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abstract

PURPOSE In metastatic triple-negative breast cancer (mTNBC), consistent biomarkers of immune checkpoint
inhibitor (ICI) therapy benefit remain elusive. We evaluated the immune, genomic, and transcriptomic land-
scape of mTNBC in patients treated with ICIs.

METHODS We identified 29 patients with mTNBC treated with pembrolizumab or atezolizumab, either alone
(n = 9) or in combination with chemotherapy (n = 14) or targeted therapy (n = 6), who had tumor tissue and/or
blood available before ICI therapy for whole-exome sequencing. RNA sequencing and CIBERSORTx-inferred
immune population analyses were performed (n = 20). Immune cell populations and programmed death-
ligand 1 expression were assessed using multiplexed immunofluorescence (n = 18). Clonal trajectories were
evaluated via serial tumor/circulating tumor DNA whole-exome sequencing (n = 4). Association of biomarkers
with progression-free survival and overall survival (OS) was assessed.

RESULTS Progression-free survival and OS were longer in patients with high programmed death-ligand 1 ex-
pression and tumor mutational burden. Patients with longer survival also had a higher relative inferred fraction of
CD8+ T cells, activated CD4+ memory T cells, M1 macrophages, and follicular helper T cells and enrichment of
inflammatory gene expression pathways. A mutational signature of defective repair of DNA damage by ho-
mologous recombination was enriched in patients with both shorter OS and primary resistance. Exploratory
analysis of clonal evolution among four patients treated with programmed cell death protein 1 blockade and a
tyrosine kinase inhibitor suggested that clonal stability post-treatment was associated with short time to
progression.

CONCLUSION This study identified potential biomarkers of response to ICIs among patients with mTNBC: high
tumor mutational burden; presence of CD8+, CD4 memory T cells, follicular helper T cells, and M1 macro-
phages; and inflammatory gene expression pathways. Pretreatment deficiencies in the homologous recom-
bination DNA damage repair pathway and the absence of or minimal clonal evolution post-treatment may be
associated with worse outcomes.

JCO Precis Oncol 6:e2100413. © 2022 by American Society of Clinical Oncology

INTRODUCTION

Triple-negative breast cancer (TNBC) has an ag-
gressive clinical course with high rates of metastatic
recurrence within 2-3 years of diagnosis.1,2 Until re-
cently, patients with metastatic TNBC (mTNBC) were
treated with sequential chemotherapy regimens,
which produce a median overall survival (OS) of 13-18
months.3,4

The addition of immune checkpoint inhibitors (ICIs) to
chemotherapy in the first-line setting for patients with
programmed death-ligand 1 (PD-L1)–positive mTNBC
has improved progression-free survival (PFS) and OS

and has been considered the standard treatment for
this population.5-8 However, not all these patients
benefit from this approach, and response rates are
lower in patients who have received prior therapy in the
metastatic setting.9,10 Furthermore, there are ques-
tions about the broad utility of PD-L1 testing, including
reproducibility, and it is understood that PD-L1 posi-
tivity does not explain all the immunogenicity of breast
cancer. Moreover, PD-L1 status is not predictive of
benefit of immunotherapy in the neoadjuvant setting.

Recent voluntary withdrawal of atezolizumab from the
market reinforces the critical importance to identify
more robust biomarkers for ICI benefit to guide therapy
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within this population. Although the biology underlying ICI
resistance in TNBC remains largely unknown and there is a
paucity of genomic data from patients who received ICI, in
this study, we performed genomic analysis of TNBC tu-
mors, with the objective of investigating the molecular
determinants of benefit or resistance to ICI in patients with
mTNBC.

METHODS

Study Cohort and Clinical Annotation

All patients with confirmed mTNBC, as defined by Amer-
ican Society of Clinical Oncology/College of American Pa-
thologists guidelines, were retrospectively included if they
had tumor tissue available and were treated with pro-
grammed cell death protein 1 (PD-1)/PD-L1 inhibitors as
monotherapy or combined with chemotherapy or targeted
therapy at the Dana-Farber Cancer Institute (Boston, MA).
This project received approval from the Dana-Farber/
Harvard Cancer Center Institutional Review Board (DF/HCC
Protocols #05-246 and #13-364) and was conducted in
accordance with the ethical guidelines outlined by the
Belmont Report.

Patient charts were reviewed to determine the temporal
relationship between available biopsy samples and ICI
exposure. Responses were retrospectively collected on the
basis of RECIST version 1.111 prospectively assessed on
each clinical trial. PFS was defined as the date of starting
immunotherapy to the date of progression, death, or last
follow-up. OS was defined as the date of starting immu-
notherapy until the date of death or last follow-up. Patients
alive and without progression at last follow-up were cen-
sored for PFS, and those still alive were censored for OS.

