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Using digital traces to build prospective and real-time
county-level early warning systems to anticipate COVID-
19 outbreaks in the United States
Lucas M. Stolerman1,2,3*, Leonardo Clemente1,4*, Canelle Poirier1,2, Kris V. Parag5,
Atreyee Majumder6, Serge Masyn6, Bernd Resch7,8, Mauricio Santillana2,4,9*

Coronavirus disease 2019 (COVID-19) continues to affect the world, and the design of strategies to curb disease
outbreaks requires close monitoring of their trajectories. We present machine learning methods that leverage
internet-based digital traces to anticipate sharp increases in COVID-19 activity in U.S. counties. In a complemen-
tary direction to the efforts led by the Centers for Disease Control and Prevention (CDC), our models are de-
signed to detect the time when an uptrend in COVID-19 activity will occur. Motivated by the need for finer
spatial resolution epidemiological insights, we build upon previous efforts conceived at the state level. Our
methods—tested in an out-of-sample manner, as events were unfolding, in 97 counties representative of mul-
tiple population sizes across the United States—frequently anticipated increases in COVID-19 activity 1 to 6
weeks before local outbreaks, defined when the effective reproduction number Rt becomes larger than 1 for
a period of 2 weeks.

Copyright © 2023 The
Authors, some
rights reserved;
exclusive licensee
American Association
for the Advancement
of Science. No claim to
original U.S. Government
Works. Distributed
under a Creative
Commons Attribution
License 4.0 (CC BY).

INTRODUCTION
With more than 6 million deaths worldwide as of August 2022, the
coronavirus disease 2019 (COVID-19) pandemic has become a
global catastrophic event (1). The United States alone has reported
more than 90 million infections and more than 1 million deaths (2).
While COVID-19 vaccination strategies have been deployed in the
United States since the early months of 2021, the proportion of fully
vaccinated individuals is still low, at around 64%. With the emer-
gence of new variants of severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2)—the virus responsible for infecting people
with COVID-19—such as Omicron, the observed waning of immu-
nity conferred by vaccines (3), and the fact that many nonpharma-
ceutical interventions (NPIs), such as mask mandates and social
distancing, have become less frequently practiced, the United
States is still highly vulnerable to the effects of the COVID-19 out-
breaks (4). Thus, our best line of defense against uncontrolled out-
breaks remains to be vaccinated and to adjust our social behavior
when sharp increases of infections are first detected (5, 6). In the
context of designing timely and appropriate public health responses
to slow down infections and eventual deaths, robust real-time indi-
cators of COVID-19 activity are of great importance, as they guide
authorities in their decision-making processes.
Tracking COVID-19 in real time with reliable data sources

remains a challenge despite many initiatives led by hospitals, local
health authorities, and the research community (7). For instance,

polymerase chain reaction (PCR) COVID-19 test results are typical-
ly delayed bymultiple days and reported with days or weeks of delay.
Testing availability may substantially affect the recorded number of
positive COVID-19 cases, which may suggest that changes in
COVID-19 activity reflect testing volumes rather than the underly-
ing proportions of infections in the population (1, 8). Furthermore,
the reliability, consistency, and, in general, the quality of reported
COVID-19 data—such as confirmed cases, hospitalization, and
deaths—vary highly from country to country (and within coun-
tries) frequently due to disparities in economic resources locally al-
located to monitor and respond to the pandemic (7).
Statistical models have been proposed to address delays in data

collection and ascertainment biases retrospectively and in real time
(9–12). Computational mechanistic [susceptible-infected-recovered
(SIR)] models, on the other hand, have been used to reconstruct the
spatiotemporal patterns of the spread of COVID-19 retrospectively
and to forecast likely COVID-19 cases and deaths to occur in the
near future (13–19). Many studies characterizing the quality and ac-
curacy of forecasts have emerged from COVID-19 initiatives coor-
dinated by the U.S. Centers for Disease Control and Prevention
(CDC) (20). Those models are usually based on mechanistic SIR-
like systems, sometimes with added inference frameworks (21,
22). Despite their ability to explore potential “what if” scenarios
and their accuracy during periods where the epidemic curves have
been monotonically increasing or decreasing, most of these fore-
casting models have not been very consistent or reliable in antici-
pating sharp changes in disease activity (23).
Several studies have also shown the potential utility of “digital”

(or internet-based) data sources as a complementary way to track
(and/or confirm) changes in disease activity at the population
level (24–31). In the past, many approaches explored valuable infor-
mation from search engines (29, 32–35), Twitter microblogs (36–
38), and electronic health records (39–41) for real-time estimates
of disease incidence and characterized the limitations of those non-
traditional data sources in the context of influenza (42, 43). In the
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past 2 years, statistical and machine learning approaches have ex-
plored how to incorporate disease-related internet search data to
track and forecast COVID-19 activity (44–46), with some limita-
tions documented (47). The logic behind using disease-related
“digital data” to monitor disease activity is that user-generated
digital traces may capture changes in human behavior (human mo-
bility, situational awareness, increases in certain clinical treatments,
population-level topic interests, social media trending content) that
may have an impact on disease transmission and/or may reflect in-
creases in symptomatic infections (48, 49).
Kogan et al. (50) explored the effectiveness of Google Trends,

Twitter microblogs, clinician searches, anonymized human mobil-
ity from mobile phones records, and smart thermometers to antic-
ipate increases and decreases in COVID-19 activity at the state level,
as reported by health care systems. By combining multiple data
streams, they proposed a Bayesian indicator capable of predicting
an impending COVID-19 outbreak with several weeks of anticipa-
tion in near real time. Their methods were successful when tested in
a retrospective fashion and during the first half of the year 2020.
However, at the time of their study, Kogan and colleagues (50)
did not have enough data to perform out-of-sample validation
tests, which is now possible given the higher number of COVID-
19 outbreaks. Moreover, Kogan et al. (50) did not explore the fea-
sibility of using their approaches at finer spatial resolutions, such as
the county level, where the signal-to-noise ratio in aggregated
digital data streams may be compromised and where most outbreak
control strategies are implemented in the United States.
Here, we present a framework to deploy a prospective real-time

machine learning–based early warning system (EWS) to anticipate
or confirm COVID-19 outbreaks at the county level in the United
States. Our choice of counties was based on a list of locations iden-
tified by our collaborators at Johnson & Johnson as potentially suit-
able locations (with a range of population sizes) to deploy clinical
trials for their vaccine. In addition, we included the most highly
populated counties in the country leading to a total of 97 counties
included in our analysis. Our systems leverage the predictive power
of both individual internet-based data sources and their combined
consensus. We quantify their predictive performance in a prospec-
tive out-of-sample way from January 2020 to January 2022, includ-
ing the most recent periods when the highly contagious Omicron
variant was detected. By implementing event detection algorithms
on each of these internet-based time series and using machine
learning strategies to combine this information, we anticipate the
onset of local COVID-19 outbreaks—defined as the time when
the local effective reproductive number, Rt, becomes larger than 1
in a given region (51). In comparison to the current state-of-the-art
models on COVID-19 prediction led by the CDC’s COVID-19
Forecasting Hub Consortium (23, 52–54), our methods do not
aim to predict the number of cases or deaths, but rather were de-
signed to detect sharp increases in COVID-19 activity, a task that
the current CDC models have continuously failed to accomplish
as stated by Cramer et al. (52): “Most forecasts [within the CDC’s
COVID-19 Forecast Hub Consortium] have failed to reliably
predict rapid changes in the trends of reported cases and hospital-
izations. Due to this limitation, they should not be relied upon for
decisions about the possibility or timing of rapid changes in trends.”
Our approach aims to fill this gap, providing an EWS that specifi-
cally focuses on predicting rapid increases in the trends of reported
COVID-19 cases.

