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Abstract

Motivation: Compound–protein interaction (CPI) plays an essential role in drug discovery and is performed via ex-
pensive molecular docking simulations. Many artificial intelligence-based approaches have been proposed in this re-
gard. Recently, two types of models have accomplished promising results in exploiting molecular information:
graph convolutional neural networks that construct a learned molecular representation from a graph structure
(atoms and bonds), and neural networks that can be applied to compute on descriptors or fingerprints of molecules.
However, the superiority of one method over the other is yet to be determined. Modern studies have endeavored to
aggregate information that is extracted from compounds and proteins to form the CPI task. Nonetheless, these
approaches have used a simple concatenation to combine them, which cannot fully capture the interaction between
such information.

Results: We propose the Perceiver CPI network, which adopts a cross-attention mechanism to improve the learning
ability of the representation of drug and target interactions and exploits the rich information obtained from
extended-connectivity fingerprints to improve the performance. We evaluated Perceiver CPI on three main datasets,
Davis, KIBA and Metz, to compare the performance of our proposed model with that of state-of-the-art methods. The
proposed method achieved satisfactory performance and exhibited significant improvements over previous
approaches in all experiments.

Availability and implementation: Perceiver CPI is available at https://github.com/dmis-lab/PerceiverCPI.

Contact: kangj@korea.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Drug development is a high-cost low-efficient process. New drug ap-
proval typically requires 10–15 years and costs 2.8 billion dollars on
an average (Wouters et al., 2020). Various approaches based on arti-
ficial intelligence have been introduced to alleviate this problem. In
recent years, traditional machine learning (ML) algorithms have
been deployed to model the prediction of the interaction between
compounds and proteins as a binary classification problem (Bahi
and Batouche, 2021). However, binding affinity, which indicates the
interaction strength of the drug–target pair, is a continuum value;
hence, considering compound–protein interaction (CPI) as a regres-
sion problem is both effective and sufficient.

Through the binding mechanism, drugs can have a positive or
negative influence on the functions carried out by proteins, which af-
fect the targeted disease conditions (You et al., 2018).
Understanding drug–target binding affinity makes it possible to
identify candidate drugs that can inhibit or stimulate a given protein.

Researchers have attempted to exploit meaningful information from
given proteins and compounds. Notably, in terms of protein infor-
mation extraction, most previous approaches consider the protein
sequence as a plain text and then use a 1D convolutional neural net-
work (1DCNN) with different methods of protein sequence number-
ing. Nevertheless, two types of models have shown excellent
performance in terms of obtaining information from chemical com-
pounds: deep neural networks (DNNs) such as a multiple layer per-
ceptron (MLP) neural network, and 1DCNN performing on
descriptors or fingerprints, and graph neural networks (GNNs) and
their variants for extracting knowledge from a graph-structured
dataset (Yang et al., 2019).

With respect to the first approach for molecular descriptors,
Öztürk et al. (2018) proposed DeepDTA, which adopts two
1DCNNs to perform on raw sequences and the simplified
molecular-input line-entry system (SMILES) (Weininger, 1988) as
one-hot vectors. Using 1DCNN, the authors aimed to extract local
residues and atomic features to predict binding affinity.
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DeepConv-DTI (Lee et al., 2019) followed a similar idea of
DeepDTA by introducing a deep learning (DL) model to predict
CPIs using raw protein sequences with Morgan/circular finger-
prints (Morgan, 1965) as a compound representation. They used a
1DCNN on entire sequences of proteins to capture local residue
patterns, while applying MLP neural network on molecular finger-
prints to get drug features. Subsequently, Lee et al. concatenated
aforementioned features, then transmitted them to a fully con-
nected layer and predicted the property.

Regarding the second method, GNNs that follow a neighbor-
hood aggregation scheme have become increasingly popular for
graph-structured data (Scarselli et al., 2009). Numerous variants of
GNN models have been proposed to achieve state-of-the-art
(SOTA) performances in graph-based tasks in various fields of deep
learning. Aware of the strength of GNNs, Nguyen et al. (2021) con-
verted a compound representation into a graph represented by nodes
(atoms) and edges (bonds); they, then, used four types of GNNs,
graph convolutional networks (GCNs), graph attention networks
(GATs), graph isomorphism networks (GINs) and a combination of
GCNs and GATs, to capture molecular information. The knowledge
extracted from atoms and bonds was then concatenated with the
output of three 1DCNNs, which were used to learn different levels
of abstract features from raw protein sequences.

