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Robust dynamic brain coactivation states estimated in
individuals
Xiaolong Peng1,2, Qi Liu3, Catherine S. Hubbard1, Danhong Wang4, Wenzhen Zhu2,
Michael D. Fox5,6, Hesheng Liu1,3,7*

A confluence of evidence indicates that brain functional connectivity is not static but rather dynamic. Capturing
transient network interactions in the individual brain requires a technology that offers sufficient within-subject
reliability. Here, we introduce an individualized network-based dynamic analysis technique and demonstrate
that it is reliable in detecting subject-specific brain states during both resting state and a cognitively challenging
language task. We evaluate the extent to which brain states show hemispheric asymmetries and how various
phenotypic factors such as handedness and gender might influence network dynamics, discovering a right-lat-
eralized brain state that occurred more frequently in men than in women and more frequently in right-handed
versus left-handed individuals. Longitudinal brain state changes were also shown in 42 patients with subcortical
stroke over 6 months. Our approach could quantify subject-specific dynamic brain states and has potential for
use in both basic and clinical neuroscience research.
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INTRODUCTION
The coordination of information across multiple spatial and tempo-
ral scales is a prerequisite of optimal brain functioning that spans
both cognitive and behavioral domains. Synchronization of hierar-
chically organized electrophysiological oscillations facilitates the
dynamic integration of local and distributed brain regions and
enables the fluid formation and dissolution of coherent, functional
network configurations necessary for fast and efficient cortical pro-
cessing [see (1, 2) for reviews]. The organizing principles governing
the large-scale network dynamics that manifests this time-varying
and intrinsically coupled activity over spatially distributed and
functionally differentiated cortical regions are only beginning to
be understood. Emerging evidence from multiple modalities
points toward functional state patterns that are dynamically
formed or expressed (3–5). These transient network configurations
and their spatiotemporal dynamics that emerge at fine-grained time
scales have been observed not only during the so-called “resting-
state” (6) but also during various cognitive tasks (7, 8). An emerging
extension of standard analytical strategies of resting-state functional
magnetic resonance imaging (fMRI) has demonstrated that func-
tional coupling between regions is not static throughout the
length of a standard scan but is instead highly dynamic (9, 10). In
addition to early evidence establishing possible behavioral (11, 12),
physiological (13), consciousness state (14), structural (15), and
electrophysiological (16, 17) correlates, the dynamic functional con-
nectivity (FC) approach has been used to reveal slowly fluctuating
and reproducible whole-brain configurations that are lost when av-
eraging across time points (6, 18). Recent advances in analytical

techniques have allowed for the decomposition of blood oxygena-
tion level–dependent (BOLD) MR images into their underlying
time-varying brain coactivated patterns, which sum to form the av-
eraged FC maps of canonical large-scale intrinsic networks, such as
the default network (DN) and dorsal attention network (18–22).
The examination of single-volume MR images, rather than averag-
ing over a windowed period, enables the detection of transient func-
tional network interactions occurring on a smaller time scale and
therefore better evaluation of their temporal dependencies. Analy-
ses based on single volumes are not confounded by the “sampling
variability” that affects second-order statistics, such as temporal cor-
relations in a sliding window [see Discussion in (23)]. This ap-
proach may therefore be particularly powerful for the
investigation of network dynamics that evolve across spatially dis-
tinct and functionally differentiated brain regions. However, this
approach has been mostly applied to study brain characteristics at
a group level (20) and has not demonstrated sufficient reliability at
the individual level. More generally, fMRI studies as a whole are
facing the challenge of low reliability at the single-subject level
(24–27), which has hampered the clinical applications of fMRI
and the discovery of meaningful neuroimaging biomarkers (28–
31). Although previous studies have suggested that reliability of
some fMRI measures may be boosted by increasing scan length
(32, 33), it remains unclear whether reliability of dynamic
metrics, especially those based on single-volume images, can also
benefit from longer scans.

Here, we introduce an “Individualized Network-based Single-
frame Coactivation Pattern Estimation” (INSCAPE) approach to
begin to explore the spatiotemporal characteristics of dynamic
brain state network configurations at the individual level. The
goals of the present study are to reliably characterize subject-specific
functional properties and capture individual differences in the spa-
tiotemporal dynamics of functional brain states. As a test, we inves-
tigated functional lateralization, which is a well-studied and
fundamental property of human brain organization and is highly
individual-specific (34–36). We explored the extent to which the
spatiotemporal dynamics of identified functional brain states
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using our INSCAPE approach showed hemispheric asymmetry of
language processing. Given the link between functional lateraliza-
tion of language with handedness and gender, we also examined
whether these phenotypic traits were related to the occurrence of
lateralized brain states. Last, to demonstrate the potential of this
technique in future patient-related research, we investigated the lon-
gitudinal changes in brain state network dynamics in 42 patients
with subcortical stroke to track the time course and spatiotemporal
properties associated with poststroke recovery across a 6-
month period.

RESULTS
Different brain states have specific coactivation patterns
and occurrence rates
The INSCAPE approach (see Fig. 1 and Materials and Methods) was
performed to generate the group templates of the 16 brain states
using resting-state fMRI data of 846 healthy individuals from the
Brain Genomics Superstruct Project (GSP; Dataset I). The
number of brain states was selected according to the test-retest re-
liability of results (see fig. S1). The occurrence rates of all brain states
were then estimated and sorted by rank in decreasing order (Fig. 2).
The mean coactivation maps were computed by averaging the fMRI
frames assigned to the same brain state and displayed on an inflated
cortical surface. The coactivation patterns of all brain states exhib-
ited intrinsic functional network properties. The brain states with
DN activation had the highest occurrence rate during resting
state, followed by brain states demonstrating coactivations
between regions comprising the salience (SN) and fronto-parietal
control (FPN) networks. In addition, several different combinations
of coactivated brain regions belonging to other networks, such as
the ventral attention, visual, and sensorimotor networks, were
also identified. Notably, we observed specific brain states showing
hemispheric lateralization and discuss these results in detail in the
next section.

To verify the reproducibility of the brain states, we computed the
brain state coactivation maps and their occurrence rates in half of
the GSP dataset (Dataset I), which was designated as the discovery
sample (n = 423), and then replicated this approach independently
in the other half of the GSP dataset, designated as the replication
sample (n = 423). The discovery and replication occurrence rates
for the 16 brain states were strongly correlated, demonstrating
high reproducibility at the group level (fig. S2; Pearson correlation,
r = 0.995, P < 0.001). The corresponding coactivation maps of the 16
brain states also demonstrated high spatial similarity (mean spatial
similarity ± SD, r = 0.992 ± 0.003, P < 0.001).

Although the 16-brain state solution was selected as the optimal
cluster number for analysis in the current study because it balanced
the test-retest reliability with the diversity of the brain states, we also
investigated the 10- and 19-cluster solutions given these two local
optimal solutions yielded high permutation test-retest reliability
(see fig. S1) in the GSP dataset. Although the 19-cluster solution
generated a greater number of brain states than the 10-cluster sol-
ution, both solutions yielded brain states that shared common spa-
tiotemporal coactivation profiles. Moreover, the order of
occurrence rates for these brain states was highly similar (fig. S3).
For example, the mean coactivation maps of the first four brain
states with the highest occurrence rates showed similar coactivation
profiles in both the 10- and 19-cluster solutions. These findings

indicate that additional brain states comprising the 19-cluster solu-
tion were likely derived from the decomposition of other brain state
configurations identified in the 10-cluster solution.

