating well-characterized, rare, high-risk variants. This is likely 

to be achieved as sequencing moves to whole-genome sequencing. Future studies should 

prioritize data from whole-genome sequencing to facilitate PRS models that incorporate 

common and rare variants, that is, a full allelic spectrum polygenic score. In the absence 

of whole-genome data on patients for whom a PRS is to be calculated, genotyping array 

data can be imputed to whole-genome sequencing data. However, imputation accuracy is 

typically low for rare variants, and poorly imputed variants can affect the quality of the PRS. 

Other options include high-coverage whole-genome sequencing,85 whole-exome sequencing 

and genotyping array, and high-coverage sequencing of individual genes and low-coverage 

sequencing across the genome.66 Technology developments that improve cost and efficiency 

will improve the accessibility for this type of test in the clinical practice.

A second limitation is the reduced transferability of PRSs across many different populations. 

Most training data are derived from a single population, typically of European ancestry. 

This limits the utility of current data for use in non-European populations,198 although 

there are promising data that current PRSs show similar predictive accuracy across ethnicity 

groups (Figure 3).36,84,103 Despite the increase in the proportion of GWAS and PRSs 

that include non-Europeans, having more non-Europeans in future biobanks and studies 

remains an urgent priority.166,199–203 To some degree, this has already begun. The Million 

Veteran Program has nearly 30% non-European individuals204; Biobank Japan has recruited 
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exclusively from Japan205; and East London Genes and Health was established to recruit 

British South Asians.206 Increasingly large health care–associated biobanks represent 

the genomic diversity of their sociodemographically diverse patients.207 Newer biobanks 

such as All of Us Research Program and East London Genes and Health have focused 

on the recruitment of individuals traditionally underrepresented in biomedical research 

through parallel recruiting strategies206: recruiting from community settings aided by 

local organizing groups and recruiting from health care settings. Community engagement 

approaches that seek to understand more prevalent conditions among diverse ancestral 

groups may serve as a research engagement strategy. In the short term, computational 

strategies to improve PRS transferability to non-European populations will complementarily 

improve PRS generalizability.84,203,208 Similarly, future PRS studies may consider tailoring 

risk models by sex. Because there is substantial variation in the incidence of and risk 

factors for cardiovascular disease between sexes, enhanced prediction may be achieved by 

future cardiovascular risk models that include sex-specific PRSs and sex-specific clinical 

risk factors. This should be a focus of future research.

Future PRS research should be encouraged in existing and planned randomized controlled 

trials to conduct post hoc analyses to further assess clinical utility. Specifically, further work 

should examine the incremental value of PRSs over clinical scores, as well as treatment 

changes based on PRSs and resultant clinical outcomes. Although this strategy has already 

been effective in identifying subgroups who may benefit from PRS-directed treatment,86,91 

there is a paucity of data for non-CAD diseases and for nondrug interventions. Moreover, 

given the cumulative lifetime effect of genetic risk, it would be of particular value to recruit 

younger adults (eg, <40 years of age) or even children and adolescents (eg, <18 years of 

age) into PRS research studies. PRSs have the unique advantage of assessing risk before 

the emergence of clinical risk factors and therefore can act as a modulator of screening 

practices; the intensification or deintensification of screening of children and young adults 

on the basis of a PRS would be a valuable focus of future research.

The apparent correlation in PRSs among family members has implications for cascade 

screening, particularly if a PRS is not already available for family members of a proband 

with a high PRS.209 Furthermore, earlier identification of at-risk individuals and earlier 

treatment that reduces causal risk factors such as LDL-C will likely provide stronger 

mitigation of risk for atherosclerotic diseases such as CAD. However, the clinical efficacy 

and cost-effectiveness of cascade screening with PRSs are yet to be fully explored.

Beyond the technical and analytical limitations, potential negative consequences of PRS 

adoption into cardiovascular clinical practice should be carefully considered. These potential 

considerations include, but are not limited to, widening care disparities related to access 

to PRSs,40 unequal benefit of PRSs across race and ethnicity groups, misinterpretation 

or misapplication of PRS information attributable to clinician knowledge or patient 

understanding, threats to patient well-being related to genetic data security and to coverage 

practices of insurers, and escalating health care costs.