Transformers (Vaswani et al., 2017) have shown a good perform-
ance in many AI fields, such as computer vision and natural language
processing. Inspired by their potential to capture features between two
sequences, Chen et al. (2020) proposed TransformerCPI, which is
based on the architecture of an autoregressive encoder–decoder, using
a combination of multiheaded attention and positional feed-forward to
perform the CPI task. In their approach, molecular graphs were propa-
gated to a GCN to obtain atomic features. Meanwhile, protein sequen-
ces were converted into sequential representations by separating a
protein sequence into an overlapping 3-g amino acid sequence. Then,
all words were translated into real-valued embeddings using the pre-
training approach. The output was processed through 1DCNNs to ob-
tain the final representation of the protein. Subsequently, these two
representations were combined using a modified self-attention mechan-
ism followed by MLPs. Motivated by the effectiveness of the self-
attention mechanism, HyperattentionDTI was created (Zhao et al.,
2022). The model was designed to input both compounds and proteins
as plain sequences to two stacked 1DCNNs. In contrast to previous
attention-based models, HyperattentionDTI inferred an attention vec-
tor by using a Sigmoid activation function rather than using a Softmax
activation function.

The drawbacks of the existing approaches can be summarized as
follows:

1. Because molecular descriptor vectors or fingerprints [such as

extended-connectivity fingerprint (ECFP)] contain useful chem-

ical knowledge from the start, the use of molecular fingerprints

and molecular descriptors might lead to a better performance

than using complex graphs on small datasets. However, owing

to the representation’s simplification, models deploying them

may underfit larger datasets.

2. On the other hand, GNNs must always learn a meaningful

chemical space embedding from scratch. In addition, because of

the global pooling step, which is simply chosen as the sum or

average of all atomic features, over-smoothing and information

loss are also crucial issues for GNNs.

3. Integration of the compound network’s and protein network’s

representation is often performed by a simple concatenation,

which is practically unsuitable for revealing the relationship be-

tween these molecules in practice.

4. Obtaining informative messages from protein sequences is a

focus of research not only in CPI tasks but also in the general

bioinformatics. Most current approaches consider protein

sequences as plain texts, which cannot sufficiently reveal the real

3D structures of proteins.

In this study, we developed Perceiver CPI, a deep-learning model
that addresses three of the abovementioned challenges (1, 2 and 3).
Our approach is mainly inspired by that of Perceiver IO (Jaegle
et al., 2021b) and a directed message-passing neural network (D-
MPNN) (Yang et al., 2019). The contributions of this study are
summarized as follows:

• To avoid over-smoothing and information loss problems, we propose

a novel method to enrich the representation of compounds by com-

bining the information from both ECFPs and graph information.
• To the best of our knowledge, Perceiver CPI is the first approach

to use nested cross-attention for capturing the relations between

protein and molecule representations.
• Experimental results show that Perceiver CPI can achieve SOTA

performance in novel pair and novel compound settings, and is

competitive or slightly better than the baseline models in a novel

protein setting.

2 Materials and methods

2.1 Feature encoding
2.1.1 Compound information encoding

Unlike previous approaches, which have commonly used either
ECFP or molecular graph information constructed from SMILES,
our proposed approach adopts ECFP to enrich the information
extracted from the compound using D-MPNN (Yang et al., 2019).
More specifically, we represent a molecule s using two forms:

• A Morgan/circular fingerprint vector Ms as a binary vector,

which indicates the existence of specific substructures. The

Morgan algorithm searches each atom of the molecule and

obtains all possible paths through the atom with a specific radius.

Then, each unique path is hashed into a number based on a max-

imum of bit number.
• A molecular graph GsðA;BÞ, which represents the interactions

between a set of atoms A by a set of bonds B.