The occurrence rate of brain states is reliable at the
individual level and captures intersubject variability
Next, we estimated the frequency of brain states at the individual
level and quantified the reproducibility for each participant. Our
INSCAPE approach can apply the group templates generated
from the GSP dataset to decode brain states in any new subject
even if the subject was scanned using a different protocol. We
thus applied the INSCAPE approach to Dataset II, a dataset from
the Consortium for Reliability and Reproducibility Project by
Hangzhou Normal University (CoRR-HNU) that consisted of a
sample of 30 healthy participants scanned on 10 different occasions.
This cohort was intentionally different from the GSP dataset, which
was used for generating the group template of brain states, in terms
of scanner type, scanning protocol, and scan durations.

To evaluate the test-retest reliability and sensitivity of our
INSCAPE approach for capturing individual differences in the oc-
currence rate of subject-specific brain states, we equally divided
each subject’s resting-state fMRI data from the CORR-HNU
dataset (Dataset II) into a test session and a retest session and com-
puted the occurrence rate of brain states in each session. The intra-
and intersubject similarities of occurrence rates were tested using
Pearson correlation (Fig. 3A). The within-subject occurrence rates
of brain states derived from the two sessions showed high consisten-
cy with a mean intrasubject similarity of r = 0.90. Between any two
individuals, the mean similarity of occurrence was 0.71 (intersub-
ject variability = 0.29). Test-retest results of four participants are
displayed in Fig. 3C and illustrate the distribution of brain state oc-
currence rates for each subject. As expected, the intrasubject simi-
larity of state occurrence rates was significantly higher than the
intersubject similarity [two-sample t test, t(463) = 6.621,
P < 0.001], indicating that the INSCAPE approach is not only
highly reproducible at the single-subject level but can also reliably
and robustly capture individual differences across subjects.

Because data acquisition length is one of the main factors that
affects the reliability of fMRI-based analyses, we estimated the
test-retest reliability of occurrence rates using varying lengths of
resting-state fMRI data, ranging from 5 to 50 min, in 5-min incre-
ments of time. Both intra- and intersubject similarities of occur-
rence rates increased as data became longer (Fig. 3B). A within-
subject test-retest reliability of 0.70 was observed with 15 min of
fMRI data, with the mean reliability increasing to 0.90 with 50
min of data.

Brain lateralization is reflected in the network dynamics of
coactivated brain states
Brain lateralization is an organizing principle of the human brain
postulated to contribute to fast and efficient information processing
(37). To discern the extent to which the 16 coactivated brain states
were functionally lateralized, we calculated the laterality index (LI)
by comparing the number of activated vertices between the left and
right hemispheres. Among the 16 brain states derived from our
INSCAPE analysis of Dataset I, states 15 and 11 displayed the stron-
gest leftward and rightward lateralization, respectively (fig. S4). The
coactivated brain regions comprising left-lateralized state 15 includ-
ed the left lateral prefrontal cortex, temporal parietal junction, and
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Fig. 1. Schematic of the INSCAPE approach. (A) The group templates of brain coactivation states were generated using a resting-state fMRI dataset containing 846
healthy subjects from the GSP (Dataset I) (76). Specifically, the preprocessed fMRI data of each subject were projected to the FreeSurfer fsaverage4 surface space, which
has 2562 vertices per hemisphere. For each time frame of BOLD data, the raw activation map was weighted by the parcellation confidence derived from a population-
based cortical parcellation (82) and averaged within each of the 48 network patches (24 per hemisphere). Themean activations of the 48 patches were then binarized (i.e.,
values larger than 0 were set to 1 and values smaller than 0 were set to −1) to represent the mean weighted coactivation maps that were then concatenated along with
the time series across all subjects. A k-means clustering analysis was then performed to classify the fMRI frames into 16 clusters. The optimal cluster number of 16 was
selected on the basis of results from the test-retest reliability analysis (see fig. S1) because it balanced the test-retest reliability with the diversity of the brain states. Last,
the maps of fMRI frames assigned to the same cluster were averaged to generate the group templates for the 16 dynamic brain states. (B) At an individual subject level,
the maps of the preprocessed fMRI data were first weighted by the parcellation confidence and averaged within the 48 patches using the same procedure described
above for group template generation. Each patch map was then assigned to one of the 16 template brain states having the shortest spatial distance to it. The occurrence
rate of each brain state was calculated as the percentage of frames assigned to a given brain state out of the total number of frames.
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posterior cingulate cortex (Fig. 4A and fig. S5). Right-lateralized
state 11 showed strong coactivations in the insula, angular gyrus,
and dorsal anterior cingulate cortex. In addition, we examined the
activation patterns of these lateralized brain states in the cerebellum
by averaging the corresponding raw coactivation maps within a cer-
ebellum mask in MNI152 volumetric space. Both left-lateralized
state 15 and right-lateralized state 11 in the cerebrum showed asym-
metric functional activations on the contralateral side of the cerebel-
lum (Fig. 4A).

Another important finding was that the coactivated regions
comprising left-lateralized brain state 15 largely overlapped with
traditional language cortical areas. To investigate the extent to
which lateralized brain states reflected the degree of language later-
alization, we estimated the occurrence rates of brain states 15 and 11
in an independent sample (Dataset III) of 55 healthy participants
scanned during both resting state and during a language task (i.e.,

semantic decision task). Left-lateralized state 15 showed a signifi-
cantly higher occurrence rate during the language task compared
to resting state [Fig. 4B; paired t test, t(54) = 6.633, **P < 0.001],
whereas right-lateralized state 11 had a significantly higher occur-
rence rate during resting state compared to the language task
[paired t test, t(54) = 3.875, **P < 0.001]. We then calculated a
task-based language LI for each subject based on the asymmetric
task-evoked activation in the two hemispheres. The language later-
alization was significantly correlated to the occurrence rate of the
left-lateralized state 15 during the task (Fig. 4C; r = 0.51,
P < 0.001). We also examined the relationship between the occur-
rence of brain states across all participants at each time point of the
language task and the hemodynamic response curves elicited by
task processing. Results revealed that the occurrence of left-lateral-
ized state 15 showed a strong, positive correlation with language
task onsets (Fig. 4D; r = 0.70, P < 0.001), while the right-lateralized
state 11 showed a moderate, negative correlation with language task
onsets (r = −0.34, P < 0.001). Brain state 9 also showed a strong,
positive correlation with language task onsets (fig. S6; r = 0.78,
P < 0.001). On the basis of these findings, we then combined
both states 15 and 9 into a single language-related brain state and
examined its occurrence in relation to the language task onsets. We
found that the occurrence of the combined brain states demonstrat-
ed an even greater association with language task onsets than pre-
viously observed with either states 15 or 9 alone (r = 0.86, P < 0.001).
These results indicate that left-lateralized state 15 and state 9 may be
functioning cooperatively to jointly subserve language-related se-
mantic processing.

Last, given the known influence of handedness and gender on
functional lateralization of language, we investigated the effects of
these phenotypic characteristics on lateralization of coactivated
brain states in two separate datasets. For the handedness compari-
son, we computed the occurrence rate of the lateralized brain states
in 52 left-handed and 52 demographically matched right-handed
subjects from Dataset IV. Compared to left-handers, right-handed
subjects showed a significantly higher occurrence rate for right-lat-
eralized state 11 [Fig. 5A; two-sample t test, t(102) = 2.037,
*P = 0.044]. The distribution of occurrence rates also showed a
higher occurrence of state 11 in right-handed versus left-handed
subjects (Kolmogorov-Smirnov test, P = 0.021). We then examined
the differences in occurrence rates of lateralized brain states in a
sample of 279 males and 279 demographically matched (matched
for age, education, and handedness) females from Dataset
V. Overall, males compared to females showed a significantly
higher occurrence rate for right-lateralized state 11 [two-sample t
test, t(556) = 2.674, **P = 0.008] along with a trend toward a signifi-
cantly higher occurrence rate in left-lateralized state 15 [Fig. 5B;
two-sample t test, t(556) = 1.877, P = 0.061]. The distribution of oc-
currence rate for state 11 in males was significantly different com-
pared to females (Kolmogorov-Smirnov test, P = 0.017), with males
demonstrating greater occurrence rates for brain state 11 relative to
their female counterparts. In addition, we investigated whether
handedness or gender influenced the occurrence rate of state 9;
however, no significant differences [paired t test, handedness:
t(51) = 0.045, P = 0.965, gender: t(278) = 0.807, P = 0.420] were
found for either analysis (fig. S7).