The use of PRSs for CAD also merits further discussion. As the most studied phenotype to 

date, the efficacy of PRSs for CAD has been examined in numerous studies and produced 
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mixed results. These mixed results may be attributable to varying sample sizes, varying 

statistical approaches, reliance on single accuracy metrics, and aggregated results across 

various subgroups. Studies in smaller biobanks (MESA and ARIC) have generally produced 

nonsignificant results compared with studies of larger biobanks (UK Biobank,63,94 Malmö 

Diet and Cancer Study,87 Women’s Genome Health Study88), and statistical approaches 

continue to advance and produce more accurate PRSs.36,63

The transparency and reproducibility of PRSs are essential as clinical integration is 

considered. In an effort to improve transparency, the PRS reporting standards writing 

committee recently published a reporting guideline.169 The guideline acts as a checklist 

for researchers performing PRS studies, outlining the minimum information that should 

be stated in a research article to ensure that the work is transparent and able to be 

reproduced. In broad terms, the reporting guideline includes information on study design 

and recruitment, participant demographics (including ancestry), genetic data, nongenetic 

variables, risk model development, and evaluation, including discrimination and calibration. 

This reporting guideline can act as a checklist not only for researchers but also in the 

appraisal of PRS studies by payers, health care systems, and policymakers considering 

implementation and reimbursement of certain PRSs. Furthermore, the polygenic score 

catalog is a freely available, open-access resource of published PRSs.210

Although we review 5 cardiometabolic diseases in this scientific statement, the polygenic 

bases for other cardiometabolic diseases are increasingly being characterized. Examples 

include stroke (hemorrhagic and ischemic), left ventricular end-systolic volume,211 

hypertrophic cardiomyopathy,51 and heart failure.212 Similar encouraging data exist for 

channelopathies and related traits, including QT interval prolongation213,214 and Brugada 

syndrome.215

CONCLUSIONS

The identification of monogenic risk variants predisposing to cardiovascular conditions 

has been used clinically to inform surveillance and management plans. Relatively recent 

advances in population genetics have uncovered the polygenic basis of these and other 

cardiovascular conditions in most patients. These observations point to the possibility of 

using genetic profiling to inform clinical practice in significantly larger groups of individuals 

than for whom monogenic cardiovascular variants are considered. As a result of exponential 

increases in the proportion of individuals with broad genetic profiling, cardiovascular PRSs 

are beginning to enter clinical practice. Such PRSs may be appropriately considered in 

select scenarios, given the current evidence base. The evolving literature aims to continue to 

narrow the current knowledge gaps and to improve the performance and communication of 

PRSs.

Below, we recap the pertinent points covered in previous sections:

1. What Are PRSs? PRSs are single scores reflecting the cumulative weighted risk 

of individual genetic variation for a set of traits. These individual genetic variants 

confer an incrementally small disease risk, but summated, they have been shown 

to be predictive of many cardiovascular diseases.
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2. Polygenic Versus Monogenic Risk Variants: Monogenic risk variants are 

typically single, protein-truncating variants conferring a relatively large risk 

of disease. Examples of monogenic risk variants for cardiovascular disease 

include LDLR for FH, GCK for diabetes,46 KCNQ1 for AF,47 and F5 for 

venous thromboembolic disease.48 PRSs independently associate with disease 

risk and, at particularly high scores, may yield similar estimated disease risk as 

monogenic risk variants.20

3. Atrial Fibrillation: PRSs for AF have consistently shown incremental predictive 

capabilities in addition to clinical risk factors.20,23,64–69 Proposed utility has 

been to refine the identification of individuals meriting close surveillance for AF 

development.

4. Coronary Artery Disease: CAD is perhaps the most studied cardiovascular 

phenotype for PRSs.20,23,38,85–88,90–94 Among middle-aged adults, a CAD 

PRS performs similarly to conventional risk factors and provides additional 

prognostic information for CAD,23,38,63,94 but the clinical significance of this 

improvement is contentious.24,94 Observational evidence suggests that CAD 

PRSs may have utility in guiding pharmacological management (particularly 

for LDL-C lowering) attributable to increased estimated disease risk and greater 

estimated treatment benefit.88,98

5. Hypercholesterolemia: LDL-C PRSs have been shown to be predictive of LDL-C 

concentrations,111 including severe hypercholesterolemia.111 Because an LDL-

C PRS is predictive of ASCVD events independently of LDL-C,112 whether 

it should be used to help allocate novel LDL-C–lowering medicines (as FH 

variants currently allow) requires further study.

6. Type 2 Diabetes: Early research suggested that PRSs for T2D had a predictive 

ability similar to that of clinical risk factors.122–124 More recent evidence 

suggests that PRSs may be additive to clinical risk factors.23 However, the 

identification of those at high risk of T2D currently has unclear value; lifestyle 

modification and metformin treatment for T2D prevention did not appear to have 

different effects across genetic risk strata.98,126 Nevertheless, T2D PRSs may 

help guide T2D management through both sulfonylurea responsiveness127 and 

intensity of glucose management.128

7. Venous Thromboembolic Disease: A VTE PRS is associated with incident 

venous thromboembolic disease (VTE) risk.110,140 Because the clinical utility 

of identifying inherited thrombophilias is unknown, the clinical utility of a VTE 

PRS also remains unknown. The benefits and risk of prolonged anticoagulation 

in those at high risk (determined using both clinical and genetic factors) require 

further study.