We then process Ms and Gs through a MLP neural network and
D-MPNN, respectively. Owing to its ability to approximate any
continuous mapping, the MLP neural network is used to capture
complex non-linear relationship features from Ms to yield OMs as
the output. D-MPNN operates on hidden states ht

vw and messages
mt

vw associated with directed edges (bonds) instead of messages asso-
ciated with vertices (atoms). Each bond in the graph has a hidden
state (i.e. feature vector) that contains atomic features (atomic num-
ber, number of bonds for each atom, formal charge, chirality, num-
ber of bonded hydrogens, hybridization, aromaticity and atomic
mass) and bond features [bond type (single/double/triple/aromatic),
conjugation, ring membership and stereochemistry] (Stokes et al.,
2020). For each bond Bvw, we aggregate the function of the hidden
states of all arriving neighboring bonds with the hidden state ht

vw it-
self. Then, the hidden state of edge ht

vw is updated using the obtained
message and the previous hidden state of the atom. In other words,
the hidden state of bond Bvw is obtained by updating the old hidden
state with the newly obtained message. The corresponding message-
passing update equations from atom Av to atom Aw are as follows:

mtþ1
vw ¼

P
k2fNðvÞnwg Averageðxv; xk;h

t
kvÞ

htþ1
vw ¼ ftðht

vw;m
tþ1
vw Þ

8<
: (1)

where x is the feature of the corresponding atom A, ft is a MLP
layer.

Specifically, in the message-passing phase, all messages arriving
at bond Bvw are aggregated using a permutation-invariant aggrega-
tion function Average. Rather than using the summation function as
suggested by the original D-MPNN, which caused model instability
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when training on small datasets, we adopt the average function
Average to help the model update gradually. The aggregated repre-
sentation is then combined with the existing hidden state via the
MLP ft, resulting in an updated node feature vector hvw. Notably,
all hidden states are initially set to h0

vw ¼ uðf ðconcatðxv; evwÞÞÞ (with
evw as the feature of bond Bvw, u is ReLU activation function). The
main idea behind the message-passing technique is to prevent the
distortion of messages between atoms. For example, the message
from An to Anþ1 will only be propagated to Anþ2 and Anþ3 in the
next iteration, whereas, in a conventional MPNN, it will be sent to
node An, creating an unnecessary loop in the message-passing pro-
cess. In the readout phase, we use one more average function to con-
struct a final representation OGs.

Finally, after having two outputs OMs from MLP net and OGs

from D-MPNN, we combine this information by adopting a
cross-attention mechanism:

Q ¼ fQðOMsÞ; K ¼ fKðOGsÞ; V ¼ fVðOGsÞ (2)

Attention energy ¼ Softmax
QKTffiffiffiffiffiffiffiffiffi

C=d
p
 !

(3)

Comps ¼ CrossAttentionðQ;K;VÞ ¼ Attention energy � V

(4)

where Q is created from the output of the Morgan fingerprint MLP
OMs, and K and V are generated from the output OGs of the D-
MPNN by the projection functions f ¼ wTxþ b (where w and b are
weight and bias, respectively). C and d are the embedding dimen-
sions and number of heads, respectively. Figure 1 visualizes the at-
tention module. Note that, OMs and OGs are 1D arrays. In our
experiments, one more projection function f0 was used for a dimen-
sion reduction purpose at the end of the block. We found that a
single-head cross-attention outperformed other multi-head cross-
attentions.

Using two modalities, we provide multiple views from com-
pounds to the model; hence, Perceiver CPI is able to learn compre-
hensive patterns precisely. The ECFP provides information on the
existence of substructures, whereas the graph representation consid-
ers the carrying knowledge that shows how they connect to one
another.

2.1.2 Protein information encoding

The protein t was encoded using the tasks assessing protein embed-
dings (TAPE) tokenizer, where the initial feature of each residue was
represented by the corresponding number following the UniRep
Vocabulary (Rao et al., 2019). We used this one-hot encoding

scheme for protein sequences, mainly because it is the simplest
method to construct a unified representation (UniRep), which is
broadly applicable and generalized to unseen regions of sequence
space (Alley et al., 2019). The input is zero-padded to ensure that
the number of output features remains fixed and then propagated
into the blocks of 1DCNNs. Finally, we obtain the final output fea-
tures. To help the model learn more deeply, we use the skip connec-
tion type to gradually change the weight of the network (He et al.,
2016). Skip connections suggest skipping some of the layers in the
neural network and feeding the output of one layer as the input to
the next layers, thereby ensuring feature reusability to avoid the
shattered gradient problem. The shattered gradient problem occurs
in DNNs when the gradients resemble white noise and negatively
impact the training (Balduzzi et al., 2017). Residual connection
resolves this by introducing a spatial structure to the gradients, thus
stabilizing the training process. Eventually, the output of the 1D
convolution block can be expressed as follows:

where M is the number of 1DCNN layers, k is fixed to isolate the ef-
fect of scaling and LN is a layer normalization function. emb repre-
sents the protein embedding with initialization emb0. Motivated by
transformers, a combination of normalization and skip connection
is observed to be helpful in facilitating the model’s capacity to learn
of the model to protein information. Furthermore, the use of LN is
intended to normalize the distributions of intermediate layers that
might mitigate the gradient malformation to enable smoother gra-
dients, faster training and better generalization accuracy. In particu-
lar, we use gated linear unit activation, a finite context approach
through stacked convolutions, which can efficiently extract informa-
tion from a sequence because it allows parallelization over sequen-
tial token features (Dauphin et al., 2017).

2.2 Compound–protein interaction
After obtaining two output representations from the three-element
networks, we need to precisely integrate them to ultimately teach

Algorithm 1 An algorithm for residual block of 1DCNN

Require: M, embin  Conv1Dðemb0Þ; k
Result: Prott  embout

for M do

embout  LN (Conv1DðembinÞ þ embin * k);

embin  GLUðemboutÞ;
end for

Fig. 1. Demonstration of attention blocks. While the self-attention block accepts inputs from only single source, cross-attention blocks receive information from two sources
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the model to capture valuable information that reveals CPI proper-
ties. The effective fusion of these multiple input sources is becoming
increasingly important, as these multi-modality features have been
shown to generate highly accurate performances in various tasks. A
significant fusion method synergistically combines the two modal-
ities and guarantees that the resultant product reflects the binding
features of the input modalities (Mohla et al., 2020; Chen et al.,
2021). Inspired by Perceiver IO and Perceiver (Jaegle et al.,
2021a,b), we propose a novel method that leverages a highly asym-
metric attention mechanism to distill compound information itera-
tively and then structure the final interaction representation using
the protein information from a single cross-attention module. In the
cross-attention block, we aim to force the model to capture patterns
that show the effect of information from the compound on the pro-
tein information. In other words, we use this method because we
primarily intend to determine how the protein reacts with the com-
pound. More characteristically, after representing a compound, we
process the compound latents by applying a series of self-attention
modules to refine the compound representation. Finally, we com-
bine Comps and Prott by applying a cross-attention module that
maps latent arrays to the protein representation. The final inter-
action representation can be expressed as follows:

Q ¼ fQðCompsÞ; K ¼ fKðProttÞ; V ¼ fVðProttÞ (5)

Interactions;t ¼ CrossAttentionðQ;K;VÞ (6)

Using the cross-attention mechanism, we can model the semantic
relevance between the protein and compound features, thus drawing
attention to significant interaction information and benefiting the
binding affinity prediction task. The cross-attention module gener-
ates cross-attention energy (also known as an attention map), which
is then used to weight the feature map to achieve informative and
discriminative feature representation. Moreover, the computation
and memory complexity of generating attention energy in cross-
attention are linear rather than quadratic, making the entire process
more efficient.

2.3 Loss function and optimizer
In our experiment, we used the mean squared error (MSE) loss func-
tion with LAMB optimizer, which stands for ‘layer-wise adaptive
moments optimizer for batch training’ (You et al., 2019). As can be
seen, the training may become unstable if this ratio is too high.
However, the weights do not change rapidly enough if the ratio is
too small. Using the trust ratio, LAMB enables the model to be more
confident in each step and scale much larger batch sizes without
causing divergence. The hyperparameters in our neural network are
searched using Bayesian optimization algorithms.