Fig. 2. Occurrence rate and spatial maps of the 16 coactivated brain states.
The group templates of brain coactivation states were computed using the
INSCAPE approach across 846 healthy individuals from the GSP dataset. The
group-level brain state coactivation maps were generated by averaging the fMRI
time frames assigned to the same cluster across subjects and ranking themby their
rate of occurrence in descending order. Of the 16 brains states, states 1 through 4
showed canonical DN activation and had the highest occurrence rates across sub-
jects during resting state. a.u., arbitrary units.
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The occurrence rate of dynamic coactivated brain states for
assessment of poststroke recovery
Individualized dynamic brain states may be used to evaluate func-
tional brain status in patients with various brain disorders, especial-
ly in monitoring disease progression or recovery after treatment. As
a proof of concept, we applied our INSCAPE approach to a dataset
(Dataset VI) consisting of 42 subcortical stroke patients and 23
healthy control participants to evaluate the functional changes
over a period of 6 months. We chose this stroke dataset because
of the clear etiology of the patients and the homogeneity of func-
tional impairment among subjects. The occurrence rates of the 16
brain states were estimated in patients at five time points over a 6-
month period and included scans acquired at 1 to 7, 14, 30, 90, and
180 days after stroke. We also estimated the occurrence rates of the
16 brain states in a group of healthy controls at a single time point,
which served as a baseline for comparison with the patient group at
the 1- to 7-day poststroke time point. Results of the repeated

measures analysis of variance (ANOVA) revealed a main effect of
time [F(4) = 4.451, P = 0.002, family-wise error rate (FWER) cor-
rected]. Overall, a gradual and sustained diminution in the occur-
rence rate of the left-lateralized brain state 15 was observed in
patients across the 6-month poststroke recovery period. A series
of post hoc paired-sample t tests showed that the occurrence rate
of brain state 15 was significantly reduced at both 90 [t(41) =
3.662, **P < 0.001] and 180 [t(41) = 2.684, *P = 0.01] days after
stroke compared to the baseline (1 to 7 days) poststroke time
point (FWER corrected). The initially elevated occurrence rate of
state 15 at acute stage normalized over time and became similar
to that in healthy controls at 6 months [two-sample t test, 1- to 7-
day poststroke: t(63) = 1.883, P = 0.064, 6-month poststroke: t(63) =
0.296, P = 0.768]. Nevertheless, the occurrence rate of state 15 was
not directly correlated with motor scores (P > 0.05).

Given brain state 15 is a lateralized brain state, we hypothesized
that the continuous decrease in occurrence of this state over the

Fig. 3. Estimation of the reliability of the INSCAPE analysis. (A) Test-retest reliability was evaluated using the CoRR-HNU dataset (i.e., Dataset II). We divided each
subject’s data equally into two 50-min sessions and calculated the occurrence rates for each session. The intra- and intersubject similarities were quantified by estimating
the correlation coefficient of occurrence rates within the same subject and between any two individuals. Correlation analyses yielded a mean intrasubject similarity of
r = 0.90 and a mean intersubject similarity of r = 0.71. The frequency distributions of occurrence rates are depicted in a histogram with intrasubject and intersubject
similarity denoted by pink bars and blue bars, respectively. (B) The intrasubject (pink line) and intersubject (blue line) similarities in occurrence rates were also examined
using the test-retest dataset with 10 different data lengths ranging from 5 to 50min in duration, in 5-min time increments (mean intrasubject test-retest reliability ± SEM, 5
min: 0.54 ± 0.03, 10 min: 0.69 ± 0.03, 15 min: 0.76 ± 0.03, 20 min: 0.80 ± 0.02, 25 min: 0.82 ± 0.02, 30 min: 0.84 ± 0.02, 35 min: 0.86 ± 0.02, 40 min: 0.87 ± 0.02, 45 min:
0.88 ± 0.02, 50 min: 0.90 ± 0.01). The shaded areas in the figure represent the standard errors. (C) Histograms showing the distributions of test-retest occurrence rates for
the 16 brain states extracted from four randomly selected individuals taken from the CoRR-HNUdataset. Green bars represent the occurrence rate of brain states in the test
session, while yellow bars represent the occurrence rate of brain states in the retest session.
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course of the 6-month poststroke period may be indicative of a
gradual recovery of function from interhemispheric correspon-
dence deficits sustained by the subcortical stroke. To test this hy-
pothesis, we selected five left-hemispheric patches (L1:
sensorimotor, L2: superior parietal lobule, L3: lateral prefrontal
cortex, L4: middle temporal gyrus, and L5: angular gyrus) that
had the highest activations in brain state 15 at 1 to 7 days after
stroke and five symmetric right-hemispheric patches (R1, R2, R3,
R4, and R5) (Fig. 6B). FC between each pair of patches (i.e., L1-
R1, L2-R2, L3-R3, L4-R4, and L5-R5) was computed and averaged
in patients at each of the five time points after stroke to measure the
between-hemisphere connectivity changes over time. Results of the
repeated measures ANOVA indicated a significant main effect of
time [F(4) = 4.504, P = 0.002, FWER-corrected] suggesting a
gradual increase in between-hemisphere FC in patients across the
6-month poststroke recovery period (see fig. S8 for FC of each
patch-pair in patients at the five time points after stroke). Post
hoc paired-sample t tests showed that the FC between hemispheres
significantly increased at 30 [t(41) = 2.201, *P = 0.033], 90 [t(41) =
3.540, **P = 0.001], and 180 [t(41) = 2.289, *P = 0.027] days after

stroke compared to the baseline (1 to 7 days). Then, FC was estimat-
ed between any two patches within each hemisphere and averaged
to represent the within-hemisphere connectivity. Both hemispheres
showed a gradual decrease in the within-hemispheric FC in patients
across the 6-month poststroke recovery period [repeated measures
ANOVA, left hemisphere: F(4) = 4.688, P = 0.001, right hemisphere:
F(4) = 2.623, P = 0.037]. A series of post hoc paired-sample t tests
showed that the FC within both hemispheres was significantly
reduced at 90 and 180 days after stroke compared to the acute
stage [90 days after stroke versus 7 days after stroke, left hemisphere:
t(41) = 2.874, **P = 0.006, right hemisphere: t(41) = 2.987,
**P = 0.005; 180 days after stroke versus 7 days after stroke, left
hemisphere: t(41) = 2.861, **P = 0.007, right hemisphere: t(41) =
2.456, *P = 0.018].