8. PRSs for Pharmacogenomics: Pharmacogenetic PRSs have addressed the 

following: In regard to PRSs for drug efficacy, most research has focused on 

statins with CAD PRSs,86,91 sulfonylureas with T2D PRSs,127 and PCSK9 

inhibitors with CAD PRSs,90 whereas drug toxicity PRSs have focused 
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on QTc prolongation with QTc PRSs.156 Ongoing disease-associated PRS 

analyses in completed clinical trials will continue to inform pharmacogenetics. 

Discovery genetic association analyses within clinical trials may enable novel 

pharmacogenomic PRSs.

9. Criteria for Implementing PRSs in Cardiovascular Clinical Practice: Estimates of 

incremental efficacy and harm and logistical challenges are key aspects for health 

care systems to consider when evaluating PRSs. Clinician and patient education 

on their interpretation and limitations may require additional infrastructure and 

personnel.

10. Calibrating PRSs to the Population of a Health Care System: Recalibration of 

PRSs to target populations may improve performance but may lead to challenges 

in transferability.166

11. Considerations for Commercial Genetics Organizations: Commercial genetics 

organizations should be aware of the current, but likely changing, regulatory 

approval process for LDTs. Currently, LDT regulation falls largely under 

CLIA/CAP regulation,173 but a series of decisions by the FDA over the past 

couple years seem to indicate that this may change in the future.

12. How to Consider the Financial Integration of PRSs Into Clinical Practice: 

There are a paucity of cost-effectiveness studies addressing cardiovascular PRSs. 

Decreasing genotyping costs and the negligible incremental direct costs of 

virtually limitless PRSs lead to modeling challenges.

13. Interpretation and Relevance of PRSs in the Context of Insurance Policies: 

The Genetic Information Nondiscrimination Act protects people in the United 

States from being discriminated against on the basis of their genetic information, 

specifically the provision of health insurance or employment hiring, firing, pay, 

or promotion.185 However, this protection does not extend to life and disability 

insurance.

14. Challenges and Future Directions: The addition of PRSs to clinical risk 

tools consistently enhances the predictive ability. However, significant but 

surmountable challenges exist. The lack of diversity of participant inclusion in 

biobanks, GWAS, and consequently PRSs is a major current limitation. The lack 

of inclusion of non-Europeans in PRS construction makes the use of PRS in 

non-European populations suboptimal. Recognizing this major limitation, large 

samples of non-Europeans are being enrolled in newer biobanks. For some 

populations, study of large numbers of non-European participants has already 

begun (ie, Japan Biobank, Million Veteran Program), but much work is still 

required. Further future work should address the inclusion of rare variants in 

scores, improvement in phenotyping in biobanks, and inclusion of PRSs within 

randomized controlled trials; future work on other cardiometabolic diseases also 

is needed.
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Figure 1. Development of a PRS.
A, Development of polygenic risk scores (PRSs). This typically involves attaining single 

nucleotide variant (SNV) effect sizes from a genome-wide association study (GWAS) 

and then adjusting these SNV effect sizes to account for linkage disequilibrium (LD). B, 

Training of the PRS. Typically, numerous PRSs are created per participant. Each PRS is 

then assessed through various association testing, and the most accurate PRS is collected. C, 

Validation of the PRS. The most accurate PRS is then validated in an independent cohort of 

participants.
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Figure 2. Predictive accuracy of polygenic risk scores when combined with clinical risk tools, 
compared to clinical risk tools alone.
A, Net reclassification index (NRI). Comparison of clinical risk tools with and without the 

integration of polygenic risk score (PRS).23,63 The clinical risk tool used atrial fibrillation 

was CHARGE-AF (Cohorts for Heart and Aging Research in Genomic Epidemiology model 

for atrial fibrillation) with a risk threshold of >5% over 5 years. Variables included in 

CHARGE-AF were age, height, weight, systolic blood pressure (SBP), diastolic blood 

pressure (DBP), smoking status, blood pressure–lowering medication, diabetes, heart failure, 

and history of myocardial infarction. The clinical tool for coronary artery disease was the 

American Heart Association/American College of Cardiology Pooled Cohort Equation with 

a 7.5% risk threshold over 10 years and included the following variables: age, diabetes, sex, 

race, smoking, total cholesterol, high-density lipoprotein (HDL), systolic blood pressure, 

and treatment for hypertension. The clinical tool for type 2 diabetes was the American 