2.4 Benchmark datasets
To compare SOTA models with the proposed Perceiver CPI model
and analyze its performance, we used three well-known benchmark
datasets. To make use of the complementary information captured
by the various bioactivity types, including dissociation constant

(Kd), inhibition constant (Ki) or the half maximal inhibitory concen-
tration (IC50), Tang et al. (2014) introduced a model-based integra-
tion approach called KIBA to generate an integrated drug–target
bioactivity matrix. KIBA scores were created to optimize the consist-
ency of the three measurements. The Davis dataset contains the
interactions of 68 kinase inhibitors with 442 kinases covering
>80% of the human catalytic protein kinome without missing inter-
actions (Davis et al., 2011). The original unit of the dataset is Kd val-
ues; however, normalization of the label helps improve the
performance. Hence, log transformation was applied to scale the
label in the smaller range pKd ¼ �log10ðKd=1e9Þ. Specifically, we
used KIBA and Davis from the open-source software named
DeepPurpose (Huang et al., 2021). For Metz data, Metz et al.
(2011) presented a critical statistical analysis of kinomics screening
data across 170 different protein kinases and establishing rigorous
criteria. The PDBbind dataset contained 16 151 interactions (Wang
et al., 2005). After filtering and processing to qualify the dataset,
6689 unique pairs were retained (Li et al., 2020). Table 1 shows the
summary statistics for all datasets.

Furthermore, the density of all four datasets is shown in
Figure 2. We employed kernel density estimation, a fundamental
data smoothing problem where inferences about the population are
made based on a finite data sample to reveal the dataset density.
Figure 2 indicates that almost all the Davis dataset binding affinity
values were highly concentrated around five. In particular, 69.64%
of the Davis dataset had affinity binding values of five, whereas
71.96% of the KIBA dataset were in the range from 11.1 to 12. Due
to the skew distribution of Davis dataset and KIBA dataset, we em-
pirically forced the model to perform a larger weight update for
data points, which did not belong to the high density area 10 times
larger than the others. For instance, in Davis dataset, the data points
have binding affinity in the range from 0 to 5 were discounted by
0.5, while the out-ranged data points multiplied by 5. Conversely,
the Metz and PDBbind datasets exhibited well-balanced distribu-
tions with fewer outliers than the others; however, the sparsity of
these datasets is extremely high.

For a fair comparison, we also used the GPCR classification
dataset to evaluate the enrichment factor (EF) from the Directory of
Useful Decoys-Enhanced database (DUD-E) database. EF is used to
show the performance of the model in finding true positives
throughout the background database compared to random selection
(Huang et al., 2006). Moreover, EF reveals the concentration of the
annotated ligands among the top-scoring compounds compared to
their concentrations throughout the entire dataset. For instance, the

Table 1. Statistics of the benchmark datasets

Dataset Proteins Drugs Interactions Density (%)

Davis (Davis et al., 2011) 442 68 30 056 100

KIBA (Tang et al., 2014) 229 2068 117 657 24.84

Metz (Metz et al., 2011) 170 1423 35 259 14.57

PDBbind (Wang et al., 2005) 2079 5535 6989 0.06

Fig. 2. Visualization of benchmark datasets with kernel density estimation
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enrichment factor at 1% is the percentage of ligands found when
1% of decoys were found (Jain, 2008). Decoys from the DUD-E
database were extracted from the ZINC database and were commer-
cially available compounds for virtual screening (Mysinger et al.,
2012). The 2D-similarity between the active compounds and decoy
compounds are measured by calculating the Tanimoto distance. The
statistics of the GPCR dataset are shown in Table 2 for training
obtained from TransformerCPI, which was extracted from the
GLASS database (Chan et al., 2015). The dataset provides experi-
mentally validated GPCR–ligand associations. A threshold of 6.0
was set to divide the original dataset into positive and negative sets.
Finally, Table 3 presents the test sets collected from the GPCR and
Diverse subsets in the DUD-E database.

3 Experimental results and discussion

3.1 Experimental results
Model conversion: As mentioned above, we considered the CPI task
as a regression problem. Nevertheless, only a few methods have
used a similar concept; we transformed binary classification models,
such as TransformerCPI, DeepconvDTI and HyperattentionDTI
into regression models by modifying their final layers. To maintain
the original performance, the output of the last layer was trans-
formed to a single perceptron node, and the loss function was
altered to the MSE loss function.

