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Abstract

Visual inspection of histopathology slides is one of the main methods used by pathologists 

to assess the stage, types and sub-types of lung cancer tumors. Adenocarcinoma (LUAD) and 

squamous cell carcinoma (LUSC) are the most prevalent sub-types of lung cancer and their 

distinction requires visual inspection by an experienced pathologist. In this study, we trained 

a deep convolutional neural network (inception v3) on whole-slide images obtained from The 

Cancer Genome Atlas to accurately and automatically classify them into LUAD, LUSC or normal 

lung tissue. The performance of our method is comparable to that of pathologists, with a 0.97 
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average Area Under the Curve (AUC). Our model was validated on independent datasets of 

frozen tissues, formalin-fixed paraffin-embedded tissues and biopsies. Furthermore, we trained 

the network to predict the ten most commonly mutated genes in LUAD. We found that six of 

them – STK11, EGFR, FAT1, SETBP1, KRAS and TP53 – can be predicted from pathology 

images with AUCs from 0.733 to 0.856, as measured on a held-out population. These findings 

suggest that deep learning models can assist pathologists in the detection of cancer sub-types or 

gene mutations. Our approach can be applied to any cancer type and the code is available at 

https://github.com/ncoudray/DeepPATH.
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Introduction

According to the American Cancer Society (www.cancer.org) and the Cancer Statistics 

Center (cancerstatisticscenter.cancer.org), over 150,000 lung cancer patients succumb to 

their disease each year (154,050 expected for 2018), while another 200,000 new cases 

are diagnosed on a yearly basis (234,030 expected for 2018). It is one of the most 

widely spread cancers in the world, due to smoking, but also exposure to toxic chemicals 

like radon, asbestos and arsenic. Adenocarcinoma and squamous cell carcinoma are 

the two most prevalent types of non-small cell lung cancer1, and each are associated 

with discrete treatment guidelines. In the absence of definitive histologic features, this 

important distinction can be challenging, time-consuming, and will require confirmatory 

immunohistochemical stains. Lung cancer type classification is a key diagnostic process 

because the available treatment options, including conventional chemotherapy and more 

recently targeted therapies, differ for LUAD and LUSC2. Also, a LUAD diagnosis will 

prompt the search for molecular biomarkers and sensitizing mutations, and thus has a great 

impact on treatment options3,4. For example, EGFR (epidermal growth factor receptor) 

mutations, present in about 20% of LUAD, and ALK rearrangements (anaplastic lymphoma 

receptor tyrosine kinase), present in less than 5% of LUAD5, currently have targeted 

therapies approved by the Food and Drug Administration (FDA)6,7. Mutations in other 

genes, such as KRAS and TP53 are very common (about 25% and 50% respectively), 

but have proven particularly challenging drug targets so far5,8. Lung biopsies are typically 

used to diagnose lung cancer type and stage. Virtual microscopy of stained images of 

tissues is typically acquired at magnifications of 20x to 40x, generating very large two-

dimensional images (10,000 to over 100,000 pixels in each dimension) that are oftentimes 

challenging to visually inspect in an exhaustive way. Furthermore, accurate interpretation 

can be difficult and the distinction between LUAD and LUSC is not always clear, 

particularly in poorly differentiated tumors, where ancillary studies are recommended for 

accurate classification9,10. To assist experts, automatic analysis of lung cancer whole-slide 

images has been recently studied to predict survival outcomes11 and classification12. In 

the latter, Yu et al. combined conventional thresholding and image processing techniques 

with machine learning methods, such as random forest classifiers, SVM or Naïve Bayes 
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classifiers, achieving an Area Under the Curve (AUC) of ~0.85 in distinguishing normal 

from tumor slides, and ~0.75 in distinguishing LUAD from LUSC slides. More recently, 

the use of Deep Learning was used for the classification of breast, bladder and lung 

tumors, achieving AUC of 0.83 in TCGA tumor slide classification of lung tumor types13. 

Analysis of plasma DNA values also shown to be a good predictor of the presence 

of non-small cell cancer with AUC~0.9414, while the use of immunochemical markers 

gives AUC of ~0.941 in distinguishing LUAD from LUSC15. Here, we demonstrate how 

the field can further benefit from Deep Learning, by presenting a strategy based on 

Convolutional Neural Networks (CNNs) that not only outperforms previously published 

work, but also achieves accuracies that are comparable to pathologists. Most importantly, 

our models maintain their performance when tested on independent datasets of both 

frozen and formalin-fixed paraffin-embedded (FFPE) tissues as well as on images obtained 

from biopsies. The development of new inexpensive and more powerful technologies (in 

particular Graphics Processing Units) has made possible the training of larger and more 

complex neural networks16,17. This resulted in the design of several deep CNNs, capable 

of accomplishing complex visual recognition tasks. Such algorithms have already been 

successfully used for segmentation18 or classification of medical images19, and more 

specifically for whole-slide image applications such as nuclei detection20, renal tissue 

segmentation21 and glomeruli localization22, breast cancer diagnosis23,24, colon tumor 

analysis25, glioma grading in brain tumors26, epithelial tissue identification in prostate 

cancer27 or osteosarcoma diagnosis28. CNNs have also been studied for classifying lung 

patterns on CT (Computerized Tomography) scans, achieving an f-score of ~85.5%29. 

To study the automatic classification of lung cancer whole-slide images, we used the 

inception v3 architecture30 and whole-slide images of hematoxylin and eosin (H&E) 

stained lung tissue from TCGA obtained by surgical excision followed by frozen section 

preparation. In 2014, Google won the ImageNet Large-Scale Visual Recognition Challenge 

by developing the GoogleNet architecture31 which increased the robustness to translation 

and non-linear learning abilities by using micro-architecture units called inception. Each 

inception unit includes several non-linear convolution modules at various resolutions. 