Diabetes Association risk score, which had a 33% risk threshold over 10 years and included 

the following variables: age, sex, body mass index, history of stroke or coronary heart 

disease, parental history of diabetes, SBP, DBP, HDL, and triglycerides. All differences are 

statistically significant. B, Comparison of C statistics between clinical risk scores (same as 

stated in A) and a risk tool with a PRS integrated into the clinical risk tool. All differences 

are statistically significant.23,63
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Figure 3. Predictive ability of polygenic risk scores for coronary artery disease.
A, Net reclassification index (NRI) comparing clinical risk tools and a risk tool with 

a polygenic risk score (PRS) integrated into the clinical risk tool for coronary artery 

disease across multiple ethnicities.84 African American includes Black Caribbean and Black 

African, and South Asian includes Indian, Bangladeshi, or Pakistani. Copyright © 2021 The 

Authors. Published by Elsevier Inc. Creative Commons CC-BY license. This is an open 

access article distributed under the terms of the Creative Commons CC-BY license, which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original 

work is properly cited. You are not required to obtain permission to reuse this figure. B, 

NRI for the American Heart Association/American College of Cardiology Pooled Cohort 

Equations (AHA/ACC PCE) tool+PRS, clinical risk factors collectively as the AHA/ACC 

PCE tool, PRS, and individual clinical risk factors for coronary artery disease.38,63 BMI 

indicates body mass index. Copyright © 2018 The Authors. Creative Commons CC-BY 

license. Published by Elsevier on behalf of the American College of Cardiology Foundation. 

This is an open access article distributed under the terms of the Creative Commons CC-

BY license, which permits unrestricted use, distribution, and reproduction in any medium, 

provided the original work is properly cited. You are not required to obtain permission to 

reuse this figure.
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Table 1.

Common Statistical Genetics Terms Used in This Scientific Statement

Terms Definition

AUC The probability that the statistical model will correctly classify a participant as having or not having a disease 
(discrimination)

C statistic The probability that the statistical model will correctly classify a participant who will go on to develop or not go on to 
develop a disease (discrimination)

NRI A measure of how a new model, typically with the addition of ≥1 more risk factors, reclassifies participants

SNV A variation in nucleotide base pair compared with what is expected at that location in the human genome, ie, an A 
instead of a G

LD The nonrandom association of alleles that tend to be inherited together more often than chance; a function of allele 
ages, genomic distance, and local recombination rates

Minor allele 
frequency

The prevalence of the least common allele among the possible allele combinations at a genomic site

Monogenic risk 
variants

Rare and typically disruptive or protein-truncating variants that confer large risks of disease; typically follow classic 
mendelian patterns of inheritance

Polygenic risk 
variants

Commonly occurring variants in the population that typically confer an individually small risk of developing a disease

AUC indicates area under the receiver-operating characteristic curve; LD, linkage disequilibrium; NRI, net reclassification index; and SNV, single 
nucleotide variant.
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Table 4.

Potential Clinical Utility of PRSs

Disease/risk factor Potential clinical utility of PRS

CAD Earlier identification for lifestyle therapies and statins, potentially for those with very high CAD PRSs
Earlier screening for subclinical atherosclerosis to time the initiation of pharmacotherapies
Use as a risk-enhancing factor for primary prevention in middle-aged patients at borderline-intermediate 10-y ASCVD 
risk

AF Earlier AF detection and resultant prophylactic anticoagulation, potentially with monitoring devices
Rigorous control of additive clinical risk factors for AF

T2D Earlier lifestyle modification
Potential consideration of prophylactic hypoglycemic medications with concomitant additional T2D clinical risk 
factors
Genomic stratification may optimize hypoglycemic choice

VTE Rigorous VTE risk-reducing strategies in the context of high-risk scenarios (prolonged travel, major surgery, etc)

Hypercholesterolemia Earlier institution and earlier uptitration of lipid-lowering pharmacotherapies analogous to FH

Pharmacogenomics Personalized drug therapy regimens that increase drug efficacy and decrease toxicities, eg, personalized β-blocker 
target dose in patients with HFrEF or the prevention of drug-induced QT prolongation

AF indicates atrial fibrillation; ASCVD, atherosclerotic cardiovascular disease; CAD, coronary artery disease; FH, familial hypercholesterolemia; 
HFrEF, heart failure with reduced ejection fraction; PRS, polygenic risk score; T2D, type 2 diabetes; and VTE, venous thromboembolism.

Lone AF refers to AF in the absence of other cardiovascular risk factors (typically in young adults).
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