Experimental procedure: Owing to the density of the Davis dataset
and because the dataset approximately covers 80% of the human
catalytic protein kinomes, we decided to perform three experi-
ments: novel pair setting, novel compound setting and novel pro-
tein setting; only novel pair setting was applied on the KIBA and
Metz datasets. Finally, the PDBbind dataset and GPCR dataset
with the GPCR and the Diverse subsets from the DUD-E database
were used for an additional analysis. To calculate the similarities,
the protein similarity is measured by the percentage of the number
of aligned amino acids over the total length (in Perceiver CPI, the

length of the proteins was fixed to 500). Meanwhile, the com-
pound similarity was calculated using the Tanimoto similarity
function.

• Novel pair (Davis, KIBA and Metz): There were no overlaps be-

tween the training and test datasets. Neither the training com-

pound nor the training protein appeared in the test set.
• Novel-hard pair (Davis): There were no overlaps between the

training and test datasets. The testing interactions were highly se-

lective for similarities less than 0.3 by comparing to training

interactions.
• Novel compound (Davis): There were no intersections of com-

pounds in the training set and compounds in the test set.
• Novel protein (Davis): There were no intersections of proteins in

the training set and proteins in the test set.
• Cross-domain experiment (Davis and PDBbind): There were no over-

laps between the training and test datasets. We trained the model

with the Davis dataset and tested it with the PDBbind dataset.
• Enrichment factor analysis [GPCR, GPCR subset (DUD-E data-

set), Diverse subset (DUD-E dataset)]: There were no overlaps

between the training and test datasets. We trained the model

with the GPCR dataset and tested it with subsets from the DUD-

E dataset (the duplicated target ‘CXCR4’ was removed from the

Diverse subset).

Evaluation metric: To evaluate the performance on the regression
task, we used the mean squared error (MSE) metric to measure the
performance of the models and the concordance index (CI) metric to
evaluate the proportion of concordant prediction pairs per the total
number of label pairs, which tells us whether the predicted binding
affinity values of two random drug–target pairs were predicted in
the same order as their truth values. In the enrichment factor ana-
lysis, we adopted an EF score at fraction 1% (EF1%) to show the per-
formance of the models in determining the annotated ligands among
the top binding affinity compounds and the Boltzmann-enhanced
discrimination of the receiver operating characteristic score to focus
more on early enrichment with a¼80.5 (BEDROCa¼80:5).

Cross-validation: We applied five-fold cross-validation to calculate
the performance of baseline models and Perceiver CPI in four experi-
ments: novel pair, novel-hard pair, novel compound, novel protein.
The validation set was taken arbitrarily from the training set follow-
ing the ratio training: validation¼80%: 20% for all experiments.

Table 4 compares the performance of Perceiver CPI with five
SOTA deep-learning baseline models for the three types of separa-
tions. Regarding the two principal tasks (novel pair and novel com-
pound), Perceiver CPI showed remarkable performances. With
reference to the novel pair setting, our proposed model achieved an
MSE of 0.463(60.013) and CI of 0.638(60.028), whereas the com-
petitors performed poorly. In the novel compound experiment,
Perceiver CPI reached the lowest MSE (0.378(60.010)) and had the
highest value in CI (0.726(60.017)). We discovered no significant

Table 3. Statistics of GPCR and diverse subsets from DUD-E

database

Subset Number of target Actives Decoys

GPCR subset 5 1480 99 856

Diverse subset 7 1759 107 591

Table 4. Comparison of the proposed method with SOTA model in terms of three settings from the Davis dataset with 5-fold cross-

validation

Model Novel pair Novel compound Novel protein

MSE CI MSE CI MSE CI

DeepDTA (Öztürk et al., 2018) 0.631(60.059) 0.533(60.027) 0.482(60.034) 0.613(60.029) 0.701(60.045) 0.759(60.015)

DeepConvDTI (Lee et al., 2019) 0.598(60.057) 0.546(60.043) 0.512(60.046) 0.681(60.012) 0.789(60.109) 0.714(60.034)

TransformerCPI (Chen et al., 2020) 0.549(60.038) 0.490(60.032) 0.522(60.027) 0.592(60.026) 0.708(60.032) 0.676(60.005)

GraphDTA (GINs) (Nguyen et al., 2021) 0.846(60.058) 0.459(60.032) 0.452(60.051) 0.670(60.018) 0.970(60.061) 0.660(60.016)