Inception architecture is particularly useful for processing the data in multiple resolutions, 

a feature that makes this architecture suitable for pathology tasks. This network has already 

been successfully adapted to other specific types of classifications like skin cancers32 and 

diabetic retinopathy detection33.

Results

A deep learning framework for the automatic analysis of histopathology images

The purpose of this study was to develop a deep learning model for the automatic analysis 

of tumor slides using publicly available whole-slide images available in TCGA34 and 

subsequently test our models on independent cohorts collected at our institution. The 

TCGA dataset characteristics and our overall computational strategy are summarized in 

Figure 1 (see Methods for details). We used 1634 whole-slide images from the Genomic 

Data Commons database: 1176 tumor tissues and 459 normal (Figure 1a). The 1634 

whole-slide images were split into three sets: training, validation and testing (Figure 1b). 

Importantly, this ensures that our model is never trained and tested on tiles (see below) 
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obtained from the same tumor sample. Because the sizes of the whole-slide images are too 

large to be used as direct input to a neural network (Figure 1c), the network was instead 

trained, validated and tested using 512×512 pixel tiles, obtained from non-overlapping 

“patches” of the whole-slide images. This resulted in tens to thousands of tiles per slide 

depending on the original size (Figure 1d). Based on the computational strategy outlined in 

Figure 1, we present two main results. First, we develop classification models that classify 

whole-slide images into normal lung, lung adenocarcinoma (LUAD) or lung squamous 

cell carcinoma (LUSC) with an accuracy significantly higher than previous work (AUC 

of 0.97 compared to 0.7512 and 0.8313) and comparable to pathologists. Unlike previous 

work12,13, the performance of our classification models was tested on several independent 

datasets: biopsies, and surgical resection specimens either prepared as frozen sections or as 

formalin-fixed, paraffin-embedded (FFPE) tissue sections. Second, starting with the LUAD 

regions, as predicted by the LUAD vs LUSC vs normal classification model, we utilize 

the same computational pipeline (Figure 1) to train a new model in order to predict the 

mutational status of frequently mutated genes in lung adenocarcinoma using whole-slide 

images as the only input. The entire workflow of our computational analysis is summarized 

in Supplementary Figure 1.

Deep learning models generate accurate diagnosis of lung histopathology images

Using the computational pipeline of Figure 1, we first trained inception v3 to recognize 

tumor versus normal. To assess the accuracy on the test set, the per-tile classification 

results were aggregated on a per-slide basis either by averaging the probabilities obtained 

on each tile, or by counting the percentage of tiles positively classified, thus generating a 

per-slide classification (see Methods for details). The two approaches yielded an Area Under 

the ROC Curve (AUC) of 0.990 and 0.993 (Supplementary Table 1 and Supplementary 

Figure 2a) respectively for normal-vs-tumor classification, outperforming the AUC of ~0.85 

achieved by the feature-based approach of Yu et al.12, of ~0.94 achieved by plasma DNA 

analysis14 and comparable or better than molecular profiling data (Supplementary Table 

2). Next, we tested the performance of our approach on the more challenging task of 

distinguishing LUAD and LUSC. First, we tested whether convolutional neural networks 

can outperform the published feature-based approach, even when plain transfer learning is 

used. For this purpose, the values of the last layer of inception v3 – previously trained on 

the ImageNet dataset to identify 1,000 different classes – were initialized randomly and 

then trained for our classification task. After aggregating the statistics on a per slide basis 

(Supplementary Figure 2b), this process resulted in an Area Under the Curve (AUC) of 

0.847 (Supplementary Table 1), i.e. a gain of ~0.1 in AUC compared to the best results 

obtained by Yu et al12 using image features combined with random forest classifier. The 

performance can be further improved by fully training inception v3 leading to AUC of 0.950 

when the aggregation is done by averaging the per-tile probabilities (Supplementary Figure 

2c). These AUC values are improved by another 0.002 when the tiles previously classified as 

“normal” by the first classifier are not included in the aggregation process (Supplementary 

Table 1). We further evaluated the performance of the deep learning model by training 

and testing the network on a direct three-way classification into the three types of images 

(Normal, LUAD, LUSC). Such an approach resulted in the highest performance with all 

the AUCs improved to at least 0.968 (Supplementary Figure 2d and Supplementary Table 
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1). In addition to working with tiles at 20x magnification, we investigated the impact of 

the magnification and field of view of the tiles on the performance of our models. Since 

low-resolution features (nests of cells, circular patterns) may also be useful for lung cancer 

type classification, we trained on slides showing larger field of views by creating 512×512 

pixels tiles of images at 5x magnification. The binary and three-way networks trained on 

such slides led to similar results (Supplementary Figure 2e–f and Supplementary Table 

1). Supplementary Figure 2g,h and Supplementary Table 2 summarize and compare the 

performance of the different approaches explored in this study and in previous work.

Comparison of deep learning model to pathologists

We then asked three pathologists (two thoracic pathologists and one anatomic pathologist) 

to independently classify the whole-slide H&E images in the test set by visual inspection 

alone, independently of the classification provided by TCGA. Overall, the performance of 

our models was comparable to that of each pathologist (Supplementary Figure 2b–f, pink 

cross). Supplementary Figure 2i shows that 152 slides in our test set have a true positive 

probability above 0.5 (according to our model), and for 18 slides, this probability is below 

0.5. 50% of the slides incorrectly classified by our model were also misclassified by at least 

one of the pathologists, while 83% of those incorrectly classified by at least one of the 

pathologists (45 out of 54) were correctly classified by the algorithm. We then measured the 

agreement between the TCGA classification and that of each pathologist, their consensus 

and finally our deep learning model (with an optimal threshold leading to sensitivity and 

specificity of 89% and 93%) using Cohen’s Kappa statistic (Supplementary Table 3). We 

observed that the agreement of the deep learning model with TCGA was slightly higher 