RESULTS
We analyzed COVID-19 activity in 97 U.S. counties across the
United States between 1 January 2020 and 1 January 2022. First,
we identify weeks when the local reproductive number (commonly
denoted by Rt) was higher than 1 [with 95% confidence interval as
described in (55)], suggesting that the local number of secondary
COVID-19 infections was larger than 1 per index case. We
labeled each first week when the local Rt transitioned from a value
smaller than 1 to one above 1 as outbreak onset for each location
(see Materials and Methods for details). Interchangeably, we also
refer to these outbreak onsets as events here. We identified 464 out-
break onsets at the county level. From this total, 367 events were
used to test our methods out of sample, after using the first outbreak
onset of each location as initial training data. In this work, we use a
dynamic training approach, which is retraining the EWS every time
a new outbreak event is observed to reassess the predictive power of
all used Google search terms. More specifically, we use all the data
up to a given outbreak as our training set and prepare for the up-
coming prediction. This technique has been used successfully to
address the limitations of Google Flu Trends (24, 42, 49, 56). We
replicated this analysis for the 50 U.S. states, where we identified
252 outbreak onsets at the state level (a total of 202 out-of-sample
outbreak onsets).
We obtained COVID-19–related digital streams for the same

time period with the goal of identifying, for example, moments in
time when (i) COVID-19–related internet searches, such as fever or
anosmia, showed sharp increases—perhaps signaling a population-
wide increase of symptomatic infections; (ii) clinicians were looking
for dosage information for specific medications to control fever or
other COVID-19 symptoms; or (iii) Twitter users expressed that
they or their family/friends may have caught COVID-19, among
other signatures. We then explored the ability of our methods to
extract information from these data sources (individually and as a
consensus) to anticipate outbreak onsets for each geographi-
cal scale.
Our results are summarized in Figs. 1 and 2 for the county and

state levels, respectively. By dynamically training our machine
learning methods to recognize temporal patterns that precede in-
creases in COVID-19 activity, we tested their ability to anticipate
outbreak onsets. Specifically, we quantified how early they could an-
ticipate unseen outbreaks (referred to as earliness) and the number
of times they anticipated, synchronously identified, or lately con-
firmed a subsequently observed outbreak (referred to as an early,
synchronous, or late warning). We also quantified the number of
times our methods triggered an alarm, but no outbreak onset was
subsequently observed (referred to as a false alarm), and the number
of missed outbreaks when no alarm preceded an outbreak onset.
Specifically, we defined an early warning whenever an alarm was

triggered up to 6 weeks before the outbreak onsets. The choice of a
6-week window was made to plausibly relate a digital trend change
with a potential subsequent infection. For example, if a person uses
Google to search for COVID-19–related information due to a likely
symptomatic infection, that person’s COVID-19 infection may be
confirmed in the following week or two, if they are admitted to a
health care facility or tested by a provider. Alternatively, such
person may search for COVID symptoms not in response to their
own symptoms but to someone else’s within their close contact
network (that may eventually infect them). In that case, the lag
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between that internet search and an eventual confirmed infection
may be longer, perhaps up to 4 to 6 weeks. We also defined synchro-
nous warning and late warning whenever an alarm was triggered on
the same date or up to 2 weeks later than the identified outbreak
onset, respectively.
In both Figs. 1 and 2, panel (A) serves as a graphical representa-

tion of the different outcomes observed in our EWSs, namely, when
the system leads to a successful early, synchronous, or late warning;
a false alarm; and a missed outbreak. Two other scenarios were
characterized: one that explores when the system may have suggest-
ed that a full outbreak would occur but only a mild increase in
COVID-19 activity was subsequently observed, labeled as
warning, increase is observed, and another labeled as a soft
warning, which is observed when the system almost triggered an
alarm and an increase of COVID-19 activity was subsequently
seen—this could signal an improper model calibration, perhaps a

consequence of the small number of events to train the models in
a given location. For simplicity, the COVID-19 cases reported by
Johns Hopkins University (JHU) are shown in gray, and an early
warning indicator is shown in light orange. The horizontal dotted
black line represents an EWS’s decision boundary, i.e., a threshold
value used to activate an outbreak alarm (see Materials
and Methods).

County-level performance
Figure 1B displays a summary count of all the outbreak onsets ob-
served at the county level. Each horizontal bar is colored, from
orange to purple, depending on the event class previously described.
In this work, we developed two different machine learningmethods:
(i) The Single Source method that explores the predictive power of
individual digital sources by detecting increases in the search
volume of a given term and (ii) the Multiple Source method that

Fig. 1. A summary of our results at the county level. (A) Graphical representation of the different outcomes observed in our methods: early warnings, synchronous
warnings, late warnings, soft warnings, missed outbreaks, warnings with increased activity, and false alarms. (B) Summary of the outbreak onset events. Horizontal bars
are colored, from orange to purple, depending on the event class. (C) False alarms for the Naive, Single Source, andMultiple Sourcemethods. TheMultiple Sourcemethod
produced the lowest amount of false alarms (110). (D) Probability of resurgence P(Rt > 1) and different events generated by the Naive, Single Source (Google Trends “How
long does covid last?” and “side effects of vaccine”), and Multiple Source methods. (E) Earliness of the alarms triggered by each method. Bars represent the number of
alarms within the out-of-sample time window.
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incorporates many different signals, optimizing on their best indi-
vidual performances, to produce a single output (see Materials and
Methods). We compared the predictive performance of our
methods against an intuitive baseline, which we refer to as the
Naive method. The Naive method predicts that an outbreak will
happen whenever there is an increase in the number of confirmed
COVID-19 cases, i.e., if the COVID-19 cases increase on week t
compared to week t − 1, the Naive method triggers an alarm at
week t.
Early warnings
The alarms produced by the Naive method resulted in early warn-
ings for 337 of the 367 total events (92%) and displayed 23 synchro-
nous warnings and one late warning in the remaining 19 events
(6%). The best signal in the Single Source method (Google search
term “How long does covid last?”) identified 237 early warnings
(65%), 25 synchronous warnings (7%), and 30 (8%) late warnings.

Here, we use the term “best signal” to reference those digital traces
with a higher number of early warnings across the 97 counties in our
dataset. We obtained a comparable performance for the Google
search term “side effects of vaccine,” with 227 early warnings
(62%), 19 synchronous warnings (5%), and no late warnings. The
Multiple Source method identified 254 early warnings (69%), 30
synchronous warnings (8%), and 26 late warnings (7%).
Soft warnings and missed outbreaks
The Naive method missed six events (2%), and the Single Source
method for the two displayed Google Trends (“How long does
covid last?” and “side effects of vaccine”) missed 75 and 106
events (20 and 29%), respectively. For the Multiple Source
method, 47 of the 57 remaining events were soft warnings (13%
of the total events) and 10 were missed outbreaks (3% of the
total events).

Fig. 2. A summary of our results at the state level. (A) Graphical representation of the different outcomes observed in our methods: early warnings, synchronous
warnings, late warnings, soft warnings, missed outbreaks, warnings with increased activity, and false alarms. (B) Summary of the outbreak onset events. Horizontal bars
are colored, from orange to purple, depending on the event class. (C) False alarms for the Naive, Single Source, andMultiple Sourcemethods. TheMultiple Sourcemethod
produced the lowest amount of false alarms (24). (D) Probability of resurgence P(Rt > 1) and different events generated by the Naive, Single Source (Google Trends “How
long does covid last?” and “chest pain”), and Multiple Source methods. (E) Earliness of the alarms triggered by each method. Bars represent the number of alarms within
the out-of-sample time window.
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False alarms
Figure 1C summarizes the false alarms for the different methods in
our analysis. The Naive method registered 617 false alarms (about
1.7 times the number of observed outbreaks). In comparison, the
Single Source method led to 374 false alarms for the term “How
long does covid last?” and 479 false alarms for the term “side
effects of vaccine” (1 and 1.3 times the number of outbreaks, respec-
tively). The Multiple Source method produced the lowest amount
with only 110 false alarms (0.3 times the number of outbreaks),
being the best model in this aspect. The Naive method also exhib-
ited the highest number of “warnings with an increase” observed
(252 registered events), followed by the Single Source method
(139 events for “How long does covid last?” and 171 for “side
effects of vaccine”) and the Multiple Source method with 36
events. In terms of false discovery rates (FDRs), the Naive method
exhibited a 0.63 rate approximately. Our intuitive Single Source
method alone dropped the number of false alarms significantly
(leading to a 0.56 FDR, i.e., one in two alarms are false) while still
producing early or at least synchronous warnings on 237 for Google
Trends term “How long does covid last?”. From a decision-making
perspective, having fewer false alarms is critical to reducing an un-
necessary burden of resources—alarm fatigue—and workforce (57,
58). Moreover, a system with many false alarms may lead to distrust
within the end-user community. Our Multiple Source method
markedly decreased the number of false alarms (110, or a 0.28
FDR, which suggest that only about one in three alarms are false)
while displaying successful early and synchronous warnings in 78%
of observed outbreaks. See Table 1 for FDR scores for all methods at
the county level.
Figure 1D shows a graphical representation of the probability of

resurgence P(Rt > 1), i.e., the probability that the effective reproduc-
tive number is higher than 1 given the data, along with the weekly
confirmed COVID-19 cases (gray-filled curve in the top), and three
representative signals for the Naive, Single Source, and Multiple
Source methods for the county of Marion (FL). We chose to
depict this specific county as an example where our methods per-
formed well (but similar visualization for all counties and states can
be found in the Supplementary Materials). Technically, this panel
shows the conditional probability PðRt . 1 j It