Control analyses
We compared the performance of our INSCAPE approach with two
previously reported dynamic analysis methods—Group CAP (22)
and HMM-MAR (38). The comparisons were carried out in two in-
dependent datasets—Human Connectome Project (HCP)

Fig. 4. Cerebral lateralization of coactivated brain states is reflected in the contralateral cerebellum and in language task. (A) Left-lateralized state 15 showed
activation in the DN and FPN, as well as cortical areas known to be important for language processing, while activation of right-lateralized state 11 comprised cortical
regions anchored in the SN and ventral attention networks. Both lateralized brain states 15 and 11 showed the strongest coactivations in the contralateral cerebellar
hemisphere. (B) The occurrence rates of left-lateralized state 15 and right-lateralized state 11 were calculated during resting state and during a language task. Bar graphs
depict mean (±SEM) occurrence rates for both states 15 and 11 during resting state (green bars) and the language task (yellow bars). The occurrence of left-lateralized
state 15 was significantly greater during the language task compared to resting state, whereas right-lateralized state 11 showed an opposite pattern. (C) Task-based
language LI was significantly correlated with the occurrence rate of left-lateralized state 15 in 55 subjects. (D) The occurrence of left-lateralized state 15 was significantly
correlated with language task onsets (r = 0.70, P < 0.001), indicating that coactivated regions comprising left-lateralized brain state 15may subserve language processing.
In contrast, the occurrence of right-lateralized state 11 showed a significant negative correlation with task onsets (r = −0.34, P < 0.001).
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unrelated 100-subject dataset (Dataset VII) and CoRR-HNU 30-
subject dataset (Dataset II). We found that the Group CAP
method had lower test-retest reliability in occurrence rate compared
to INSCAPE and HMM-MAR (see the Supplementary Materials
and fig. S9). Given that HMM-MAR and INSCAPE showed
similar test-retest reliability in occurrence rate, these two methods
were further compared in terms of spatial characteristics. We found
that INSCAPE yielded more stable group-level brain states across
two datasets compared to HMM-MAR (see the Supplementary Ma-
terials and figs. S10 and S11). Because the HMM-MAR approach
does not capture stable group-level brain states across different data-
sets, the findings from one dataset may not be easily generalized to a
different dataset. We also found that INSCAPE is computationally
more efficient than the other two methods, making it easier to use in
large data samples (see the Supplementary Materials and fig. S12).
Last, we performed control analyses to examine how head motion
affects our results. We found that when head motion is not exces-
sive, we could still decode the brain states with relatively reliable
temporal and spatial characteristics (fig. S13).

DISCUSSION
In the present study, we leveraged our INSCAPE approach for esti-
mating the temporally dynamic functional brain states at the indi-
vidual level. We demonstrate that the occurrence rate of the 16 brain
states identified using our approach showed high intrasubject test-
retest reliability while also capturing significant intersubject differ-
ences. We applied this approach retrospectively under a number of
different experimental contexts and in different subject populations
to begin to characterize the spatiotemporal dynamics of these
subject-specific brain states. We also showed that a subset of iden-
tified transient brain states demonstrating functional lateralization
was related to subject-specific phenotypic traits such as handedness
and gender. Last, we showed that the INSCAPE approach may be
used for investigating longitudinal changes in large-scale network
dynamics in patients with neurological or psychiatric disorders.
Collectively, these findings indicate that our INSCAPE approach
can robustly and reliably detect the dynamic network properties
of brain states at the individual level and has potential for use in
investigating the neurological and psychiatric sequelae of various
brain diseases.

Revealing individual variability in dynamic brain states
A characteristic of complex, self-organizing nonlinear biological
systems, such as the human brain, is the capacity to rapidly and
adaptively respond to external demands that lead to survival,
thereby increasing fitness. The burgeoning new interdisciplinary
field of network dynamics, with its origins rooted in information
theory and network science, seeks to synthesize data derived from
both empirical and computationally based in silico studies to better
understand how the spatiotemporal patterning of neural network
dynamics unfolds over time and is capable of supporting higher-
order cognitive processes during both intrinsic resting-state and
task-induced perturbations (39, 40). Previous studies have suggest-
ed that dynamic brain network reconfigurations contain a wealth of
information underlying critical aspects of human cognition and be-
havior (9, 41) and can also reflect aberrant changes in various psy-
chiatric (42, 43) and neurological disorders (44). However, the
majority of dynamic FC studies are still carried out at the group
level. Investigating intersubject variability in human dynamic
brain states requires imaging techniques capable of capturing reli-
able moment-to-moment dynamic network reconfigurations that
evolve rapidly and are differentially expressed over time and at the
individual level. For over a decade now, the sliding window method
has been widely used for analyzing intrinsic temporal fluctuations
in FC patterns (6, 10, 45). However, this approach has limited tem-
poral resolution and thus is only able to detect the averaged state
over a windowed period, an approach that is potentially confounded
by the sampling variability that is known to affect second-order sta-
tistics (23, 46). Recently, Janes and colleagues (20) proposed an ap-
proach for capturing these transient functional network
reconfigurations based on coactivation patterns of resting-state
fMRI data and were able to obtain reliable results at the group
level; however, intersubject variability was not evaluated. In the
present study, we demonstrate that the occurrence rate of brain
states derived from our INSCAPE approach is highly reliable
within the same subject but also sensitive enough to robustly
capture individual differences (Fig. 3). Delineating these moment-
to-moment changes in network dynamic brain state

Fig. 5. The influence of handedness and gender on the occurrence rates of
lateralized brain states. (A) The occurrence rate of lateralized brain states was
computed in 52 left-handed and 52 demographically matched right-handed sub-
jects. Right-handed subjects showed a significantly higher occurrence rate in right-
lateralized state 11 relative to left-handers (two-sample t test, *P = 0.044). The oc-
currence rate distributions for lateralized states 15 and 11 are displayed in the his-
tograms with left-handed subjects depicted by blue bars and right-handed
subjects denoted by pink bars, with the overlap of the two shown in purple.
The distributions were fitted using Gaussian curves and demonstrate that right-
handed subjects showed a higher occurrence rate in state 11 than left-handed sub-
jects (Kolmogorov-Smirnov test, P = 0.021). (B) Occurrence rate of lateralized brain
states 15 and 11 across 279 males and 279 matched females. Bar graph depicts the
mean percentage of occurrence (±SEM) of states 15 and 11 in male (yellow bars)
and female (green bars) subjects. Males demonstrated a significantly higher occur-
rence of state 11 (two-sample t test, **P = 0.008) and a trend toward a higher oc-
currence rate in state 15 that approached significance (paired t test, P = 0.054)
compared to females. The occurrence rate distributions for these two states are
graphically displayed and demonstrate that males (yellow bars) showed a signifi-
cantly higher occurrence rate in right-lateralized state 11 than females (green bars)
(Kolmogorov-Smirnov test, P = 0.017).
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reconfigurations using our approach may provide new avenues of
research inquiry for discovery of meaningful biomarkers for track-
ing cognitive abilities or disease states over time by affording greater
statistical power for detecting behavioral, physiological, or genetic
associations.

Quantitative assessment of brain asymmetry
Hemispheric specialization has been extensively studied given that
it is a fundamental organizing principle of human brain function
thought to contribute to rapid and efficient information processing.
Despite recent progress in our understanding of functional brain
lateralization of intrinsic large-scale networks using static FC mea-
sures, comparatively little work has been conducted using a
dynamic FC framework. An intriguing finding of the present
study is that two dynamic states may be related to brain functional
lateralization. The strongly left-lateralized state 15 appears to
involve traditional language areas, including the inferior frontal
gyrus, superior temporal gyrus, inferior parietal lobule, and supple-
mental motor areas. However, this state also involves some DN

regions such as posterior cingulate. In a language task experiment,
the occurrence of this state was significantly correlated with the
onset of language task. In addition, individual differences in the oc-
currence rate of this state may predict individual differences in lan-
guage lateralization observed during task fMRI (Fig. 4). These
findings suggest that state 15 may be critical for language process-
ing. In contrast, the strongly right-lateralized state 11 appears to
involve traditional attention areas including insular and angular
gyrus. In addition, this state also involves some FPN network
regions. This state occurred more frequently in men than in
women and more frequently in right-handed versus left-handed in-
dividuals (Fig. 5). Previous work has indicated that there is a hand-
edness effect and a sex effect on the lateralization of the attention
network (34). We speculate that state 11 might be recruited
during attention processing.