(0.82 vs 0.67 for pathologist 1, 0.70 for pathologist 2, 0.70 for pathologist 3, and 0.78 

for the consensus), but not reaching statistical significance (p-values 0.035, 0.091, 0.090 

and 0.549 respectively, estimated by a two-sample two-tailed z-test score). Regarding time 

effort, it can take a pathologist one to several minutes to analyze a slide depending on 

the difficulty to distinguish each case. Furthermore, in the absence of definitive histologic 

features, confirmatory immunohistochemical stains are required and can delay diagnosis 

for up to 24 hours. The processing time of a slide by our algorithm depends on its size; 

currently, it takes ~20 seconds to calculate per-tile classification probabilities on 500 tiles 

(the median number of tiles per slide is <500) on a single Tesla K20m GPU. Considering the 

possibility of using multiple GPUs to process tiles in parallel, classification using our model 

can be executed in a few seconds. The scanning time of each slide using the Aperio scanner 

(Leica) is currently 2–2.5 minutes for a slide at 20x, but with the 2017 FDA’s approval of 

the new ultra-fast digital pathology scanner from Philipps35, this step will probably not be a 

bottleneck anymore in the near future.

Testing on independent cohorts demonstrates generalizability of the neural network model

The model was then evaluated on independent datasets of lung cancer whole-slide images 

obtained from frozen sections (98 slides), formalin-fixed paraffin-embedded (FFPE) sections 

(140 slides), as well as lung biopsies (102 slides) obtained at the NYU Langone Medical 

Center (Figure 2a–c). In this case, the diagnosis made by the pathologists based on 

morphology and supplemented by immunohistochemical stains (TTF-1 and p40 for LUAD 

and LUSC respectively) when necessary was used as the gold standard. Each TCGA image 
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is almost exclusively composed of either LUAD cells, LUSC cells, or normal lung tissue. 

As a result, several images in the two new datasets contain features the network has not 

been trained to recognize, making the classification task more challenging. We observed that 

features including blood clot, blood vessels, inflammation, necrotic regions, and regions of 

collapsed lung are sometimes labelled as LUAD, bronchial cartilage is sometimes labelled 

as LUSC, and fibrotic scars can be misclassified as normal or LUAD. As demonstrated in 

Supplementary Figure 3a, TCGA images have significantly higher tumor content compared 

to the independent datasets, and tumor content correlates with the ability of the algorithm 

to generalize on these new unseen samples. To reduce the bias generated by some of these 

particular features that are found outside the tumor areas and only test the ability of our 

network to dissociate LUAD / LUSC / Normal tissues regions, the AUCs in Figure 2 were 

computed on regions of high tumor content, manually selected by a pathologist. Considering 

that new types of artifacts were also observed on some older slides (dull staining, uneven 

staining, air bubbles under the slide cover leading to possible distortion), the results obtained 

on these independent cohorts are very encouraging. At 20x magnification, more tiles are 

fully covered by some of these “unknown” features, whereas at 5x magnification, the field 

of view is larger and contains features known by the classified (tumor or normal cells) in 

many more tiles, allowing a more accurate per-tile classification. This, in turn, leads to a 

more accurate per-slide classification. Taken together, these observations may explain why 

the AUC of the classifier on 5x magnified tiles is mostly higher than the one from 20x 

magnified tiles. Interestingly, even though the slides from FFPE and biopsy sections were 

preserved using a different technique from those in the TCGA database, the performance 

remains satisfactory (Figure 2b). For the biopsies, we noticed that poor performance was 

associated with regions where fibrosis, inflammation or blood was also present, but also in 

very poorly differentiated tumors. Sections obtained from biopsies are usually much smaller, 

which reduces the number of tiles per slide, but the performance of our model remains 

consistent for the 102 samples tested (AUC~0.834–0.861 using x20 magnification and 

0.871–0.928 using the 5x magnification; Figure 2c) and the accuracy of the classification 

does not correlate with the sample size or the size of the area selected by our pathologist 

(Supplementary Figure 4; R2 = 9.5e-5). In one third of the cases collected, the original 

diagnosing pathologist was not able to visually determine the tumor type; TTF-1 and p40 

stains were therefore used to identify LUAD and LUSC cases respectively. Interestingly, 

when splitting the dataset, we noticed that our model is able to classify those difficult 

cases as well: at 20x, the LUAD/LUSC’s AUCs for those difficult cases are 0.809/0.822 

(CIs=[0.639–0.940 / 0.658–0.951]), which is only slightly lower than the slides considered 

obvious for the pathologists (AUC of 0.869/0.883 with CIs=[0.753–0.961 / 0.777–0.962]. 

Finally, we tested whether it is possible to replace the manual tumor selection process by 

an automatic computational selection. To this end, we trained inception v3 to recognize 

tumor areas using the pathologist’s manual selections. Training and validation was done on 

two out of the three datasets and testing was performed on the third one. For example, to 

test the performance of the tumor selection model on the biopsies, we trained the model to 

recognize the tumor area on the frozen and FFPE samples, then applied this model to the 

biopsies and finally applied the TCGA-trained 3-way classifier on the tumor area selected 

by the automatic tumor selection model. The per tile AUC of the automatic tumor selection 

model (using the pathologist’s tumor selection as reference) was 0.886 [CIs=0.880–0.891] 
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for the biopsies, 0.797 [CIs=0.795–0.800] for the frozen samples, and 0.852 [CIs=0.808–

0.895] for the FFPE samples. As demonstrated in Supplementary Figure 3a (right-most bar 

of each graph), we observed that the automatic selection resulted in a performance that is 

comparable to the manual selection (slightly better AUC in Frozen, no difference in FFPE 

and slighly worse in biopsies; see also Supplementary Figure 3b).