HyperattentionDTI (Zhao et al., 2022) 0.671(60.045) 0.517(60.013) 0.506(60.015) 0.578(60.019) 0.784(60.063) 0.674(60.020)

Perceiver CPI (ours) 0.463(60.013) 0.638(60.028) 0.378(60.010) 0.726(60.017) 0.667(60.018) 0.758(60.010)

Note: The metrics are MSE (the lower, the better) and CI (the higher, the better) (6 standard deviation)

Table 2. Statistic of GPCR dataset

Proteins Compounds Positive pairs Negative pairs Density (%)

356 5359 7989 7354 0.8

Perceiver CPI 5



difference between the previous approaches and our model in the
novel protein tasks. Nonetheless, Perceiver CPI performed better
than the others in terms of MSE and was competitive with the first-
placed model in terms of CI metric. As shown in Table 5, in the
most challenging setting, when the test set was significantly different
from what the model trained on, the proposed method outper-
formed baseline compactors by providing precise predictions, result-
ing in the lowest MSE. In practice, the number of proteins is finite,
and most of them will eventually be annotated, which means that
the CPI task is mainly about finding a new compound with existing
proteins in the real world. Interestingly, our model was also more
stable than the others as indicated by its lower standard deviation
among the validations.

Considering the most challenging setting, the novel pair split set-
tings with KIBA and Metz datasets, as shown in Table 6,
DeepConvDTI achieved inferior performance using ECFP represen-
tation for compounds. Although ECFP captures useful information
for CPI prediction, owing to its simplicity, the knowledge from com-
pounds is still not fully used. Therefore, instead of using the ECFP
independently, a combination of ECFP and graph representations of
the compound was utilized to further improve performance. The
two datasets contained many missing interactions, resulting in the
underperformance of all models. In the KIBA dataset, Perceiver CPI
attained a lower MSE than the baseline by 0.028 and a higher CI. In
particular, it was extremely difficult to obtain correct predictions
using the Metz dataset, which has a 14.57% density.

Moreover, we performed a cross-domain experiment to determine
the adaptability of our method to an unseen domain dataset. We chose
two datasets (Davis and PDBbind) owing to their overlapping proper-
ties and measurements. First, we eliminated all overlapping interactions
from the PDBbind dataset to the Davis dataset. Second, while we div-
ided the Davis dataset into training and validation sets at a ratio of
80%:20%, the processed PDBbind dataset was used as a test set. The
results in Table 7 show that Perceiver CPI significantly outperformed
the baselines. The proposed approach achieved a higher performance
on CI metrics than SOTA models, while exhibited a lower MSE. In
other words, Perceiver CPI provides more precise predictions than the
compared models. In particular, all models, including ours, performed
poorly in the cross-domain experiment because of the quantity and
quality of the training dataset.

We tested the model and other classifiers and five docking-
based programs [Gold (Jones et al., 1997), Glide (Friesner et al.,
2004), Surflex (Jain, 2003), FlexX (Rarey et al., 1996) and
Blaster (Irwin et al., 2009)] on subsets from the DUD-E database.

We converted Perceiver CPI architecture into a classifier by
changing the loss function from MSELoss to CrossEntropyLoss,
as well as by transforming the last layer into a sigmoid function.
Ligand enrichment among top-ranking hits is an important criter-
ion for molecular docking and drug–target interactions. Table 8
reveals that Perceiver CPI achieved a better performance for mul-
tiple targets in an EF1% and BEDROCa¼80:5 than the other deep-
learning models. However, the docking-based method outper-
formed the data-driven method for most protein targets on both
metrics (Supplementary Table S7). Perhaps the combination of
the two good methods might lead to an excellent performance.
Moreover, the accumulation of extended datasets may enhance
the predictions of the ML/DL models.

In summary, the proposed Perceiver CPI achieves a competitive
or better performance than SOTA deep-learning baselines in all set-
tings, due to the fact that our model adopts the strength of a atten-
tion mechanism to dynamically adjust the features of drugs and
proteins in different combinations.