Hemispheric asymmetry at rest and during various cognitive
tasks is not stationary but changes over time in both healthy indi-
viduals and in clinical populations diagnosed with various psychi-
atric (47–49) and neurologic disorders (50, 51). Investigating the

Fig. 6. Longitudinal changes of brain states in patients with subcortical stroke during the first 6months of recovery. (A) The occurrence rates of the 16 brain states
were estimated in patients with subcortical stroke at five time points over a 6-month period (i.e., 1 to 7, 14, 30, 90, and 180 days after stroke). The bar graph shows the
mean occurrence rate of state 15 (±SEM) in the patient group (n = 42; blue bars) at each successive time point and in the healthy control group (n = 23; white bars). There
was a significant reduction in the occurrence of left-lateralized state 15 in stroke patients at the 90 and 180 days poststroke time points relative to baseline (1 to 7 days after
stroke) (paired t test, *P < 0.05 and **P < 0.01). The coactivationmaps of left-lateralized brain state 15 in patients at 1 to 7 days and 180 days after stroke are displayed in the
right. (B) Five left-hemispheric patches (L1: sensorimotor, L2: superior parietal lobule, L3: lateral prefrontal cortex, L4: middle temporal gyrus, and L5: angular gyrus) that
had the highest activations in brain state 15 at the 1 to 7 days poststroke time point and five symmetric right-hemispheric patches (R1, R2, R3, R4, and R5) were selected for
the estimation of between- and within-hemisphere connectivity. Between-hemisphere FC increased at the 30, 90, and 180 days poststroke time points relative to baseline
(paired t test, *P < 0.05 and **P < 0.01). Both hemispheres showed a gradual reduction in thewithin-hemisphere connectivity over the 6-month period, and the reduction
was statistically significant at 90 and 180 days after stroke compared to the baseline (paired t test, *P < 0.05 and **P < 0.01). LH, left hemisphere; RH, right hemisphere.
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moment-to-moment spatiotemporal dynamics in functional asym-
metries within and between large-scale networks in healthy individ-
uals may inform our understanding of the pathophysiology
underlying a multitude of neurological disorders that alter brain lat-
erality. In the present study, we found that the left-lateralized state
15 showed a high occurrence rate at the early state of stroke, which
gradually reduced to the level of healthy controls in later stages
(Fig. 6). It has been suggested that lateralization emerges in the
human brain as a means to reduce interhemispheric interactions,
which can minimize wiring cost and improve the efficiency of infor-
mation processing (37). Thus, one possible explanation of the in-
creased occurrence of left-lateralized state 15 after stroke onset is
that interhemispheric communications were impaired by subcorti-
cal stroke, leading to stronger cortical lateralization as a functional
compensation. This compensatory effect diminishes as the function
recovers.

Together, reliable subject-specific brain states can be used to
quantify individual differences in laterality and how they may be
related to clinical symptoms or cognitive abilities. This approach
may be particularly powerful for monitoring real-time brain
changes longitudinally in chronic diseases such as stroke, dementia,
and autism.

Intrinsic and task-induced coactivated brain states share
common large-scale network configurations
Studies on intrinsic static FC and task-evoked changes in brain net-
works have both contributed immensely to our current understand-
ing of brain network dynamics. However, little research to date has
focused on the network interactions and spatiotemporal dynamic
relationships that emerge during spontaneous and task-evoked ac-
tivity. Previous studies have reported that regions showing intrinsic
FC at rest tend to coactivate during a task (52). The network archi-
tecture revealed by intrinsic FC is also present across a wide variety
of task-induced states (53). In addition, FC network parcellation
based on an individual subject’s task-based fMRI data time series
largely resembled the networks derived from resting-state data
(28), suggesting that spontaneous activity and task-evoked pertur-
bations share commonalities in functional network configurations.
An area of debate is a central tendency dominating the functional
coupling patterns across markedly different task-specific states, as
well as during resting state (54). Examining the spatiotemporal
characteristics of dynamic transient coactivation brain states can
shed new light on the coordination and possible competition of
dynamic brain state reconfiguration. Findings from the present
study revealed occurrence rates of lateralized brain states during
resting state and during a language task shared common brain co-
activation states (see fig. S6). Temporal segregation between left-
and right-lateralized states was further supported by the observation
that specific brain states were time-locked with the language task
onsets, while the opposing right-lateralized brain state showed
task-induced deactivations indicative of a decoupling or dissolution
of the network brain state configuration (see Fig. 4, B and D). Iden-
tifying the common features shared by intrinsic and task-driven
dynamic brain states holds promise for elucidating not only how
these rapid and fluid transitions through different network config-
uration and metastable states unfold but also the degree to which
dynamic network changes are state dependent and/or trait specific.
Moreover, while the shared spatial and temporal properties of brain
states may inform us with regard to the commonalities between

intrinsic resting and task-driven states, it could also elucidate how
these large-scale transient network dynamics evolve over time and
reconfigure to specific brain states or energy landscapes to meet in-
creasing task demands. Last, the individual-specific spatiotemporal
properties of these transient dynamic brain states derived from our
INSCAPE approach could potentially be applied to determine the
extent towhich a given task can modify a particular brain state at the
individual level, especially in patients showing deficits or disrup-
tions in specific network brain state coactivation patterns, and
may facilitate the discovery of new personalized targets for
various noninvasive therapeutic interventions.

Implications in clinical brain disorder research
Numerous imaging studies have reported disruptions in the coor-
dination of locally segregated and global integrated large-scale
network dynamics, which has been implicated in various psychiat-
ric and neurological diseases (55–57). For decades, these abnormal
network dynamic spatiotemporal patterns have been routinely in-
vestigated by examining the correlations of BOLD signals between
distinct brain regions in the resting-state fMRI data time series at
coarse-grained time scales, also known as “static” FC (29, 58).
However, correlations based on a temporal stationarity assumption
cannot detect the rapid changes in functional network reconfigura-
tion that occur at shorter time scales (10, 18). A large body of emerg-
ing evidence has shown that psychiatric and mood disorders, in
particular, are associated with altered dynamic network spatiotem-
poral profiles in large-scale brain networks. For example, Kaiser and
colleagues (59) reported abnormal patterns in low-frequency spon-
taneous time-varying dynamic network coactivated patterns corre-
lated with self-reported depression severity in patients diagnosed
with major depressive disorder. Braun and coworkers (60) demon-
strated that altered dynamic flexibility of large-scale network recon-
figuration is related, in part, to the genetic liability for
schizophrenia. To enable the detection of network interactions on
a smaller time scale, our group recently performed a group-level
single-frame coactivation method in patients with schizophrenia
and found abnormal changes in the occurrence rate of brain state
in patients who was associated with the severity of the psychotic
symptoms (19). In the present study, we observed longitudinal
changes of dynamic brain states in patients with subcortical
stroke. Specifically, these patients showed a strong presence of the
leftward lateralized brain state 15 within days following stroke onset,
along with a concomitant decrease in the occurrence rate of this lat-
eralized brain state over the course of the 6-month poststroke recov-
ery period to levels observed in healthy cohort (Fig. 6). This finding
is consistent with results from a static FC study reported previously
using another independent dataset (57). This suggests that our in-
dividualized INSCAPE analysis approach is not only capable of de-
tecting changes in the dynamic functional interactions between
brain networks during the acute phase of brain disease but can
also be used to generate biomarkers to track the development and
recovery of various brain diseases over time, as well as clinically
inform the guidance of therapeutic treatment options at the individ-
ual level.