Predicting gene mutational status from whole-slide images

We then focused on the LUAD slides and tested whether CNNs can be trained to predict 

gene mutations using images as the only input. For this purpose, gene mutation data, for 

matched patient samples, were downloaded from TCGA. To make sure the training and 

test sets contain enough images from the mutated genes, we only selected those which 

were mutated in at least 10% of the available tumors. From each LUAD slide, only tiles 

classified as LUAD by our classification model were utilized for this task in order to avoid 

biasing the network to learn LUAD-specific vs LUSC-specific mutations and focus instead 

on distinguishing mutations relying exclusively on LUAD tiles. Inception v3 was modified 

to allow multi-output classification (see Methods for details): training and validation was 

conducted on ~212,000 tiles from ~320 slides, while testing was performed on ~44,000 

tiles from 62 slides. Box plot and ROC curves analysis (Figure 3a–b and Supplementary 

Figure 5) show that six frequently mutated genes seem predictable using our deep learning 

approach: AUC values for STK11, EGFR, FAT1, SETBP1, KRAS and TP53 were found 

between 0.733 and 0.856 (Table 1). Availability of more data for training is expected to 

improve the performance significantly. As mentioned earlier, EGFR already has targeted 

therapies. STK11 (Serine/Threonine protein Kinase 11), also known as Liver Kinase 1 

(LKB1), is a tumor suppressor inactivated in 15–30% of non-small cell lung cancers36 and 

is also a potential therapeutic target: it has been reported that phenformin, a mitochondrial 

inhibitor, increases survival in mice37. Also, it has been shown that STK11 mutations 

may play a role in KRAS mutations which, combined, result in more aggressive tumors38. 

FAT1 is an ortholog of the Drosophila fat gene involved in many types of cancers and its 

inactivation is suspected to increase cancer cell growth39. Mutation of the tumor suppressor 

gene TP53 is thought to be more resistant to chemotherapy leading to lower survival rates 

in small-cell lung cancers40. As for SETBP1 (SET 1 binding protein), like KEAP1 and 

STK11, has been identified as one of the signature mutations of LUAD41. Finally, for each 

gene, we compared the classification achieved by our deep learning model with the allele 

frequency (Figure 3c). Among the gene mutations predicted with a high AUC, in four 

of them, classification probabilities (as reported by our model) are associated with allele 

frequency: FAT1, KRAS, SETBP1 and STK11, demonstrating that these probabilities may 

reflect the percentage of cells effectively affected by the mutation. Looking, for example, at 

the predictions performed on the whole-slide image from Figure 4a, our process successfully 

identifies TP53 (allele frequency of 0.33) and STK11 (allele frequency of 0.25) as two 

genes most likely mutated (Figure 4a). The heatmap shows that almost all the LUAD tiles 

are highly predicted as showing TP53-mutant-like features (Figure 4b), and two major 

regions with STK11-mutant-like features (Figure 4c). Interestingly, when the classification 

is applied on all tiles, it shows that even tiles classified as LUSC present TP53 mutations 

(Figure 4d) while the STK11 mutant is confined to the LUAD tiles (Figure 4e). These 

results are realistic since, as mentioned earlier, STK11 is a signature mutations of LUAD41 
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while TP53 is more common in all human cancers. Future work on deep leaning models 

visualization tools42 would help identify and characterize the features used by the neural 

network. To visualize how the mutations and tiles are organized in the multi-dimensional 

space of the network, we used as before a t-SNE representation43 with the values of the last 

fully connected layer used an inputs. On the resulting plots (Supplementary Figure 6a), each 

dot represents a tile and its color is proportional to the probability of the gene to be mutated, 

as estimated by our model. The tile-embedded representation (Supplementary Figure 6b) 

allows the visual comparison of tiles sharing similar predicted mutations. Clusters of specific 

mutations can be seen at the surroundings of the plot. The top left group for example shows 

tiles were the aggressive double mutants KRAS and STK11 are both present, while the 

small one at the top shows tiles with KEAP1/SETBP1 and the cluster on the top right 

has been associated with the triple mutation of FAT1/LRP1B/TP53. Future analysis with 

laser capture microdissection could provide some additional spatial information and study 

the limits and precision of such a method44. Although our current analysis does not define 

yet the specific features used by the network to identify mutations, our results suggest that 

such genotype-phenotype correlations are detectable. Determining mutation status from a 

histological image and bypassing additional testing is important in lung cancer in particular 

as these mutations often carry prognostic as well as predictive information. Previous work 

has shown associations between clinically important mutations and specific patterns of 

lung adenocarcinoma45,46, as well as the histologic changes that correspond with the 

evolution of resistance47. More recently, Chiang and colleagues empirically demonstrated 

the relationship between a defining mutation and the unique morphology of a breast cancer 

subtype48. Some of the mutations with high AUCs highlighted in our study (like STK11 

and TP53) have been shown to affect cell polarity and cell shape49,50, two features that 

are not routinely assessed during the pathologic diagnosis. We note that our model was 

not able to detect ALK mutations although such tumors have been associated with specific 

histologic features, such as a solid pattern with signet ring cells or a mucinous cribriform 

pattern51,52. Although the prevalence of ALK mutations are very low (reportedly ranging 

from 1.8%–6.4%53), their presence is routinely determined via immunohistochemistry as 

these tumors may respond to ALK inhibitors6,7. To confirm that our models can be applied 

to independent cohorts, we tested the prediction of the EGFR mutant using 63 whole-slide 

images of lung resection specimens with known EGFR mutational status: 29 EGFR-mutant 

and 34 EGFR wild-type samples. This independent dataset has some important differences 

from the TCGA dataset which may negatively impact the evaluation of the TCGA-based 

model: (1) the samples were not frozen but were instead preserved using FFPE, and (2) 

only 22 samples had sequencing data to support the EGFR mutational status with high 

specificity and sensitivity; the rest of the samples (i.e. 65% of the test set) have been 

analyzed by immunohistochemical (IHC) stains54, a technique known for its high specificity 

but low sensitivity55,56 and which solely identifies the two most common mutations54 