1Þ where I1 denotes
the initially infected population. For notational simplicity, we
write P(Rt > 1) throughout the manuscript. The outbreak onsets
were thus defined when P(Rt > 1) > 0.95 and marked with red ver-
tical lines that extend across the five horizontal panels in Fig. 1D
containing the COVID-19 case counts and the three early
warning methods. Triggered alarms are displayed as vertical tick

marks for each method (Naive, Single Source, and Multiple
Source methods in gray, blue, and yellow, respectively).
Earliness
Figure 1E shows the earliness (in weeks) for the alarms triggered by
each method. The bars represent a count of the number of activated
alarms within the out-of-sample time window (between 6 weeks
before and 2 weeks after the outbreak onset). Triggered alarms
that did not precede any increment in the activity of confirmed
COVID-19 cases within the 6-week observational window were
considered false alarms (displayed in red). We observed that most
early warning activation counts of the Naive and Single Source
methods fell within the 4- and 6-week early range (68% Naive
and 61 and 62% for the Single Source). The Multiple Source
method’s highest count (62 alarms) fell within the 6-week early
mark (26%). The rest of the activations were spread across the 5-
to 1-week early mark, with a higher number of activations as we
reached the sync warning mark.
Omicron-attributable outbreaks
A total of 62 outbreak onsets were observed at the county level after
1 December 2021. The Single Source method correctly identified 35
and 43 early warnings (56 and 69%) for the Google Trends terms
“How long does covid last?” and “side effects of vaccine,” respective-
ly. The Multiple Source method anticipated 54 (87%) out-
break onsets.

State-level performance
Figure 2 summarizes the state-level results.
Early warnings
The alarms produced by the Naive method preceded COVID-19
outbreak onsets in 178 of the 202 total events (88%) and displayed
a synchronous warning in 23 (11%) events and only one late
warning. The best signal in the Single Source method (Google
Trends “How long does covid last?”) identified 128 early warnings
(63%), 13 synchronous warnings (6%), and 18 late warnings (9%).
Comparable results were found for the Google Trends term “chest
pain” with 120 early warnings (59%), 12 synchronous warnings
(6%), and 12 late warnings (6%). On the other hand, the Multiple
Source method produced 119 early warnings (59%), 16 synchro-
nous warnings (8%), and 20 late warnings (10%).
Soft warnings and missed outbreaks
The Naive method had no missed events, and the Single Source
method for the two displayed Google Trends (“How long does
covid last?” and “chest pain”) missed 43 and 58 events (21 and
29%), respectively. For the Multiple Source method, the remaining
47 events were characterized by 37 soft warnings and 10 missed out-
breaks, representing 18 and 5% of the total events.
False alarms
The Naive method led to 271 false alarms (Fig. 2C), about 1.3 times
the number of observed outbreaks. The Single Source method pro-
duced 171 false alarms for the Google Trends term “How long does
covid last?” and 151 false alarms for the term “chest pain” (about
0.84 and 0.74 times the number of outbreaks, respectively). The
Multiple Source method led to 24 false alarms (about 0.11 times
the number of outbreaks), the lowest of all methods. For “warnings
with an increase” observed, the Naive method exhibited 74 events,
followed by the Single Source method with 82 and 63 events for the
two best signals, and the Multiple Source method with only 18
events. At the state level, the Naive method also exhibited the
highest ability to identify outbreaks at the cost of having a 0.51

Table 1. FDR for the Multiple Source method at the county and state
levels. Each row shows the FDR with the inclusion of different warning
signals (early, sync, or late).

Multiple Source
(county level)

Multiple Source
(state level)

Early 0.30 0.17

Early + sync 0.28 0.15

Early + sync
+ late

0.28 0.15
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FDR, i.e., one in two alarms were false. As in the county-level anal-
ysis, our methods maintained a high rate of early warnings with a
substantial decrease in the number of false alarms. Our Multiple
Source method successfully identified 135 (early/sync) of the 202
outbreak events for 50 states, with only 24 false alarms (0.15
FDR), i.e., about one in six alarms are false. See also table S8 for
FDR scores for all methods at the state level. Table 1 summarizes
the FDR scores of the Multiple Source method at the county and
state levels.
Figure 2D shows a graphical representation of the probability of

resurgence P(Rt > 1) and weekly confirmed COVID-19 cases in
Florida. The top signals for the Single Source method and the
output of the Multiple Source method are also shown, with tick
marks representing the triggered alarms for each method. In
Fig. 2E, we observe that the Naive method’s highest early warning
counts fell within the −6-, −3-, and −1-week mark (approximately
59% of total early warning rates). The highest counts for the Single
Source method fall between the 4- and 6-week early mark (65 and
69% for the best signals, respectively). Themajority of early warning
activations of the Multiple Source methods fall between 3- and 6-
week early range (83 or 69%).
Omicron-attributable outbreaks
We observed 19 state-level outbreak onsets occurring after 1 De-
cember 2021. The Single Source methodology preceded 13 and 12
(68 and 63%, accordingly) outbreak onsets. The Multiple Source
method preceded 18 of the 19 (95%).

Geographical county-level analysis
Given the lower number of false alarms and the number early
warning rates of the Multiple Source method, we investigated this
method more extensively. Figure 3 shows a detailed breakdown of
the performance for each county in our dataset. We implemented a
k-means clustering approach to group the counties based on their
COVID-19 weekly activity. We separated each set of selected

locations into three different groups: the set of counties that expe-
rienced their first outbreak at the beginning of 2020 (blue), the set of
counties that experienced their first outbreak during summer 2020
(yellow), and a set of counties that experienced their first major out-
break after the summer of 2020 (green). Figure 3A shows the geo-
graphical location of the selected counties across the U.S. map,
where the colors represent each cluster. The clustering analysis
highlights how the COVID-19 outbreak dynamics seem heavily de-
pendent on the geographical location. Counties in cluster 1 were
mainly located in the northeast part of the country, while counties
in clusters 2 and 3 were scattered throughout the south and north/
central regions, respectively.
Figure 3B shows a list of counties under the colored time series

representing each cluster center. Along with its name and corre-
sponding number, we display a set of tick marks at the bottom rep-
resenting the out-of-sample outbreak onset (varying from 2 to 7).
For each outbreak onset, we trained our method on the previous
onsets. For this reason, onset 1 is used for training only and was
not included in the analysis. We then show the performance of
the Multiple Source method predicting the out-of-sample outbreak
using the following color scheme: green for early and sync warnings,
red for missed outbreaks, and gray for soft and late warnings. In
general, counties in cluster 1 experienced at most four onset
events, while counties in clusters 2 and 3 experienced up to seven
outbreak onsets (we refer to ourMaterials andMethods for a precise
definition of outbreak onsets). In cluster 1 (11 counties), 25 early/
sync and 9 soft/late events were observed. For cluster 2 (56 coun-
ties), we observed 156 early/sync events, 51 soft/late events, and 7
missed outbreaks. The counties that experienced missed outbreaks
in cluster 2 were San Francisco, Palm Beach, Maricopa, Mecklen-
burg, and Wake. For cluster 3 (30 counties), 103 early/sync
events, 12 soft/late, and 3 missed outbreaks were observed.
Missed events for cluster 3 occurred in Jackson, Hennepin, and
Washoe. Normalizing the number of missed events by the

Table 2. Model-selected terms from data streams (ordered by frequency from top to bottom) of the Multiple Source method at the county level. The
number of instances that a data stream was selected (values within parentheses) was reduced over time, given that some locations experienced fewer outbreak
events than others. GT, Google Trends.