3.2 Discussion
3.2.1 Difference between perceiver CPI and perceiver IO

Perceiver IO is an updated version of Perceiver, which uses an asym-
metric attention mechanism to accept input information into a tight la-
tent space. Subsequently, the output of Perceiver is merged with the
query system using an additional cross-attention. The key insight is to
produce each output by attending to the latent array using a specific
output query associated with that output. Therefore, the target of
Perceiver IO is the input compound. However, the purpose of Perceiver
CPI is to seek a change in the protein caused by the effect of a com-
pound; hence, our target is the input protein. As shown in Figure 3, we
take the key (K) and value (V) from the protein information, contrary
to Perceiver IO, which considers the protein information as an output
query array (Q). Besides, empirical experiment results with the original
structure of Perceiver IO showed poorer performance on the CPI task
when compared to Perceiver CPI.

4 Conclusion and future work

In this study, we deployed cross-attention mechanisms to address
the CPI task. We proposed a novel attention mechanism to not only
enrich the information extracted from a compound using ECFP
knowledge but also to capture CPI information effectively. The pro-
posed Perceiver CPI model exhibited a significantly improved

Table 6. Comparison of Perceiver CPI performance to SOTA baseline models in novel pair task from on KIBA and Metz datasets

Model KIBA Metz

MSE CI MSE CI

DeepDTA (Öztürk et al., 2018) 0.668(60.055) 0.600(60.011) 0.781(60.060) 0.627(60.011)

DeepConvDTI (Lee et al., 2019) 0.550(60.009) 0.635(60.007) 0.703(60.027) 0.671(60.016)

TransformerCPI (Chen et al., 2020) 0.630(60.057) 0.563(60.014) 1.081(60.125) 0.557(60.016)

GraphDTA (GINs) (Nguyen et al., 2021) 0.698(60.042) 0.591(60.013) 1.232(60.094) 0.615(60.010)

HyperattentionDTI (Zhao et al., 2022) 1.022(60.062) 0.590(60.015) 1.064(60.080) 0.630(60.013)

Perceiver CPI (ours) 0.522(60.010) 0.638(60.013) 0.658(60.016) 0.675(60.012)

Table 5. Comparison of Perceiver CPI and other SOTA competitors

on novel-hard pair setting

Model MSE CI

DeepDTA (Öztürk et al., 2018) 0.948(60.218) 0.565(60.040)

DeepConvDTI (Lee et al., 2019) 0.768(60.290) 0.571(60.052)

TransformerCPI (Chen et al., 2020) 0.806(60.254) 0.508(60.071)

GraphDTA (GINs) (Nguyen et al., 2021) 0.931(60.314) 0.542(60.070)

HyperattentionDTI (Zhao et al., 2022) 0.873(60.246) 0.600(60.049)

Perceiver CPI (ours) 0.701(60.244) 0.609(60.072)

Table 7. Results of the cross-domain experiment (trained on Davis

and tested on PDBbind)

Model MSE CI

DeepDTA (Öztürk et al., 2018) 4.716 0.500

DeepConvDTI (Lee et al., 2019) 5.400 0.477

TransformerCPI (Chen et al., 2020) 4.962 0.497

GraphDTA (GINs) (Nguyen et al., 2021) 6.323 0.516

HyperattentionCPI (Zhao et al., 2022) 5.946 0.410

Perceiver CPI (ours) 4.612 0.532
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performance on three benchmark datasets when compared with
SOTA baselines in terms of MSE and CI.

Although Perceiver CPI has demonstrated excellent performance,
much work remains to improve the performance of CPI prediction
tasks in the future.

• Finding and extracting meaningful features from proteins remains a

difficult but worthwhile task. For instance, AlphaFold2 from

DeepMind can be used to predict the 3D structure of proteins

(Jumper et al., 2021).
• The information taken from compounds can still be cultivated

more profitably, such as by using the META-Learning method to

construct a better representation from small datasets.
• Utilizing information from 3D structures produced from

SMILES, as GeoMol attempts to do, is also a promising method

because of its high information capacity (Ganea et al., 2021).
• Adopting the transfer learning method for individual neural net-

works (compound and protein networks) to generate improved

representations from the beginning with the help of prior know-

ledge should also be considered.
• The interpretability of Perceiver CPI is limited by the dimension-

ality reduction of MLP from the hidden state update process in

the message-passing step and from the attention blocks.

Addressing such useful features would form a valuable part of

future work.
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