(L858R and E746_A750del). On the other hand, data from the TCGA dataset used for 

training were identified with NGS (Next-Generation Sequencing tools Illumina HiSeq 2000 

or Genome Analyzer II). Our TCGA model has therefore been trained to detect not only 

L858R and E746_A75-del but many other EGFR mutants and deletions such as G719A, 

L861Q or E709_T710delinsD for example. Despite these caveats, we believed that it would 

still be important to demonstrate that our TCGA-derived models can at least perform 
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significantly better than random in the independent NYU cohort. Indeed, the results show an 

AUC of 0.687 (confidence intervals = 0.554–0.811) with higher AUC (0.750, CIs=[0.500–

0.966]) in samples validated by sequencing compared to those tested by IHC (AUC=0.659, 

CIs=[0.485–0.826]). Although the sequencing-based AUC of 0.75 is lower than the one 

estimated on the TCGA test set (0.83), we believe that most of this difference can be 

attributed to the difference in the sample preparation (frozen versus FFPE). We noticed that 

the discrepancy (~0.08) is similar to the difference observed in the AUCs of LUAD from 

the TCGA dataset (0.97) and the FFPE dataset (0.83). In the classification task, this issue 

was solved by lowering the magnification to 5x. However, this is not useful for the mutation 

prediction task, because it appears that 20x is necessary to capture predictive image features 

(the TCGA EGFR mutation prediction model at 5x has a random performance). Still, we 

believe that the 0.75 AUC we obtained on the sequencing-validated subset of EGFR-mutant 

cases demonstrates that the model can generalize on independent datasets.

Discussion

Our study demonstrates that convolutional neural networks, such as Google’s inception v3, 

can be used to assist in the diagnosis of lung cancer from histopathology slides: it almost 

unambiguously classifies normal vs tumor tissues (~0.99 AUC), distinguishes lung cancer 

types with high accuracy (0.97 AUC), reaching sensitivity and specificity comparable to that 

of a pathologist. Interestingly, around half of the TCGA whole-slide images misclassified 

by the algorithms have also been misclassified by the pathologists, highlighting the intrinsic 

difficulty in distinguishing LUAD from LUSC in some cases. However, 45 out of 54 of the 

TCGA images misclassified by at least one of the pathologists were assigned to the correct 

cancer type by the algorithm, suggesting that our model could be beneficial in assisting the 

pathologists in their diagnosis. The confusions matrices in Supplementary Table 4 details 

the discrepancies between the different classifications, while Supplementary Figure 7 shows 

a few examples where our model correctly classified whole-slide images misclassified by 

at least one of our pathologists. These images show poorly differentiated tumors that lack 

the classic histological features of either type (keratinization for LUSC and gland formation/

recognizable histological pattern for LUAD). The high accuracy of our model was achieved 

despite the presence of various artefacts in the TCGA images, related to sample preparation 

and preservation procedures. However, the TCGA images used to train the deep neural 

network may not fully represent the diversity and heterogeneity of tissues that pathologists 

typically inspect, which may include additional features such as necrosis, blood vessels and 

inflammation. More slides containing such features would be needed to re-train the network 

in order to further improve its performance. Despite this and the fact that the process was 

trained on frozen images, tests show very promising results on tumor classification from 

FFPE sections as well. While it has been suggested that mutations could be predicted from 

H&E images (AUC of ~0.71 for the prediction of SPOP mutations from prostate cancer 

H&E images57), before this study, it was unclear whether gene mutations would affect 

the pattern of tumor cells on a lung cancer whole-slide image, but training the network 

using presence/absence of mutated genes as a label revealed that there are certain genes 

whose mutational status can be predicted from image data alone: EGFR, STK11, FAT1, 

SETBP1, KRAS and TP53. Notably, the presence of STK11 mutations can be predicted 
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with the highest accuracy (~0.85 AUC). A limiting factor in obtaining higher accuracies 

lies in the small number of slides that contain positive instances (i.e. the gene mutations) 

available for training, therefore our models can greatly benefit from larger datasets that 

may become available in the near future. The ability to quickly and inexpensively predict 

both the type of cancer and the gene mutations from histopathology images could be 

beneficial to the treatment of cancer patients given the importance and impact of these 

mutations6,36–41. Overall, this study demonstrates that the use of deep learning convolutional 

neural networks could be a very promising tool to assist pathologists in their classification 

of whole-slide images of lung tissues. This information can be crucial in applying the 

appropriate and tailored targeted therapy to lung cancer patients, increasing thereby the 

scope and performance of precision medicine that aims at developing a multiplex approach 

with patient-tailored therapies58. The diagnosis and therapy differ significantly between 

LUSC to LUAD and may depend on the mutational status of specific genes. In particular, 

when inspecting frozen section biopsies, pathologists only rely on morphology, and may 

need immunostaining for the most difficult cases; our algorithm, which still achieves an 

AUC above 0.8 on biopsies that usually require immune-staining, can be used as an adjunct 

to telepathology to speed up diagnosis and classification during intraoperative consultation. 