Onset 2 (n = 97) Onset 3 (n = 95) Onset 4 (n = 91) Onset 5 (n = 64) Onset 6 (n = 17) Onset 7 (n = 3)

(GT) covid (95) (GT) covid
symptoms (65)

(GT) covid
symptoms (61)

(GT) covid
symptoms (42)

(GT) covid (10) (GT) Fever (3)

(GT) covid-19 (89) (GT) covid-19 (54) (GT) covid (60) (GT) covid (34) (GT) covid-19 (10) (GT) covid
symptoms (2)

(GT) covid symptoms (74) (GT) covid (53) Confirmed cases (45) Confirmed cases (33) (GT) covid
symptoms (8)

Confirmed cases (2)

Confirmed cases (52) Confirmed cases (34) (GT) covid-19 (44) (GT) covid-19 (29) Confirmed cases (8) (GT) covid-19 (2)

(GT) chest pain (50) (GT) Ageusia (28) (GT) Ageusia (29) (GT) Ageusia (23) (GT) Fever (7) (GT) Phlegm (2)

(GT) quarantine (42) (GT) chest pain (25) (GT) chest pain (27) (GT) Anosmia (20) (GT) Ageusia (6) (GT) Asthma (1)

(GT) how long does covid
last (33)

(GT) fever (21) (GT) Anosmia (23) (GT) chest pain (14) (GT) Anosmia (5) (GT) covid (1)

(GT) covid-19 who (24) (GT) Anosmia (19) (GT) quarantine (18) (GT) Fever (13) (GT) Cough (4) (GT) Abdominal
pain (1)

(GT) chest tightness (20) (GT) quarantine (17) (GT) fever (14) (GT) quarantine (11) (GT) quarantine (4) (GT) Bronchitis (1)

(GT) loss taste (15) (GT) Acute
bronchitis (16)

(GT) Acute
bronchitis (14)

(GT) Chills (9) (GT) fever (4) (GT) quarantine (1)
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Fig. 3. Clustering analysis at the county level based on confirmed COVID-19 case trajectories. (A) The geographical map color codes each location based on their
cluster. A total of three clusters described groups of counties that experienced their first outbreak onset early in 2020 (blue), during summer (yellow), and late in 2020
(green). (B) Blue, magenta, and gray markers correspond to the performance of the Multiple Source method for each out-of-sample outbreak onset. For example, the first
location in cluster 1, Kings (NY), experienced three out-of-sample events: All of them were either early or synchronous warnings.
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Fig. 4. Clustering analysis at the state level based on COVID-19–confirmed case trajectories. (A) The geographical map color codes each location based on their
cluster. A total of three clusters describe groups of states that experienced their first outbreak onset early in 2020 (cluster 1 in blue), during summer (cluster 2 in yellow),
and late in 2020 (cluster 3 in green). (B) The set of blue, magenta, and graymarkers corresponds to the performance of theMultiple Sourcemethod for each out-of-sample
outbreak onset.
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number of counties in each cluster, the performance of our models
was poorest in cluster 2, corresponding to regions in the south of the
United States, where the number of onsets of outbreaks has
been higher.

Geographical state-level analysis
By extending our analysis to the state level (Fig. 4), we observe that
cluster 1 (consisting of 13 states) experienced 38 early/sync warn-
ings, 11 soft/late warnings, and 5 missed events (located in Maine,
New Jersey, and Pennsylvania). Cluster 2 (20 states) experienced 51
early/sync warnings, 28 soft/late warnings, and 3 missed events
(Washington, Arkansas, and California). Cluster 3 (17 states) had
49 early/sync warnings, 18 soft/late, and 2 missed events (Kansas
and Minnesota) .

Feature importance analysis
Our Multiple Source method dynamically selected the most predic-
tive internet-based data streams and historical epidemiological in-
formation—both at the state and county levels—for each location to
produce future-looking early warnings. We analyzed which data
streams were most informative in our EWSs across time, individu-
ally, and across locations (see Materials and Methods for more
details). Tables 2 and 3 show the top 10 most frequently digital
and historical proxies selected by the Multiple Source method,
across all locations, to predict each out-of-sample outbreak onset
at the county and state levels. In both cases, the number of out-
of-sample outbreak onsets varied from 2 to 7. Moreover, many
counties experienced at least two onsets, while fewer counties expe-
rienced more than six onsets. Hence, we display six columns with
the corresponding number (n) of locations for the analysis. County
level: Although still available to 54 Google search proxies, the Mul-
tiple Source method consistently picked up COVID-19–related
terms such as “covid,” “covid-19,” and “covid symptoms” in the
first positions, followed by officially confirmed case counts from

JHU. State level: We found similar performances for the Multiple
Source method at the state level, with COVID-19–related Google
Trends leading the list of most selected streams for onsets 2 and
3. After onset 4, officially confirmed cases from JHU also appeared
as a highly selected source. Other relevant terms in the top 10 list
included the Google Trends terms “acute bronchitis,” “cough,” and
“chest pain.”

DISCUSSION
We have presented a set of methods that can be deployed in real
time and in prospective mode to anticipate the onset of COVID-
19 outbreaks in the United States at the county level. Our proposed
methods leverage information from multiple internet-based data
sources, commonly called digital traces, as they are collected
when humans navigate the internet and serve as proxies of
human behavior. The EWS framework presented here extends pre-
vious work—conducted retrospectively and at the state level by
Kogan et al. (50)—to the county level, a geopolitical spatial resolu-
tion where most outbreak mitigation strategies are designed and de-
ployed in the United States. Specifically, our methods were designed
to anticipate sharp increases in COVID-19 transmission, as identi-
fied by changes in the effective reproduction number (Rt), an out-
break indicator preferred by the community of epidemiologists (12,
55, 59, 60). As an additional step, we compared the performance of
our EWS to anticipate outbreaks as detected by the county-level
CDC community transmission levels (available at: https://data.
cdc.gov/Public-Health-Surveillance/United-States-COVID-19-
County-Level-of-Community-T/nra9-vzzn). To achieve this, we
first compared the timing of the onset of outbreaks using our
event detection approach, based on the values of the effective repro-
ductive number Rt, with outbreaks identified when community ac-
tivity was high in multiple days within a week as labeled by the CDC
COVID-19 indicators. We found that the majority of outbreak

Table 3. Model-selected terms from data streams (ordered by frequency from top to bottom) of the Multiple Source method at state level. The number of
instances that a data stream was selected (values within parentheses) was reduced over time, given that some locations experienced less outbreak events
than others.

Onset 2 (n = 50) Onset 3 (n = 50) Onset 4 (n = 50) Onset 5 (n = 36) Onset 6 (n = 15) Onset 7 (n = 1)

(GT) covid (50) (GT) covid
symptoms (28)

(GT) covid
symptoms (27)

(GT) covid
symptoms (26)

(GT) covid
symptoms (10)

(GT) Nasal
congestion (1)

(GT) covid-19 (49) (GT) covid (21) Confirmed cases (18) (GT) covid (14) Confirmed cases (9) (GT) Pneumonia (1)

(GT) covid symptoms (37) (GT) covid-19 (21) (GT) covid (17) (GT) Chest pain (13) (GT) Cough (6) (GT) Throat
irritation (1)

(GT) chest pain (30) (GT) chest pain (18) (GT) Acute
bronchitis (16)

Confirmed cases (11) (GT)
Hyperventilation (6)

(GT) nose bleed (1)

Confirmed cases (27) (GT) fever (17) (GT) Ageusia (15) (GT) Cough (10) (GT) covid (6) (GT) Chest pain (1)

(GT) quarantine (20) (GT) Acute
bronchitis (16)

(GT) Nasal
congestion (14)

(GT) Nasal
congestion (9)

(GT) Fever (5) (GT) Cough (1)

(GT) how long does covid
last (18)

Confirmed cases (15) (GT) fever (14) (GT) Asthma (9) (GT) Asthma (5)

(GT) fever (12) (GT) Ageusia (12) (GT) Asthma (13) (GT) covid-19 (9) (GT) Chest pain (5)

(GT) Acute bronchitis (11) (GT) Anosmia (11) (GT) covid-19 (13) (GT)
Hyperventilation (9)

twitter_state (3)

(GT) chest tightness (10) (GT) Chest pain (10) (GT) Chest pain (12) (GT) Bronchitis (9) (GT) chest pain (3)