In addition, another application of the INSCAPE approach is to
assist traditional FC analytic methods in the detection of the focal
lesion sites or abnormal network configuration in clinical research
populations. Data-driven, hypothesis-free FC analysis has been
widely adopted in clinical studies to investigate abnormalities in
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brain function related to various neurological diseases (58, 61). FC-
based analysis in these studies is often performed to examine the
connectivity across whole-brain voxels or functional segmentations
that are selected as seeds. However, with the application of higher-
field MRI (62, 63), along with the development of functional
imaging acquisition methods (64), and analytical techniques (28,
65), the resolution of functional images is becoming higher, and
functional parcellations of the cortex are becoming finer. All of
these advances have led to an increasing number of “seeds” that
can be explored. On the one hand, this can be advantageous to re-
searchers studying brain diseases in more temporal and spatial
detail than ever before imagined but, at the same time, increases
the likelihood of tuning into statistical traps—increasing the
number of multiple comparisons results in a higher risk of obtain-
ing false-positive results (66). To solve this problem, our INSCAPE
approach can be performed as a preanalysis method to identify the
abnormal brain coactivation states by comparing the occurrence
rate of a given brain state as a biomarker at the individual level,
while retaining the sensitivity necessary to detect disease induced
variance in patients versus a healthy cohort. Then, traditional
static FC analysis can be used to further investigate the functional
correspondence among regions demonstrating abnormal brain state
dynamics. For example, in this study, we revealed the abnormalities
in lateralized brain state in patients with stroke (Fig. 6A) and then
further demonstrated the FC changes in the primary motor area and
superior parietal lobule during the poststroke recovery period
(Fig. 6B and fig. S8). These findings indicate a more optimal strategy
for tracking clinical endpoints rather than conducting an aimless
search for abnormal focal sites that are related to the disease severity
and duration of symptoms.

Limitations and future directions
There are several technical limitations in the present study. First, the
number of brain states was chosen somewhat arbitrarily. In the
present study, we selected the 16-cluster solution to maximize the
spatial similarity of brain states derived from the test and retest data.
This procedure can, to some extent, avoid the impact of cluster
number selection on the temporal characteristics of the brain
states, i.e., the occurrence rate, which is the primary dynamic
metric evaluated in the present study. Incorporating other mea-
sures, such as the silhouette coefficient, may help to find an
optimal cluster number and can be explored in the future (67,
68). Second, in the present study we chose occurrence rate as our
primary metric, without evaluating other dynamic metrics such
as dwell times and number of state transitions. We found that
dwell times and transition probability were highly dependent on
the occurrence rate. Nevertheless, given that our approach provides
a brain state label for each single time frame at the individual level,
one can easily derive a variety of secondary dynamic metrics includ-
ing dwell time and transition probability. Third, some recent studies
suggested that coactivation patterns observed in single-volume MRI
data may not be fully attributed to the nonstationarity of resting
brain activity (69), and attention should be paid to all time points
instead of those time points presumed to contain neural events (70).
While we found that brain states derived from the INSCAPE ap-
proach could reflect neural events during the language task, the
states should be interpreted with care. Fourth, we band-pass–fil-
tered the data as in the conventional resting-state fMRI analyses.
Some studies have shown that high-frequency oscillations (>0.1

Hz) of resting-state fMRI signals also encoded meaningful neural
information (71–73), although they are more prone to the effects
of physiological noise caused by heart beats and respiration (74,
75). Thus, temporal dynamics in high-frequency bands may be of
interest to be explored in the future. Last, in our current
INSCAPE pipeline, fMRIs were weighted by the parcellation confi-
dence derived from a group-level cortical parcellation. The interin-
dividual variance in the topological organization of functional
networks dynamics should be considered. For example, the group
parcellation template could be replaced by an individualized cortical
parcellation in future investigations.

MATERIALS AND METHODS
Experimental design
Seven fMRI datasets including data from over 1000 subjects and
over 2000 scanning sessions were included in the current study.
Note that Datasets I, III, IV, and V were all collected from the
GSP (76). Datasets III, IV, and V also partially overlapped with
Dataset I. The details are outlined below.
Dataset I
The first dataset consisted of 1000 healthy, young adult participants
(mean age 21.3 ± 3.1 years; 427 males) from the GSP. All partici-
pants provided written informed consent in accordance with guide-
lines set by the Institutional Review Boards of Harvard University or
Partners Healthcare. Each subject performed one or two resting-
state fMRI runs (6 min 12 s per run) and a structural run. All
data were collected using 3T Tim Trio scanners (Siemens, Erlangen,
Germany) equipped with 12-channel head coils. The structural data
included a high-resolution multi-echo T1-weighted magnetization-
prepared gradient-echo image sequence (MPRAGE; Repetition
Time (TR) = 2200 ms, Inversion Time (TI) = 1000 ms, Echo
Time (TE) = 1.54 ms for image 1 to 7.01 ms for image 4, Flip
Angle (FA) = 7°, 1.2 × 1.2 × 1.2–mm voxels, and Field-of-view
(FOV) = 230). The fMRI images were acquired using a gradient-
echo echo-planar imaging (EPI) sequence (TR = 3000 ms,
TE = 30 ms, flip angle = 85°, 3 × 3 × 3–mm voxels, FOV = 216,
and 47 axial slices collected with interleaved acquisition). Partici-
pants were instructed to stay awake and keep eyes open during
the resting-state scans.
Dataset II
The second dataset included 30 healthy, young adults (mean age
24 ± 2.4 years; 15 males) that were collected as part of the CoRR-
HNU. Each participant underwent 10 resting-state fMRI scans (10
min per scan) and a structural MRI scan across a period of 1 month.
MRI data were acquired on a GE MR750 3T scanner (GE Health-
care, Milwaukee, USA). Structural images were collected using a T1-
weighted Fast Spoiled gradient-echo sequence (TR = 8.1 ms,
TI = 450 ms, TE = 3.1 ms, FA = 8°, 1.0 × 1.0 × 1.0–mm voxels,
and FOV = 256). Functional data were obtained using an EPI se-
quence (TR = 2000 ms, TE = 30 ms, FA = 90°, 3.4 × 3.4 × 3.4–
mm voxels, FOV = 220). Participants were instructed to keep
their eyes open and relax during the resting-state fMRI scans. All
participants provided written informed consent in accordance
with guidelines set by the Institutional Review Board of Hangzhou
Normal University.
Dataset III
The third dataset comprised a subset of subjects from the GSP
dataset (i.e., Dataset I) and contained 55 young, healthy adult

Peng et al., Sci. Adv. 9, eabq8566 (2023) 18 January 2023 10 of 15

SC I ENCE ADVANCES | R E S EARCH ART I C L E



participants (mean age 21.1 ± 2.7 years; 25 males). Each participant
underwent two resting-state fMRI runs (6 min 12 s per run) and two
task-based fMRI runs (6 min 12 s per run) wherein a semantic clas-
sification language task was performed (77). Following the task
runs, a structural MRI was acquired to obtain a high-resolution
T1-weighted anatomical image. The MRI data acquisition parame-
ters were identical to the first dataset (GSP dataset; Dataset I) de-
scribed above. For the language task, each run consisted of four
“novel-word” blocks, four “familiar-word” blocks, and four “fixa-
tion” blocks; the duration of each block was 30 s. During each
novel-word block, five novel concrete words and five novel abstract
words were randomly presented. In the familiar-word block, five
practiced words were presented repeatedly. All word stimuli were
randomly presented for 2 s, with 1-s interstimulus intervals. In
each trial, subjects were asked to indicate whether the meaning of
the word presented was concrete or abstract. All participants pro-
vided written informed consent in accordance with guidelines set
by the Institutional Review Boards of Harvard University or Part-
ners Healthcare.
Dataset IV
The fourth dataset consisted of 52 left-handed and 52 right-handed
subjects matched by age (left-handed: 19.9 ± 1.9 years, right-
handed: 19.9 ± 1.7 years, P = 0.90), gender (24 males per group),
ethnicity (five Hispanic subjects per group), education (left-
handed: 13.8 ± 1.7 years, right-handed: 13.8 ± 1.5 years,
P = 0.67), fMRI data acquisition (matched for scanner, console,
and investigator acquiring the data), and data quality (Signal-to-
noise ratio (SNR), left-handed: 183.4 ± 36.4, right-handed:
183.4 ± 34.0, P = 0.98; head motion, left-handed: 0.05 ± 0.02 mm,
right-handed: 0.05 ± 0.02 mm, P = 0.92) that were acquired as part
of the GSP. For each participant, two resting-state fMRI runs (6 min
12 s per run) and a structural MRI run were acquired. MRI data ac-
quisition parameters were identical to those described for the first
dataset (Dataset I: GSP dataset). The handedness of each subject was
assessed using the Edinburgh handedness inventory (78). All par-
ticipants provided written informed consent in accordance with
guidelines set by the Institutional Review Boards of Harvard Uni-
versity or Partners Healthcare.
Dataset V
The fifth dataset was a subset of the GSP dataset (Dataset I) and con-
sisted of 279 male and 279 female participants matched by age, ed-
ucation, and handedness. For each participant, one or two resting-
state fMRI runs (6 min 12 s per run) were acquired along with a
structural T1-weighted scan. The MRI data acquisition parameters
were identical to those described above for the first dataset (i.e.,
GSP). All participants provided written informed consent in accor-
dance with guidelines set by the Institutional Review Boards of
Harvard University or Partners Healthcare.
Dataset VI
The sixth dataset included 42 patients with first-episode subcortical
stroke (mean age 50.7 ± 11.8 years; 39 males) and 23 age-matched
healthy control participants (mean age 51.8 ± 6.9 years; 9 males). All
participants provided written informed consent in accordance with
guidelines of Xuanwu Hospital of Capital Medical University. Eli-
gibility criteria for patients were (i) full admission history (within 7
days after symptom onset) and clinical diagnosis of ischemic stroke,
(ii) unilateral infarction involving basal ganglia (we selected the pa-
tients with homogeneous lesions to minimize the impact of other
factors such as lesion location and lesion size on our results), (iii)