As a result of advances in our understanding of lung cancer and a concomitant rise in the 

number and types of treatment options, the role of the pathologist in the diagnosis and 

management of this disease is significantly more complex than cancer type distinction and 

even determination of mutational status. While our computational analyses may play a role 

in the initial diagnosis with the benefit of providing important prognostic information based 

on an H&E image alone, the pathologist has additional tasks such as staging the tumor 

and, in an increasing number of cases, estimating response to treatment. In the future, we 

would ideally extend the classification to other types of less common lung cancers (large cell 

carcinoma, small cell lung cancer) histological subtypes of LUAD (acinar, lepidic, papillary, 

micropapillary and solid), as well as non-neoplastic features including necrosis, fibrosis, and 

other reactive changes in the tumor microenvironment, though the amount of data currently 

available is insufficient. We hope that by extending our algorithm to recognize a wider range 

of histologic features, followed by providing a quantitative and spatial assessment as in our 

heatmaps, we will be able to aid aspects of the pathologist’s evaluation that are well-suited 

to automated analyses. We hope that this computational approach could play a role in both 

routine tasks and difficult cases (for example, distinguishing intrapulmonary metastases 

from multiple synchronous primary lung cancers) in order to allow the pathologist to 

concentrate on higher-level decisions, such as integrating histologic, molecular, and clinical 

information in order to guide treatment decisions for individual patients.

Online Methods

TCGA lung cancer whole-slide image dataset

Our dataset comes from the NCI Genomic Data Commons34 which provides the research 

community with an online platform for uploading, searching, viewing and downloading 

cancer-related data. All freely available slide images of Lung cancer were uploaded from 

this source. We studied the automatic classification of “solid tissue normal” and “primary 

tumor” slides using a set of respectively 459 and 1175 hematoxylin and eosin stained 

Coudray et al. Page 10

Nat Med. Author manuscript; available in PMC 2023 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



histopathology whole-slide images59,60. Then, the “primary tumor” were classified between 

LUAD and LUSC types using a set of respectively 567 and 608 of those whole-slide 

images. The labels provided by the TCGA database were used as our gold standard. Those 

labels were the result of a consensus as explained by the GDC data curator (personal 

communication): first, the submitting institutions were asked to review each sample prior 

sending it to confirm the diagnosis. Then, a slide from the sample was reviewed by a TCGA 

contracted expert thoracic pathologist. In the event of a disagreement, the slide would be 

reviewed by one or more other expert thoracic pathologists. Out of the 170 slides in our 

test set, only 1 image was tagged as leading to inconsistent labels (and about 30 had not 

information about it).

Image pre-processing generates 987,931 tiles

The slides were tiled in non-overlapping 512×512 pixel windows at a magnification of 

x20 using the openslide library67 (533 of the 2167 slides initially uploaded were removed 

because of compatibility and readability issues at this stage). The slides with a low amount 

of information were removed, that is all the tiles where more than 50% of the surface is 

covered by background (where all the values are below 220 in the RGB color space). This 

process generated nearly 1,000,000 tiles.

Deep learning with Convolutional Neural Networks

We used 70% of those tiles for training, 15% for validation, and 15% for final testing 

(Table 2 and Table 3). The tiles associated with a given slide were not separated but 

associated as a whole to one of these sets to prevent overlaps between the three sets. Typical 

CNN consist of several levels of convolution filters, pooling layers and fully connected 

layers. We based our model on inception v3 architecture36. This architecture makes use 

of inception modules which are made of a variety of convolutions having different kernel 

sizes and a max pooling layer. The initial 5 convolution nodes are combined with 2 max 

pooling operations and followed by 11 stacks of inception modules. The architecture ends 

with a fully connected and then a softmax output layer. For “normal” vs “tumor” tiles 

classification, we fully trained the entire network. For the classification of type of cancer, we 

followed and compared different approaches to achieve the classification: transfer learning, 

which includes training only the last fully-connected layer, and training the whole network. 

Tests were implemented using the Tensorflow library (tensorflow.org).

Transfer learning on inception v3

We initialized our network parameters to the best parameter set that was achieved on 

ImageNet competition. We then fine-tuned the parameters of the last layer of the network on 

our data via back propagation. The loss function was defined as the cross entropy between 

predicted probability and the true class labels, and we used RMSProp69 optimization, with 

learning rate of 0.1, weight decay of 0.9, momentum of 0.9, and epsilon of 1.0 method 

for training the weights. This strategy was tested for the binary classification of LUAD vs 

LUSC.
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Training the entire inception v3 network

The inception v3 architecture was fully trained using our training datasets and following 

the procedure described in 70. Similar to transfer learning, we used back-propagation, cross 

entropy loss, and RMSProp optimization method, and we used the same hyperparameters 

as the transfer learning case, for the training. In this approach, instead of only optimizing 

the weights of the fully connected layer, we also optimized the parameters of previous 

layers, including all the convolution filters of all layers. This strategy was tested on three 

classifications: normal vs tumor, LUAD vs LUSC and Normal vs LUAD vs LUSC. The 

training jobs were run for 500,000 iterations. We computed the cross-entropy loss function 

on train and validation dataset, and used the model with best validation score as our final 

model. We did not tune the number of layers or hyper-parameters of the inception network 

such as size of filters. As this training gave the best results, we also investigated the 

importance of training the network on a larger field of view at the expense of a lower 

resolution. Whole slide images were tiled at a magnification of 5x (keeping the tile size at 

512×512 pixels) and the network was again fully trained.

Identification of gene mutations

To study the prediction of gene mutations from histopathology images, we modified the 

inception v3 to perform multi-task classification rather than a single task classification. 

Each mutation classification was treated as a binary classification, and our formulation 

allowed multiple mutations to be assigned to a single tile. We optimized the average of 

the cross entropy of each individual classifier. To implement this method, we replaced 

the final softmax layer of the network with a sigmoid layer, to allow each sample to be 

associated with several binary labels 71. We used RMSProp algorithm for the optimization, 

and fully trained this network for 500k iterations using only LUAD whole-slide images, 

each one associated with a 10-cell vector, each cell associated to a mutation and set to 

1 or 0 depending on the presence or absence of the mutation. Only the most commonly 

mutated genes were used (Table 4), leading to a training set of 223,185 tiles. Training and 

validation were done over 500,000 iterations (Supplementary Figure 8). The test was then 

achieved on the tiles, and aggregation on the n=62 test-slides where at least one of these 

mutations is present was done only if the tile was previously classified as “LUAD” by the 

Normal/LUAD/LUSC 3-classes classifier.