Stolerman et al., Sci. Adv. 9, eabq0199 (2023) 18 January 2023 9 of 18

SC I ENCE ADVANCES | R E S EARCH ART I C L E

https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-County-Level-of-Community-T/nra9-vzzn
https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-County-Level-of-Community-T/nra9-vzzn
https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-County-Level-of-Community-T/nra9-vzzn


onsets (87%) were identified by our Rt-based method either syn-
chronously or multiple weeks before the CDC indicators (fig.
S188B). Hence, and given that our EWS leveraging multiple
sources anticipates an important number of outbreaks weeks
before the activations in the effective reproduction number Rt,
our EWS may be able to anticipate events as labeled by the CDC
indicators even more weeks in advance.
We developed two methods that incorporate single or multiple

digital signals, namely, (i) a Single Source method, which locally
identifies the magnitude and the number of uptrends in the
digital signals that precede outbreaks, and (ii) a Multiple Source
method that dynamically selects a subset of the strongest predictive
data streams available at each location historically and combines
them prospectively into a single indicator that quantifies the likeli-
hood of occurrence of an outbreak in the following weeks. Both
methods are data-driven techniques that continuously incorporate
newly available data, making them adaptive and responsive to the
frequently changing trends of an emerging disease such as
COVID-19.
Both single and Multiple Source methods successfully anticipat-

ed most outbreak events between January 2020 and January 2022
for the 97 U.S. counties in our dataset. To compare our methods
with a baseline system, we define a Naive method that triggers an
alarm whenever there is an increase in COVID-19 cases. As expect-
ed, the Naive method had the highest early warning rates, since
there was at least one increase in the COVID-19 case counts at
least 6 weeks before the outbreak onset events. However, the
Naive method leads to a significantly high number of undesirable
false alarms—it produced 612 false alarms for about 367 actual
events, that is, two of the three alarms produced by this approach
are false (assuming that all events were identified by the Naive
method). Tables S1 to S4 summarize all early percentage rates for
the single and Multiple Source methods at both county and
state levels.
At the county level, the single (for the two performing proxies)

and Multiple Source methods mainly activated 1 to 6 weeks before
Rt. At the state level, most early warnings for the single andMultiple
Source methods preceded the outbreak onset events in 4 to 6 weeks.
This finding can be contrasted with previous work by Kogan et al.
(50) where a 2- to 3-week anticipation was found. However, note
that Kogan et al. (50) considered a different target quantity to be
anticipated by digital traces, namely, when exponential growth in
confirmed cases and deaths is observed, not when outbreaks start
—in our case, defined as when the reproduction number Rt is
higher than 1.
Notably, the performance of our EWSs at the state level was

comparable to the county level, as shown in Figs. 1 and 2. This
result is important, given that the signal-to-noise ratio in digital
data sources tends to decrease as we zoom in to finer spatial resolu-
tions, and thus extracting meaningful signals tends to be more chal-
lenging. The spatial resolution dependency of the signal-to-noise
ration has been documented in multiple studies that have attempted
to extend the use of digital streams to monitor disease activity at
finer spatial resolutions and lower population densities (30, 31,
61, 62). Our methods seem to overcome this challenge by
showing comparable ability and earliness to identify the onset of
outbreaks for county and state levels. Moreover, our methods’ pre-
dictive performance did not show any dependency on total popula-
tion or population density across counties, as shown in fig. S288.

The predictive performance of our methods varied across coun-
ties, indicating the challenge of accurately detecting COVID-19 out-
breaks ahead of time on such a fine spatial resolution. After
incorporating knowledge of multiple outbreaks, our ability to antic-
ipate the Omicron variant attributed outbreaks (after 1 December
2021) using our Multiple Source models improved from 66% (200
of 305)—in the time period before Omicron—to 87% (54 of 62) at
the county level, and from 55 (101 of 183) to 95% (18 of 19) at the
state level. Additional to the time analysis, we performed a geo-
graphical analysis by using a k-means algorithm on the normalized
disease activity curves of each location over time and obtained three
different COVID-19 activity clusters for the 97 counties and 50
states analyzed in our validation experiment. Our results showed
COVID-19 trajectories that represented meaningful geographic
regions (north east for early 2020 outbreaks, south for summer,
and north for post-summer outbreaks) generated by the clustering
algorithm. As presented in Figs. 1 and 2, although the clustering
technique resulted in a meaningful set of clusters, our Multiple
Source model performance did not seem to change between them.
The purely data-driven aspect of ourMultiple Sourcemethod led

to significant differences in the most selected predictive features as
time progressed. In the first COVID-19 waves, Google Trends and
COVID-19 cases (at both county and state levels) were mainly se-
lected. A possible explanation for this alternation of most selected
signals might be that Google searches might have lost their early
correlation power, as increased awareness of the symptoms
COVID-19 was likely in later waves. This preliminary evidence of
variability in the chosen signals/features may point to the
dynamic nature of how COVID-19 was initially perceived and in-
vestigated by the population, as well as the ever-changing trends in
COVID-19 outbreaks.
Our Multiple Source method rarely completely missed an out-

break. Instead, we found that the early warning indicator frequently
displayed that something was about to happen even when the indi-
cator did not cross the decision threshold. As mentioned before, we
refer to this scenario as a “soft warning” for two reasons. First, a low
number of events (for a given location) is not enough to properly
calibrate a local predictive system. Second, the changing nature of
human behavior and the SARS-CoV-2 virus challenges any predic-
tion system. In these cases, one can always argue that the preferred
epidemiological approach (when the effective reproductive number,
Rt, is larger than 1) would eventually identify these sharp increases
in COVID-19 activity. A soft warning can thus be seen as a “yellow
light” that may inform a public health official of a significant pos-
sibility of an outbreak. It is a way to produce meaningful informa-
tion when our EWS signal approaches the trained threshold without
necessarily crossing it. From a decision-making perspective, a soft
warning is substantially different than a missed outbreak, where the
EWS output completely fails to identify an upcoming outbreak
event. In addition, to characterize the predictive performance of
our models, we considered synchronous and late warnings to be dif-
ferent from completely missed outbreaks. Decision-makers fre-
quently need as much reassurance as possible regarding the
inevitability of an impending outbreak to impose socially and eco-
nomically expensive NPIs to curb the effects of outbreaks. Synchro-
nous and late warnings may prove important as complementary and
confirmatory signals that may enable decision-makers to enact pre-
ventive measures in a timely fashion. Given the exponential growth
nature of new outbreaks, having additional confirmation of an
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impending outbreak may help save lives. In addition, we find that
our systems sometimes suggested that an outbreak would occur, but
only a slight increase in cases was subsequently observed. We have
referred to these instances as “warning, increased observed” in Figs.
1 and 2. Again, these findings should not be interpreted as a failure
but a calibration issue that may bemitigated withmore observations
in a given location. Alternatively, these results raise the hypothesis
that our methods might be more accurate on preceding COVID-19
outbreaks with higher incidence, given that Rt is better inferred at
larger case numbers (63). Future studies could address this question
at length.
Our present study has multiple limitations. First, our county-

level analysis was conducted in a subset of 97 counties, not in all
3006. We selected a subset of U.S. counties based on the local
health care capacity to conduct clinical trials and independently
of their population size or population density. We also considered
all populous counties with more than 1 million inhabitants, totaling
97 counties. Although our results demonstrate success in the feasi-
bility of deploying early warning methodologies in nonrural, highly
populated counties, future studies can explore our single and Mul-
tiple Source methods in a larger subset of or all the 3006 U.S. coun-
ties, which would allow us to explore our methods’ generalizability
across all U.S. geographies. Our current findings do not suggest that
the ability to anticipate outbreaks depends on population size or
density, as shown in fig. S288. However, our internet search–
based methods may struggle to perform well in areas with poor lit-
eracy rates and limited access to internet resources, frequently areas
that may also suffer from poor health care systems. A possible sol-
ution for this challenge may include using state-level EWSs to guide
county-level outbreak decision-making. Exploring the accuracy of
state-level alarms as guidance for finer spatial resolutions could
be an interesting topic for future studies. Our method to determine
outbreak events based on the effective reproduction number (Rt)
has limitations once Rt estimates from raw case data are known to
be biased when case ascertainment rates are unstable. Future studies
could evaluate the performance of our method in comparison with
different methodologies for outbreak detection, such as change
point algorithms, case rate thresholds, or growth rates. Note,
however, that each one of those methods has its own limitations,
as discussed at length in recent studies (64–66). Similarly, different
Naive models could be considered in this work.We could argue that
using two consecutive weeks with an increase in case counts would
yield a better baseline system for comparison. In a different direc-
tion, we could even use the current CDC community levels (COVID
Data Tracker available at https://covid.cdc.gov/covid-data-tracker)
as the backbone of a Naive method. In this work, we opted for a
Naive method with the earliest activation possible, even at the
cost of higher false alarms. Future studies could explore our
method’s performance compared to alternative baselines, such as
those mentioned above.
From amethodological viewpoint, our Single Sourcemethod has