absence of other brain lesions or prior infarcts, (iv) absence of MRI
contraindications, (v) clear time of symptom onset, and (vi) absence
of deafness, blindness, aphasia, or visual field deficits, typical of cor-
tical strokes. Eligibility criteria for healthy control participants in-
cluded a lack of history of neurologic or psychiatric disease. Each
participant underwent five resting-state fMRI scans over a period
of 6 months (at 1 to 7, 14, 30, 90, and 180 days after stroke). Each
scan session consisted of two to four resting-state fMRI runs (6 min
per run) and a structural MRI run. All data were acquired on a 3T
Tim Trio scanner (Siemens, Erlangen, Germany) using a 12-
channel phased-array head coil. Structural images were collected
using a T1-weighted MPRAGE sequence (TR = 1600 ms,
TE = 2.15 ms, FA = 9°, 1.0 × 1.0 × 1.0–mm voxels, and FOV =
256). Functional images were acquired using a gradient-echo
echo-planar pulse sequence (TR = 3000 ms, TE = 30 ms,
FA = 90°, and 3.0 × 3.0 × 3.0–mm voxels). Participants were in-
structed to stay awake and keep their eyes open during the
resting-state scans. All patients underwent rehabilitation therapy ac-
cording to the Guidelines for Chinese Stroke Rehabilitation. Pa-
tients were treated by neurologists at the emergency department
during the acute phase until they were stabilized (i.e., with stable
vital signs and without neural symptoms progressing within 48
hours). Acute inpatient rehabilitation services were delivered by a
multidisciplinary team including neurologists, rehabilitation physi-
cians, physiotherapists, and nurses for 7 to 14 days. Postdischarge
rehabilitation was provided by community medical centers. Each
patient’s rehabilitation plan was personalized according to symp-
toms, guided by researchers and professional rehabilitation physi-
cians in our team. These rehabilitation treatments are consistent
with the American Heart Association and the American Stroke As-
sociation guidelines for adult stroke rehabilitation (79).
Dataset VII
The seventh dataset included 100 young healthy individuals (the
“Unrelated 100” group, age between 22 and 35 except one individual
from the 36+ group, 54 females) made publicly available by the
HCP, supported by the WU-Minn Consortium (80). Written in-
formed consent was obtained from each participant in accordance
with relevant guidelines and regulations approved by the local insti-
tutional review board at Washington University in St. Louis. Each
subject had two resting-state fMRI sessions (each session consisted
of one run with left-to-right direction phase encoding and one run
with right-to-left direction, 14 min 24 s per run). Subjects were
scanned on a customized Siemens 3T “Connectome Skyra”
scanner (Siemens, Erlangen, Germany) using a standard 32-
channel head coil. Functional images were collected using the gra-
dient-echo EPI sequence (TR = 720 ms, TE = 33.1 ms, FA = 52°,
2 × 2 × 2–mm voxels, FOV = 208 × 180 mm, multiband factor = 8,
echo spacing = 0.58 ms, bandwidth = 2290 Hz/Px, time
points = 1200, 72 oblique axial slices alternated between phase en-
coding in a right to left direction in one run and phase encoding in a
left to right direction in the other run).

Data preprocessing
The fMRI data (the GSP, CoRR-HNU, and Stroke datasets; the
details regarding the preprocessing of HCP dataset—Dataset
VII—can be found in the Supplementary Materials) were prepro-
cessed using a previously described analysis pipeline (28), which in-
cluded the following steps: (i) slice timing correction (Statistical
Parametric Mapping, SPM2; www.fil.ion.ucl.ac.uk/spm/software/
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spm2/), (ii) rigid body correction for head motion (FMRIB Software
Library, FSL v5.0.4; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki), (iii) nor-
malization for global mean signal intensity across runs, (iv) band-
pass filtering (0.01 to 0.08 Hz), and (v) nuisance signal regression of
head-motion parameters and whole-brain, ventricular, and white-
matter signals.

Structural data were preprocessed using the FreeSurfer v5.3.0
software package (https://surfer.nmr.mgh.harvard.edu/). For each
participant, the surface mesh of the cortical mantle was reconstruct-
ed from the structural T1-weighted image and then registered to a
common spherical coordinate system (81). The preprocessed func-
tional data were then registered to the FreeSurfer “fsaverage6” cor-
tical surface template, which consisted of 40,962 vertices in each
hemisphere. Spatial smoothing was performed in surface space
with a 6-mm full width at half maximum Gaussian kernel. To
reduce computational costs, the smoothed data were then down-
sampled to the “fsaverage4” template, consisting of 2562 vertices
per hemisphere.

Network-based single-frame dynamic coactivation analysis
The INSCAPE approach consists of the following two steps, which
are described in detail below and illustrated in Fig. 1: (i) generating
the group-level templates of brain coactivation states and (ii) esti-
mating individual-specific brain states.
Generating group template of brain states
We used Dataset I to generate the group-level templates of coacti-
vated brain states. Because head motion can confound the BOLD
signal, we only included subjects with low head motion in this anal-
ysis, defined as having a mean and maximum head motion
(framewise displacement) under 0.1 and 0.5 mm, respectively. Of
a total of 1000 subjects from the GSP dataset, 154 subjects did not
meet these criteria and therefore were excluded from the foregoing
analyses, leaving a final sample of 846 subjects. This stringent crite-
rion for head motion control was used only for creating the template
brain states, ensuring the template was minimally affected by head
motion-related noise. We did not exclude data based on head
motion in other datasets involved in the subsequent analyses. The
procedures for generating group templates of dynamic coactivated
brain states are illustrated in the schematic presented in Fig. 1A.
First, a network-based weight dictionary was created to suppress
the effect of noise and retain the intrinsic network structure of
the raw coactivation data. Specifically, to generate this weight dic-
tionary, the atlas of seven canonical functional networks derived
from a population-based cortical parcellation (82) was divided
into multiple discontinuous patches. The patches that were repre-
sented in both the left and right hemispheres were preserved, result-
ing in a total of 48 network patches (24 patches per hemisphere).
The parcellation confidence of these 48 network patches was then
extracted to comprise the network weight dictionary. The parcella-
tion confidence refers to the probability of each vertex to be as-
signed to a specific functional network during the population-
based cortical parcellation (82). Vertices located in the center of a
network patch would normally have higher parcellation confidence
compared to those near the network boundary. After creating the
weight dictionary, maps of preprocessed fMRI data were weighted
at each vertex at each time point. The weighted single-frame fMRIs
were then averaged within each of the 48 network patches and bi-
narized so that values larger than 0 were set to 1 and values smaller
than 0 were set to −1. The binarized fMRIs of all subjects were then