Statistical Analysis

Once the training phase was finished, the performance was evaluated using the testing 

dataset which is composed of tiles from slides not used during the training. We then 

aggregated the probabilities for each slide using two methods: either average of the 

probabilities of the corresponding tiles, or percentage of tiles positively classified. For 

the binary LUAD/CLUSC classifiers, n=170 slides from 137 patients, and for the Normal/

Tuimor and for the three-way classifiers, n=244 slides from 137 patients. The ROC 

(Receiver Operating Characteristic) curves and the corresponding AUC (Area Under the 

Curve) were computed in each case61 using the python library sklearn62. Confidence 

Intervals (CIs) at 95% were estimated by 1,000 iterations of the bootstrap method63. Tumor 

slides could contain a certain amount of “normal” tiles. Therefore, we also checked how 
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the ROC & AUC were affected when tiles classified as “normal” were removed from the 

aggregation. We asked three pathologists to manually label the TCGA test LUAD and 

LUSC images and compared the agreements between the ratings using the Cohen’s Kappa 

statistic64,65, comparing it to the binary LUAD/LUSC deep-learning classifier using the 

optimal threshold of 0.4/0.6 (optimal threshold is here defined as the point of the ROC curve 

which is closest to the perfect (1,0) coordinate). Heatmaps were also generated for some 

tested slide to visualize the differences between the two approaches and identify the regions 

associated with a certain cancer type. To analyze more thoroughly the network trained 

on gene mutations, we used the Barnes-Hit implementation of the t-Distributed Stochastic 

Neighbor Embedding (t-SNE) technique43 to reduce the dimensionality and facilitate the 

visualization of the classes. The values associated with the last fully connected layer were 

used as an input, and setting theta to 0.5, perplexity to 50, and 10,000 iterations. For the 

LUAD/LUSC classifier, the t-SNE plot was generated using n=149,790 tiles of 244 slides 

from 137 patients. For the gene mutation prediction task, the t-SNE plot was generated 

using n=24,144 tiles of 62 slides from 59 patients. Mutation probability distributions and 

relationship to allele frequency were analyzed with the two-tailed Mann Whitney U-tests 

and computed using the same dataset (62 slides from 59 patients).

Visualization of features identified by the three-way classifier in high-confidence tiles

In Supplementary Figure 9, we present examples of LUSC and LUAD slides, together with 

heatmaps generated by our algorithm, where the color of each tile corresponds to the class 

assigned by our algorithm (LUAD, LUSC or Normal), while the color shade is proportional 

to the classification probability. The LUSC image shows most of its tiles with a strong 

true positive probability for LUSC classification, while in the LUAD image the largest 

regions indeed have strong LUAD features, with normal cells on the side (as confirmed by 

our pathologist), and some light blue tiles indicating the existence of LUSC-like features 

in this tumor. In Supplementary Figure 10, the values of the last fully connected layer 

are visualized using a t-SNE representation which generates two-dimensional scatterplots 

of high-dimensional features43. For tiles associated with LUSC, we note a predominance 

of areas of keratinization, dyskeratotic cells, as well as rare foci of cells with prominent 

intracellular bridging. Among the tiles denoted LUAD, the predominant feature noted is 

the presence of distinct gland forming histological patterns such as lepidic and acinar (well 

differentiated) and micropapillary (poorly differentiated). These include well-differentiated 

patterns (lepidic and acinar) as well as poorly differentiated types (micropapillary). At 

the center of the t-SNE, regions that cannot be clearly associated with either LUAD or 

LUSC are composed of tiles with conspicuous preservation artifact, minute foci of tumor, 

or areas of interstitial/septal fibrosis. Then, the area designated as normal is composed of 

tiles showing benign lung parenchyma, focal fibrosis or inflammation, as well as rare LUAD 

with preservation artifacts. Interestingly, the area with tiles which could not be designated 

normal/LUAD/LUSC with high confidence shows both benign and malignant lung tissue in 

a background of dense fibrosis and/or inflammation.

Tests on independent cohorts

To challenge the trained algorithm and identify its limitations, we tested the three-way 

classifier with different cohorts. Images of lung cancers were obtained from the New York 
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University Langone Medical Center from both frozen (75 of LUAD and 23 of LUSC), FFPE 

sections (74 LUAD, 66 LUSC) and biopsies (51 LUAD and 51 LUSC). The diagnosis 

used as true positive for these cases are based on morphology (gland formation for 

adenocarcinoma and keratinization and intracellular bridges for squamous cells), with the 

cases classified according to the World Health Organization, and for the more challenging 

cases, immunostaining was performed. Because biopsies can be much narrower, during the 

tiling process at 5x magnification, tiles were kept if at least 20% of it was covered by 

the tissue instead of 50%. As those external slides also contained a lot of elements the 

network was not trained to identify (blood clot, cartilage), we ran the final tests on regions 

of interests (ROI) selected by a pathologist. Those regions were selected manually using 

Aperio ImageScope (Leica Biosystems), and tiles were kept only if it was covered by at 

least 50% of the ROI for 20x mag tiles, and 10% for the 5x mag tiles. Additionally, we 

trained several networks to automatically select those ROIs for the NYU dataset (tumor / 

non-tumor): the first network was trained with the FFPE+Biopsies slides and tested on the 

Frozen ones, the second trained with the FFPE+Frozen slides and tested on the Biopsy 

ones, and the third trained with the Frozen+Biopsy slides and tested on the FFPE ones. 