shown good predictive power and earliness in anticipating the out-
break onset events. Future studies could refine our analysis by ex-
ploring other nuances of the digital time series, such as uptrend
magnitude or downtrends associated with decreased COVID-19 ac-
tivities, as done in our own team’s previous work (50). From the
event identification perspective using Rt, as shown in (67), down-
ticks in Rt aremuch easier to detect and less problematic to estimate,
usually because the incidence is higher at the start of a downtick. For

digital traces, however, we have seen that it is possible to do this in
(50), but it was not the focus of this manuscript. Future work should
be focused on achieving this. It would probably involve drops in in-
ternet searches for symptoms or a rise in terms related to negative
tests, end of quarantines, and other terms related to a “back to
normal” sentiment. Likewise, the Multiple Source method was de-
signed to identify an outbreak onsets but no other properties, such
as magnitude and timing. Further studies could investigate the re-
lationship between those features and the digital signals to build
more sophisticated EWSs. Future efforts could also explore other
connections between our results and the probabilistic estimation
of Rt adopted in this study, such as cumulative probability lower
bounds for the false alarm rates, among others. Moreover, if
EWSs, such as the one proposed here, are implemented in practice
successfully and lead to the timely implementation of preventive in-
terventions, it would be important to quantify the degree to which a
timely response may lead to large enough social behavior changes
capable of proving future predictions inaccurate. Note also that
digital traces usually exhibit specific statistical properties, such as
lack of first- and second-order stationarity, that make results hard
to interpret and the application of statistical methods potentially in-
appropriate (68). Another important limitation of our work is the
current lack of determinants of success for model performance. In
other words, finding the characteristics of counties where our meth-
odology is successful is a challenging problem. Our clustering anal-
ysis revealed three geographically distinct regions at state and
county levels. We did note that cluster 2 contained multiple coun-
ties with bad performance (more missed alerts were seen in this
cluster, as shown in Fig. 3). Moreover, counties with different pop-
ulation sizes performed similarly in terms of early and synchronous
rates (fig. S288). To the best of our current knowledge, the quality of
digital signals (signal versus noise, for instance) and the reliability of
the epidemiological data are likely the main predictive factors.
Future studies could address this question in more detail. From a
machine learning perspective, our methods would likely benefit
from learning from more outbreaks in a given location (69, 70).
These increased datasets will probably improve the robustness
and performance of our analysis if the underlying relationship
between predictors (internet-based data streams) and outbreaks
maintains temporal coherence.

MATERIALS AND METHODS
In the following sections, we present the data sources that have been
used for our study, along with a detailed explanation of our
methods. In this work, we collected several data sources from
January 2020 to January 2022 for 97 counties that are potential lo-
cations for vaccination trials or have a population of at least 1
million inhabitants.

Data sources
In this section, we present and describe the epidemiological
COVID-19 reports, COVID-19 and health-related searches from
Google Trends application programming interface (API), UpTo-
Date trends, and Twitter microblogs.
Official COVID-19 reports
We collected daily COVID-19 case counts from the JHU database
(71). The serial interval (time from symptomatic primary infection
to symptomatic secondary infection) was obtained from Ferguson
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et al. (72). For each U.S. county, we obtained aggregated weekly time
series covering the period between 1 January 2020 and 1
January 2022.
UpToDate trends
UpToDate is a software package developed by UpToDate Inc., a
company in the Wolters Kluwer Health division (73). UpToDate
is used by physicians and health centers as a tool to search for
medical resources. Unlike Google Trends, all information provided
in the UpToDate database is edited by experts using rigorous stan-
dards. This study used state-level COVID-19–related UpToDate
searches from January 2020 toMarch 2021.We note that UpToDate
stopped providing data after that period and hence could not eval-
uate the signal performance from April to December 2021.
Google Trends
We used the Google Trends API to obtain daily COVID-19–related
search terms. For the Single Source method, we chose the following
COVID-19–related terms: “Covid,” “Covid19,” “How long does
covid last?,” “covid symptoms,” and “Covid 19 WHO.” To account
for common COVID-19 symptoms, we also selected Google Trends
“fever” and “chest pain.” To account for searches related to vaccina-
tion, we also chose the Google Trends terms “after covid vaccine,”
“side effects of covid vaccine,” and “effects of covid vaccine.” For the
Multiple Source method, we extended the Google Search term pool
available by incorporating a subset of terms from a publicly avail-
able dataset of health symptoms by Google. The filtering method
consisted in keeping COVID-19–related symptoms. A list of all
terms can be found in table S9.
Twitter API
The Twitter data were harvested by an automated crawler connect-
ing to Twitter’s APIs in a fully automated fashion. The geo-crawler
software collects georeferenced social media posts, i.e., tweets with
an explicit geospatial reference.
The geo-crawler requests data from two Twitter endpoints: the

REST and streaming APIs. The REST API offers several API func-
tionalities to access tweets, including the “search/tweets” end point
that enables the collection of tweets from the last 7 days in a moving
window. This requires a stringently designed collection procedure
to harvest all provided tweets within the fast-moving time window
of the API with a minimal number of requests. In contrast, the
streaming API provides a real-time data stream that can be filtered
using multiple parameters, including a post’s language, location, or
user IDs.
The geo-crawler software requests tweets that include location

information as either a point coordinate from the mobile device
used for tweeting (e.g., GPS) or a rectangular outline based on a geo-
coded place name. The combination of the REST and streaming
APIs makes crawling robust against interruptions or backend
issues that inevitably lead to data holes. For example, if data from
the streaming API cannot be stored in time, the missing data can
be retrieved via the partly redundant REST API.
All tweets used for this study are located in the United States. To

filter the data for COVID-19–relevant tweets, we used a simple

keyword list as shown in Table 4. We opted for keyword-based fil-
tering because of high performance, filtering in near real time, and
its simplicity compared to machine learning–based semantic anal-
ysis methods. While a machine learning–based semantic clustering
method like guided latent Dirichlet allocation may generate more
comprehensive results (e.g., by identifying co-occurring and
unknown terms), controlling the ratio between false positives
(FPs) and false negatives (FNs) requires extensive experimental
work and expert knowledge, which is typically a strong limitation
when dealing with large datasets.
Apple mobility
Apple mobility data were generated by counting the number of re-
quests made to AppleMaps for directions in selected locations. Data
sent from users’ devices to Apple Maps service are associated with
random, rotating identifiers, so Apple does not profile users’ infor-
mation. Data availability in a particular location is based on several
factors, including minimum thresholds for direction requests per
day. Data were obtained at www.apple.com/covid19/mobility on
19 January 2022. As of April 2022, this link does not contain
updated data. Available mobility data can be accessed in our repos-
itory (https://doi.org/10.7910/DVN/TKCJGL).

Addressing delays in data
Our data streams experience specific availability delays. For
example, the most recent values from Google Searches are available
up to 36 hours before the current date. In addition, epidemiological
reports suffer from backfilling and reporting delays due to postpro-
cessing. Thus, for Google searches, data reported at time t were
shifted to time t + 2 to address the 36-hour delay. Similarly, epide-
miological data reported at time t were shifted to time t + 7. Last,
UpToDate data at time t were shifted to time t + 1.