concatenated along their time series and classified into 16 clusters,
or brain states, using k-means clustering analysis. This cluster
number was selected according to the optimal within-subject test-
retest reliability of the resulting brain states (see fig. S1). Last, the
maps of each cluster were averaged across subjects to comprise
the group template of each brain state.
Estimating individual-specific brain states
At the individual level, functional images for each subject were first
weighted by the network weight dictionary following the same pro-
cedure described above (Fig. 1A). The weighted map of each time
frame was then compared with the group template of brain states
and assigned to the brain state with the shortest spatial distance
to it. Note that at the individual level, images were not binarized.
The functional images assigned to the same brain state were aver-
aged to yield an individualized brain state map (Fig. 1B). For each of
the 16 brain states, the state occurrence rates were quantified as the
number of time frames of a given brain state divided by the total
number of fMRI time frames.

Evaluating the reliability of INSCAPE analysis
Test-retest reliability of the INSCAPE approach was evaluated using
an independent sample of 30 young, healthy participants from the
CoRR-HNU dataset (Dataset II). Each participant underwent 10
separate 10-min resting-state fMRI scans. The first five scans were
assigned to the test session, and the last five scans were assigned to
the retest session (50 min for each session). Then, the occurrence
rates of the 16 brain states were estimated in the test and retest ses-
sions. Intrasubject reliability of the INSCAPE analysis was evaluated
using the similarity (Pearson correlation coefficient) of occurrence
rates for the 16 brain states within each subject. The intersubject
similarity was evaluated using the similarity of occurrence rates es-
timated between any pair of subjects. Given the known influence of
data length on results derived from dynamic analyses, we also quan-
tified the test-retest reliability of the INSCAPE results by computing
the reliability of brain state occurrence rates using 10 different test-
retest data lengths, ranging from 5 to 50 min, in 5-min increments
of time.

Estimating functional lateralization of brain states
To explore the degree of functional lateralization of coactivated
brain states, mean maps of each of the 16 brain states (i.e., group
template) derived from the GSP dataset were first registered to a
FreeSurfer symmetric cortical surface template with 2562 vertices
per hemisphere. For each brain state, vertices with positive activity
values were counted in the left and right hemispheres. The LI of a
given brain state was then calculated as follows

LI ¼ ðVL Pos � VR PosÞ=VHemi

where VL_Pos is the number of positively activated vertices in the left
hemisphere, VR_Pos is the number of positively activated vertices in
the right hemisphere, and VHemi is the total number of vertices in a
single hemisphere (2562 vertices). Note that this LI was evaluated at
the group template rather than at the individual level. Positive LI
values indicated leftward lateralization, and negative LI values indi-
cated rightward lateralization. Moreover, to verify whether func-
tional laterality of coactivated brain states on the cortex could also
be observed in the cerebellum, we computed the mean coactivation
maps within the cerebellum mask in MNI152 volumetric space.
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Functional lateralization is a fundamental property of the human
brain that is also related to handedness and sex (34–36). Here, we
investigated whether brain states identified by our INSCAPE ap-
proach can reflect functional laterality and whether they show hand-
edness- and sex-related differences. The occurrence rates of
lateralized brain states were first estimated in 55 healthy participants
scanned during a language task [i.e., semantic decision task (77, 83)]
and during resting state (Dataset III). A series of paired sample t
tests were used to examine whether the occurrence rates of each
of the 16 coactivated brain states differed significantly between
task-driven and resting-state conditions. Language LI was then cal-
culated for each individual based on the asymmetric activations in
two hemispheres using the approach previously reported (84). Cor-
relation between the language LI and the occurrence rate of the most
leftward lateralized brain state during the task was calculated. The
occurrence of the most leftward and rightward lateralized brain
states was counted across all subjects at each time frame during
the language task and then normalized by the number of subjects.
To investigate whether the occurrence of lateralized brain states was
associated with language-related processing, we compared the nor-
malized occurrence rates of each of the 16 coactivated brain states
with the hemodynamic response curves evoked by the language task
onsets using Pearson correlation.

In addition, to determine the effects of handedness on functional
lateralization of brain states, the occurrence rate was calculated in 52
left-handed and 52 demographically matched right-handed subjects
(Dataset IV). Paired sample t tests were performed to examine
whether differences in brain state occurrence rates were affected
by handedness. We also compared the distributions of the occur-
rence rates in left- and right-handed subjects using the Kolmogo-
rov-Smirnov test. These same analyses were carried out in a
separate dataset of 279 males and 279 demographically matched
females (Dataset V; subjects matched by age, education, and hand-
edness) to examine whether gender influenced the occurrence of
lateralized brain states.

Tracking longitudinal changes in the occurrence rates of
brain states during the poststroke recovery period
We quantified the occurrence rates of brain states in 42 patients with
subcortical stroke at five time points following stroke onset (i.e., 1 to
7, 14, 30, 90, and 180 days after stroke) and 23 healthy controls
(Dataset VI). The occurrence rates were compared between the
first scan session, which served as the baseline scan and was ac-
quired within 1 to 7 days after stroke, and each of the four subse-
quent scan sessions at 14, 30, 90, and 180 days after stroke. A
repeated-measures ANOVA was conducted to investigate whether
the occurrence rates of brain states changed over the course of the
6-month poststroke recovery period relative to the baseline time
point. We specified time (days 7, 14, 30, 90, and 180) as the
within-subject factor and subjects as the fixed factor. A series of
post hoc analyses were conducted using paired sample t tests to de-
termine which time points had occurrence rates that differed signif-
icantly from the baseline time point. We also compared occurrence
rates between the patient group and the group of healthy controls
using two-sample t tests to ascertain whether there was a normali-
zation in occurrence rates of dynamic brain states in patients over
the course of the 6-month poststroke recovery period to levels seen
in control subjects.

Statistical analysis
The reproducibility of the INSCAPE approach was evaluated by cal-
culating the Pearson correlations of occurrence rates for the 16 brain
states between the Discovery and Replication datasets. Spatial sim-
ilarity of brain state maps was quantified by Spearman correlation.
Durbin-Watson test was applied to examine the potential impact of
spatial dependence between neighboring vertices on correlations.
Specifically, we performed a repeated (n = 1000) random sampling
of 7% of the vertices and computed the correlation coefficient on
the subsets of the vertices. Durbin-Watson test was performed to
calculate the spatial dependence for each subset and averaged
across the 1000 iterations. In all spatial correlations reported in
this study, the values of the Durbin-Watson statistic were close to
2, with P > 0.05, suggesting that there was no significant spatial au-
tocorrelation in the subset of vertices. The difference between intra-
subject and intersubject similarity of state occurrence rates was
examined using the two-sample t test. Paired t test was calculated
to evaluate the state occurrence rate changes during language task
compared to resting state. Pearson correlation was used to investi-
gate the relationship between the task-based language LI and the
occurrence rate of the left-lateralized state and the relationship
between the occurrence of brain states across all participants at
each time point of the language task and the hemodynamic re-
sponse curves elicited by task processing. Paired t test was used to
compare the difference in state occurrence rates between left-
handed and right-handed, as well as between male and female par-
ticipants. The distributions of the occurrence rates in handedness
and gender were compared using the Kolmogorov-Smirnov test.
For the stroke patient data, a repeated-measures ANOVA was con-
ducted to evaluate the changes in the occurrence rate of brain state
during poststroke recovery. Paired t test was used to determine
which time points had occurrence rates that differed significantly
from the baseline time point.
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