For each test, we therefore applied this automatic ROI selection followed by the three-way 

classifier trained on the TCGA dataset, allowing us to compare the performance of the 

independent cohorts at different levels: using the whole slide image, using ROIs selected 

by a pathologist, and using ROIs selected by a trained deep-learning architecture. For the 

mutations, we identified 63 FFPE sections which were tested for EGFR mutations; 34 were 

identified as wild-type and 29 as mutant. Most of them (41) were analyzed using markers 

used as immunochemical stains to detect the mutations L858R and E746_A750del. The 

others (17 and 5 respectively), were analyzed by PCR (Polymerase Chain Reaction) or NGS 

(Next Generation Sequencing). The tests were run using tumor regions manually selected by 

a pathologist. Further information on experimental design is available in the Life Sciences 

Reporting Summary.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Data and strategy:
(a) Number of whole-slide images per class. (b) Strategy: (b1) Images of lung cancer 

tissues were first downloaded from the Genomic Data Common database; (b2) slides were 

then separated into a training (70%), a validation (15%) and a test set (15%); (b3) slides 

were tiled by non-overlapping 512×512 pixels windows, omitting those with over 50% 

background; (b4) the Inception v3 architecture was used and partially or fully re-trained 

using the training and validation tiles; (b5) classifications were performed on tiles from an 

independent test set and the results were finally aggregated per slide to extract the heatmaps 

and the AUC statistics. (c) Size distribution of the images widths (gray) and heights (black). 

(d) Distribution of the number of tiles per slide.
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Figure 2. Classification of presence and type of tumor on alternative cohorts:
Receiver Operating Characteristic (ROC) curves (left) from tests on (a) frozen sections 

(n=98 biologically independent slides), (b) formalin-fixed paraffin-embedded (FFPE) 

sections (n=140 biologically independent slides) and (c) biopsies (n=102 biologically 

independent slides) from NYU Langone Medical Center. On the right of each plot, we show 

examples of raw images with an overlap in light grey of the mask generated by a pathologist 

and the corresponding heatmaps obtained with the three-way classifier. Scale bars are 1 mm.
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Figure 3. Gene mutation prediction from histopathology slides give promising results for at least 
6 genes:
(a) Mutation probability distribution for slides where each mutation is present or absent (tile 

aggregation by averaging output probability). (b) ROC curves associated with the top four 

predictions (a). (c) Allele frequency as a function of slides classified by the deep learning 

network as having a certain gene mutation (P≥0.5), or the wild-type (P<0.5). p-values 

estimated with two-tailed Mann-Whitney U-test are shown as ns (p>0.05), * (p≤0.05), ** 

(p≤0.01) or *** (p≤0.001). For a, b and c, n=62 slides from 59 patients. For the two box 
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plots, whiskers represent the minima and maxima. The middle line within the box represents 

the median.
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Figure 4. Spatial heterogeneity of predicted mutations.
(a) Probability distribution on LUAD tiles for the 6 predictable mutations with average 

values in dotted lines (n=327 non-overlapping tiles). The allele frequency is 0.33 for TP53, 

0.25 for STK11 and 0 for the 4 other mutations. (b) heatmap of TP53 and (c) STK11 

when only tiles classified as LUAD are selected, and in (d) and (e) when all the tiles are 

considered. Scale bars are 1 mm.
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Table 1.

Area Under the Curve (AUC) achieved by the network trained on mutations (with 95% CIs).

Mutations
Per tile AUC Per slide AUC after aggregation by…

… average predicted probability … percentage of positively classified tiles

STK11 0.845 [0.838–0.852] 0.856 [0.709–0.964] 0.842 [0.683–0.967]

EGFR 0.754 [0.746–0.761] 0.826 [0.628–0.979] 0.782 [0.516–0.979]

SETBP1 0.785 [0.776–0.794] 0.775 [0.595–0.931] 0.752 [0.550–0.927]

TP53 0.674 [0.666–0.681] 0.760 [0.626–0.872] 0.754 [0.627–0.870]

FAT1 0.739 [0.732–0.746] 0.750 [0.512–0.940] 0.750 [0.491–0.946]

KRAS 0.814 [0.807–0.829] 0.733 [0.580–0.857] 0.716 [0.552–0.854]

KEAP1 0.684 [0.670–0.694] 0.675 [0.466–0.865] 0.659 [0.440–0.856]

LRP1B 0.640 [0.633–0.647] 0.656 [0.513–0.797] 0.657 [0.512–0.799]

FAT4 0.768 [0.760–0.775] 0.642 [0.470–0.799] 0.640 [0.440–0.856]

NF1 0.714 [0.704–0.723] 0.640 [0.419–0.845] 0.632 [0.405–0.845]

n = 62 slides from 59 patients
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Table 2.

Dataset information for normal vs tumor classification (number of tiles / slides in each category).

Training Validation Testing

Normal 132,185 / 332 28,403 / 53 28,741 / 74

Primary tumor 556,449 / 825 121,094 / 181 121,059 / 170

Nat Med. Author manuscript; available in PMC 2023 January 18.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Coudray et al. Page 26

Table 3.

Dataset information for LUAD vs LUSC classification (number of tiles / slides in each category).

Training Validation Testing

LUAD 255,975 / 403 55,721 / 85 55,210 / 79

LUSC 300,474 / 422 65,373 / 96 65,849 / 91
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Table 4.

Gene included in the multi-output classification and the percentage of patients with LUAD in the database 

where the genes are mutated.

Gene mutated TP53 LRP1B KRAS KEAP1 FAT4 STK11 EGFR FAT1 NF1 SETBP1

%Patients 50 34 28 18 16 15 12 11 11 11
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