Estimating the effective reproductive number Rt and
defining outbreak onsets in COVID-19 activity
The effective reproductive number Rt is defined as the expected
number of secondary cases generated by a primary case infected
at time t. It can be used as a near real-time indicator to track
trends and changes during an outbreak or to measure the impacts
of public health interventions. When Rt > 1, we can expect epidemic
growth, whereas when Rt < 1, the epidemic decreases. However, es-
timating Rt in near real time can be challenging due to delays in re-
porting cases and under-ascertainment. While the latter is difficult
to correct for general bias in all Rt estimationmethods, we overcome
reporting delays by using cases by date of onset (55, 74).
The most popular approach for near real-time estimation of Rt is

the EpiEstim method introduced by Cori et al. (63). This method,
while powerful, can suffer from edge effects and unstable inference
during periods of low incidence (55). A recent approach from Parag
et al. (55) (EpiFilter) circumvents some of these issues by applying
Bayesian smoothing theory to improve estimate robustness (or min-
imize noise), especially in low-incidence periods and between out-
breaks. Because early warning signals are desired in exactly such
settings, we use this approach as a ground truth signal for outbreak
onset.
In this work, we aimed to anticipate sharp increases in COVID-

19 activity, using reported by JHU’s confirmatory cases to deter-
mine outbreak onset events when the effective reproduction
number (Rt) was probabilistically higher than 1. To this end, we
first defined the concept of outbreak onset. In this work, outbreak

Table 4. Search term list for Twitter.

covid, corona, epidemic, flu, influenza, face mask, spread, virus, infection,
fever, panic buying, state of emergency, masks, quarantine, sars, 2019-ncov
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onsets marked the beginning of an exponential surge for a location’s
JHU’s COVID-19–confirmed case signal based on the probability
P(Rt > 1). For details on how this probability is calculated, we
refer the reader to the recent work from Parag and Donnelly (75).
We labeled a given date as the start of an outbreak onset whenever
P(Rt > 1) crossed the 0.95 threshold for at least two consecutive
weeks. An event was considered finished after P(Rt > 1) < 0.05 (con-
secutive events that happened within at most 1-month gap were
considered a single event). Figure 5 exhibits a visual explanation
of our outbreak onset definition for the COVID-19–confirmed
case activity of Marion county, Florida. We used this definition to
identify the onsets that occurred within each of the U.S. locations
selected for experimentation (97 counties and 50 states) and
tested our ability to anticipate such dates using alternative sources
of information. It is important to highlight that, for an outbreak to
be identified, the value of the effective reproduction number (Rt)
must be above 1 with 95% confidence interval [i.e., P(Rt > 1) >
0.95] for at least 2 weeks. For that reason, the Naive method will
typically lead to early warnings (Fig. 1B)—a first uptrend being fol-
lowed by an eventual outbreak event—given that the threshold P(Rt
> 1) > 0.95may be reached (in times t − 1 and t − 2) even without an
uptrend in COVID-19 cases at week t. Rarely, the Naive method will
lead to synchronous warnings.

Single Source method
As a way to evaluate the predictive power of individual signals, we
developed the Single Source method that explores the volume in-
crease of available digital data to generate early warnings of
COVID-19 activity. In Fig. 6 (A and B), we illustrate the two possible
alarm events. Given a 6-week time window, spanning both digital
and COVID-19 cases data, a threshold activation is defined if the
digital signal crosses a given threshold τ (Fig. 6A). Figure 6B
shows a different kind of alarm, where a number α of increases
happen within the 6-week moving window (α = 3 in the
example). In this case, we define an α-week trend activation. A
true positive (TP) occurs when an alarm in the digital signal
(either threshold or α-week trend) precedes the outbreak onset
event within the 6-week moving window. Figure 6C illustrates
other possible outcomes in the Single Source method. We only
show threshold activations for simplicity. An FP occurs when the
digital signal activates (either through threshold or α-week trend)
but no outbreak onset event occurs. Conversely, an FN may occur
when an event occurs but no alarm is triggered by the individual

signal. Last, a true negative (TN) takes place when no alarms in
the individual signal or outbreak onset events occur within the 6-
week moving window.
For the training step, we choose multiple threshold values, which

are normalized by the maximum of the digital signal in the training
period, resulting in a scale from 0.1 to 0.9. We also select possible
values for α in the α-week trend activation ranging between two and
five signal uptrends within the 6-week moving window. As the
window progresses in time, we compute the number of TPs, FPs,
FNs, and TNs. With that information, we obtain performance
metrics such as accuracy as depicted in Fig. 6D. From the collection
of τ and α maximizing performance metrics (red rectangle in
Fig. 6D), we choose those minimum parameter values (black star)
to promote the earliness of our prediction method. In our simula-
tions, we chose to simultaneously optimize accuracy (TPþTNPþN ), preci-
sion (TPP ), and the negative predictive values (

TN
N ), where P = TP + FP

andN = TN + FN. By doing this, we arrive at the minimum optimal
τ and α maximizing those three quantities at the same time. If there
are no such parameter values, we optimize over precision only.

Multiple Source method
Here, we describe our Multiple Source method. Given that our
earlier work had shown the feasibility of implementing digital
streams as alternative proxies to track state-level COVID-19 activity
(50), we hypothesized that a county-level EWS could provide a
higher-resolution picture of the pandemic at near real time. In
what follows, we define the variables of our EWS and provide a de-
tailed explanation for each step of our analysis.

Definitions
To describe ourMultiple Sourcemethod in detail, in this section, we
start defining the following variables.

y: Target signal to track using our EWS methodologies. In this
work, y is given by the time series {P(Rt > 1)}t > 0. We define yt as the
value of y at week t.

X = {xi, i = 1,2, …, N}: The set of all alternative proxies, i.e., of-
ficial epidemiological reports, Google Search volumes, social
network activity, Twitter microblogs, among others. We refer the
reader to our data sources section for a detailed description of
these datasets. We define xi, t as the value of xi at week t.

te: Event onset date and can be used to represent outbreak onset
events (denoted by te, y) generated by the time series {P(Rt > 1)}t > 0

Fig. 5. Defining outbreak onsets The value of P(Rt > 1) (green line) is calculated for the weekly volume of COVID-19–confirmed cases (gray) in Marion county (FL). A
successive increase of COVID-19–confirmed case activity is labeled as an outbreak if P(Rt > 1) > 0.95 for 2 weeks or more. Marked events are enclosed within a rectangle.
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or proxy events (denoted by te,Xi) generated by the lambda
approach.

M = EWS(y, X ): An EWS output as a function of all available
data from both target and proxies. We define Mt as the value of
M at week t.

Lambda approach: Capturing increasing activity trends in
digital proxies
To define and label proxy events, we used a measure of a proxy
trend, henceforth called λ. Here, we emphasize that λ was calculated
for our proxy variables, i.e., the Google Trends signals, Twitter, and
other digital traces. However, we derived this measure from the
classic SIR epidemic model equations

_S ¼ � βSI

_I ¼ βSI � γI
ð1Þ

where S and I represent the populations of susceptible and infected

individuals and r = N − S − I represents the recovered class in a
constant population of size N. For an inter-outbreak period,
where the number of infected individuals I is very low, the suscep-
tible pool of individuals S can be assumed as a constant parameter S
= S*. In this case, the SIR system of equations reduces to

_S ¼ 0

_I ¼ ðβS� � γÞI
ð2Þ

and the solution to the equation for the number of infected individ-
uals I is then an exponential function with the intrinsic growth rate

λ ¼ βS� � γ ð3Þ

which is directly proportional to the size of the susceptibility pool.
In the context of epidemiological models, λ can be thought of as an
indicator of the susceptible population that is easily interpretable: If
λ > 1, then I increases exponentially. Moreover, λ can be estimated
by linear regression, as the coefficient of a 1-lag autoregressive

Fig. 6. An EWS for COVID-19 based on single sources (Single Source method). A moving window spans both predictor (Google Trends for the term COVID) and
COVID-19 cases. A threshold activation occurs when a predictor signal crosses the value τ. In the example, τ = 2.5 × 105 Google searches for Palm Beach County (FL). The
blue tick denotes the week of crossing. The red vertical tick and line denote the week of the outbreak onset event. (B) If a number α of increases happen in the predictor
signal, an α-week trend activation takes place. In the example, α = 3 triggers an alarm for Monroe (NY) county preceding the outbreak onset event. Both (A) and (B)
represent true positive (TP) events. (C) Definitions of false positive (FP), false negative (FN), and true negative (TN) events. (D) For the training step, we evaluate the
performance of our Single Source method for different thresholds τ (normalized by the maximum of the signal on the training period) and α values for the α-week
trend activation. A colormap with the training accuracy shows the highest rate for τ and α. The example illustrates optimal parameters τ and α as the lowest values
such that accuracy is maximized, indicated by an asterisk in the lower leftmost corner of the red rectangle.
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model with no intercept It = λIt−1. In this work, we use a 3-week
time window to estimate the value of λ.
Implementing λ in practice
For each week t, we calculated the value of λt using the most recent
data available. Retrospectively, a proxy event was defined as a period
where the value λt > 1 for at least 2 weeks. If two time periods sat-
isfied such conditions but were only separated at most 4 weeks
apart, they were merged into a single, bigger period.

Implementing the Multiple Source method
Our EWS M was designed to track COVID-19 outbreak events by
iteratively identifying proxy signals xi that have experienced events
preceding a target (y) events, and combining them into a single
output signal Mt, where 0 ≤ Mt < 1 for all t > 0. This output
signal Mt can be interpreted as an indicator for y experiencing an
outbreak in the near future (up to 6 weeks). Given y and X up to
week t for a specific location, we implement our method as follows
Data preparation
We begin by identifying all the outbreak events for y and the proxy
events in our dataset X. These events are used to establish a perfor-
mance ranking for each proxy xi via the following labeling rules
(applied individually to each proxy).
TP: If a proxy event te,xi precedes an outbreak onset event te,y by

at most 6 weeks, then we label te,xi as TP.
FP: If a proxy event te,xi occurs but there is no outbreak onset

event happening in the next 6 weeks, then we label that proxy’s
event as a FP, also referred as false alarm.
FN: If an outbreak onset event te,y occurs but no proxy event

occurs at most 6 weeks retrospectively, then we identify that as a FN.
The number of TP, FP, and FN is then calculated for each proxy

xi. With the aim of focusing specifically in the detection of outbreak
events and avoiding a highly imbalanced dataset, we do not opti-
mize for TNs events, since every week where the activity was not
an outbreak onset or within the outbreak period (as marked by
Rt) would be a potential TN.
Feature selection
A performance ranking is created based on the TP, FP, and FN
values of each proxy. Given that our main objective is to identify
outbreak events for te,y earlier in time, we prioritize signals maxi-
mizing TPs while minimizing FPs. A subset of six proxies χ = {x1,
x2,⋯, x6} with highest TP and lowest FP is then selected to be used
as the input for our EWS.We set the number of proxies to 6 to allow
all six sources of information (epidemiological, Google trends, Up-
ToDate, neighboring activity, Apple mobility, and Twitter data) to
contribute to theMultiple Source method. In the case more than six
are fit to be used within our EWS, those six proxies are then selected
randomly.
Combining selected proxies into an EWS
The value Mt of our EWS is given by the expression

Mt ¼ 2Sðne;tÞ � 1

where

ne;t ¼
X

xi[χ
gðxi; tÞ

and

gðxi; tÞ ¼
1 if t � k � te;xi � t
0 otherwise

�

is the number of proxy events that have occurred in the past k = 3
weeks, and

SðxÞ ¼
1

1þ e� x

is the well-known sigmoid function. Our choice of k = 3 weeks (the
number of weeks to retrospectively look for activations within a se-
lected proxy) is to restrict the influence of an individual predictor to
the output of the EWS to a maximum of 3 weeks. Intuitively, the
quantity Mt changes between 0 and 0.9951 (∼1) depending on the
number of proxy events (from zero to six) within the past k weeks
before the week t.
Thresholding
Although each proxy xi has been selected on the basis of the premise
that its events have successfully tracked our target y during training
(and thus, even a low valueMt may convey some relevant informa-
tion about an incoming event), there may be some instances when
not all proxies in the set χ have activated before an outbreak onset
event. Similarly, as we compute the value of Mt every week, there
may be some instances when a proxy (for example, Google search
activity spiking due to non–COVID-related events) triggers an
alarm, and thus increasing the value of Mt. On the basis of these
possibilities, and with the purpose of having a more practical way
of interpreting Mt,we define a decision threshold τ, which we use
to mapMt into a “yes/no”methodology. IfMt > τ, then we interpret
it as our EWS is expecting an outbreak onset event happening in the
near future. In practice, we find this threshold by computing the
performance of our EWS as a function of the threshold τ (similar
to a receiver operating characteristic curve) and selecting the thresh-
old that maximizes a metric of interest (precision, for example).
Given that Mt is calculated every week using a k-week moving

window, our EWS events consist in a subset of weeks in which Mt
> τ (this is to be contrasted to a xi event, which consists only of a
single week). On the basis of this behavior, we define a different set
of event labels, which we use to compute the performance of our
EWS. We label our events in the following way
TP: IfMt > τ prior te,y within a retrospective window of w weeks.
Strict FP: IfMt > τ, but no outbreak onset event te,y is observed in

the following w weeks.
Relaxed FP (RFP): Given a set ofm subsequent weeks whereMt >

τ, we count all dates as a single misfire (in comparison to a strict
misfire, which would m misfires instead of 1).
FN: If te,y occurs butMt > τ is not observed retrospectively within

a w week window.
We also define

m1 ¼
TP

TPþ FPþ FN
ð4Þ

and

m2 ¼
TP

TPþ FNþ RFP
ð5Þ

Given that the Mt values are inherently connected overtime (if
Mt > τ, then it may take some weeks to deactivate), optimizing for
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m1 usually leads to high threshold values as a way to avoid a high
number of strict FPs (i.e., keepingMt > τ a high number of weeks).
Although this is desirable in practice (having a system that only ac-
tivates when it is certain that an event is going to happen, and below
the threshold otherwise),m1 may cause our EWS to overfit given (i)
the very low number of events scenario may not convey enough in-
formation to find an adequate threshold and (ii) if Mt > 0 for the
first occasion at week t, then it takes at least k weeks to change its
value. On the other hand, optimizing for m2 encourages the selec-
tion of lower threshold values as it does not penalize Mt > τ being
true for a long period. Nonetheless,m2 may go as low as a threshold
of τ = 0 if there are no FNs or if the number of RFPs is the same
below a certain threshold value. We thus opt for optimizing the av-
eraged sum of m1 and m2. Precisely, our optimal threshold τopt is
given by

τopt ¼ argmaxτ[½0;1�
m1 þm2

2

� �

where both m1 and m2 is given by Eqs. 4 and 5 depending on τ.
Out-of-sample experiment description
For a given location with outbreak onset events E = {e1, e2, , …, en},
we used e1 as the first event for training, with the aim to predict e2.
As a next step, we incorporate e2 into the training dataset, and thus
use both e1 and e2 to train our EWS, and predict the following event
e3. We repeated this procedure until the last event en. We also
defined the out-of-sample period as the time interval between the
week when the last outbreak event in the training dataset ended and
the week when the out-of-sample outbreak onset occurred.
We counted the number of times when a method triggered an

alarm based on the following labels
Early warnings:When the EWS triggered an alarm preceding the

outbreak onset event with at most 6 weeks in advance.
Synchronous warnings: When the EWS triggered an alarm on

the same date as the outbreak onset.
Late warnings: Events where the EWS triggered an alarm up to 2

weeks later than the outbreak onset event.
For the Multiple Source method, we considered a soft warnings

when the output of the EWS increased at least 70% of the decision
threshold and the outbreak onset event was successfully observed 6
weeks after.
Missed outbreaks: When an outbreak onset event was observed,

but no alarm was registered within the observation window.
In terms of false alarms, we differentiated between two different

scenarios:
1) False alarm, no increase: occurred when the system triggered

an alarm, but no event and no increase in COVID-19 cases were
observed in the following 6 weeks.
2) Warning, increase observed: occurred when the EWS trig-

gered an alarm and was followed by an increase in COVID-19 cases.
Last, to assess our model performance in terms of FDR, we

defined

FDR ¼
False alarms

False alarmsþ Early; Sync, and Late warnings

Tables S7 and S8 exhibit all FDR values at the state and county
levels, also including FDR for different warning signals in the de-
nominator of the fraction.

Clustering COVID-19 trajectories per county
With the purpose to observe any difference in the performance of
our methodologies as a function of the time they experienced dif-
ferent outbreaks, we implemented a k-means algorithm over the
weekly COVID-19 official reports of each location. We opted to
generate three separate groups (clusters) gi, i = 1,2, and 3, to separate
counties that experienced their first outbreak in early 2020,
summer, and late 2020.
In this context, k-means is used as an unsupervised learning

methodology, which groups a set of n time series (each time
series is an m-dimensional vector, and each dimension represents
a weekly official COVID-19 reports) into k clusters. The clusters
represent the mean COVID-19 trajectory of the members within
the cluster. These are found by iteratively performing the following
steps (after initializing each cluster’s location gi with a random or
educated guess of the cluster means)
1) Calculate the distance between each COVID-19 cases time

series x!j to each cluster gi

dj;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xk¼m

k¼0
ðxj;k � gi;kÞ

2

v
u
u
t

2) Assign each time series x!j a membership to the cluster with
closest distance (lowest dj,i).
3) Update the cluster’s location g!i by calculating the mean over

all the members within the cluster.
Each time series is normalized before the clustering procedure to

allow for similarity in the trajectories, regardless of the volume of
tests reported.

Supplementary Materials
This PDF file includes:
Figs. S1 to S286
Tables S1 to S9
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