Genomic and Transcriptomic Profiling

Whole-exome sequencing (WES) was performed on
baseline tumor and blood samples from 25 patients treated
with anti–PD-1, anti–PD-L1, or PD-1 blockade with either a

tyrosine kinase inhibitor or chemotherapy. Four of these
patients also had WES performed after treatment (two
formalin-fixed, paraffin-embedded and two liquid biopsies)
to evaluate tumor clonal evolution (Data Supplement).
Methods for detection of somatic point mutations, indels,
copy number, mutational signature, and clonal evolution;
HLA/neoantigen prediction; and transcriptomic analyses
are described in the Data Supplement. Tumor mutational
burden (TMB; mutation per megabase [muts/Mb]) was
calculated as the total number of mutations detected for a
given tumor sample divided by the length of the total ge-
nomic target region captured with the exome assay.
Samples with a TMB of ≥ 10 muts/Mb were classified as
hypermutated.12

RNA sequencing (RNA-seq) was performed on 18 baseline
tumor samples that also had WES performed. Baseline
tumor and immune cell populations from 18 patients were
assessed using multiplex immunofluorescence (mIF)
panels that included CD4, CD8, PD-1, PD-L1, and cyto-
keratin on samples collected before the initiation of ICI
therapy (Data Supplement).13 A full description of the mIF
methodology is included in the Data Supplement. The
association between potential biomarkers and clinical
benefit and resistance to ICI was assessed.14

Statistical Analysis

Statistical analyses were performed using R version 4.0.3.
Categorical variables were compared using the Fisher’s
exact test, and continuous variables were compared using
the Student’s t-test or Wilcoxon rank-sum test as appro-
priate. The Kaplan-Meier method was used to compare
survival outcomes (PFS and OS) of dichotomized groups
(eg, high v low PD-L1) using the survival package, with
statistical significance computed using the log-rank test at a
significance level of P, .05. Pretreatment gene expression
information was compared across patients in four groups:
OS greater than versus , 2 years, PFS greater than
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versus , 9 months, PD-L1 expression above versus below
median as assessed by mIF, and durable responders
(never progressed) versus patients with intrinsic resistance
to therapy. Given that themedian PFS for patients treated in
the arm containing the PD-1/L1 inhibitor in the
IMPassion1305 and KEYNOTE-3557 studies was
7.5 months and 9.7 months, respectively, we chose
9 months as the benchmark PFS cutoff for declaring
clinical benefit in this study. For similar reasons, we chose
2 years as the benchmark OS cutoff for declaring clinical
benefits in this study.

RESULTS

Patient Characteristics

We identified 29 patients with mTNBC treated with an ICI
alone (pembrolizumab, n = 5; atezolizumab, n = 4) or as
part of a combination regimen with chemotherapy (eribulin
plus pembrolizumab, n = 8; nab-paclitaxel plus atezoli-
zumab, n = 6) or a targeted therapy (cabozantinib plus
nivolumab, n = 6) who had tumor tissue and/or blood
available for sequencing obtained before and after ICI
therapy (Fig 1A).

Patient characteristics are reported in Table 1. To inves-
tigate possible biomarkers of response and resistance to
ICI-based therapy, patients were grouped into those who
had a PFS , 9 months and those with a PFS ≥ 9 months.
More patients with a PFS ≥ 9 months were treatment-naı̈ve
(61.5%) compared with patients with a PFS , 9 months
(12.5%). In addition, patients with a PFS ≥ 9 months were
more likely to have been treated with an ICI in combination
with chemotherapy (61.5%) than patients with a PFS ,
9 months (31.3%).

Genomic Features of the TNBC Cohort

Next, we analyzed the prevalence of somatic mutation and
copy number events in the cohort. Among the most frequently
mutated genes were several well-known cancer drivers: TP53
(68%); PIK3CA (24%); and JAK1, POLE, JAK3, MAP3K1,
ASXL1, SMARCA4, and ATR (8% each; Fig 1B and Data
Supplement). Only TP53 and PIK3CA were identified as re-
currently mutated in the cohort (P , .05), consistent with
results from previous studies.15-17 In addition, we identified
multiple copy number alterations, including previously de-
scribed arm-level events in TNBC (deletions in 5q, 8p, and
17p; amplifications in 1q, 8q, and 10p) that were recurrent
in more than half of the patients (Fig 1C and Data
Supplement).15-18 An analysis of the mutational spectrum and
signatures using a Signature Analyzer revealed that two of four
predominantmutational processes in the cohort were defective
DNA mismatch and DNA double-stranded break repair by
homologous recombination, without evidence of somatic in-
activation of BRCA1/2 genes in the majority of patients and
somatic BRCA1 mutation in 2 of 14 patients (Pt21 and Pt26)
for which defective DNA double-stranded break repair by
homologous recombination was the dominant mutational
signature (Fig 1D and Data Supplement).

Tumor Genomic Characteristics and Outcomes

We evaluated the association of tumor genomic features
with PFS on ICI therapy and OS. Median TMB by DNAWES
was higher in patients with the PFS ≥ 9 months compared
with patients with the PFS , 9 months (P = .024; Fig 2A)
and the OS≥ 2 years compared with patients with the OS,
2 years (P = .033; Fig 2B). Of note, the neoantigen load was
not different between the high- versus low-PFS or low-OS
groups (Data Supplement).

In RNAseq data, CIBERSORTx analysis of 22 inferred
immune subsets revealed significantly higher relative
inferred fractions of CD8+ T cells and M1 macrophages
among patients with the PFS ≥ 9 months versus PFS ,
9 months and OS ≥ 24 months (all P , .05; Figs 2C and
2D). In addition, gene set enrichment analyses (GSEA) of
RNAseq data demonstrated that hallmarks like hedgehog
signaling and myogenesis were enriched among patients
with lower OS (, 2 years; all P , .001), whereas allograft
rejection (P = .086), interferon (IFN)-α responses (P =
.054), and IFN-γ (P = .023) were positively associated with
longer OS (first degree relative [FDR] ≤ 0.25; Figs 2E and
Figs 2F). We also found that defective homologous re-
combination DNA damage repair signature (SBS3) was
over-represented as the dominant signature in samples
with lower OS (P = .048; Fig 2G).

PD-L1 Expression and Outcomes

Patients with a combined positive score value (defined as
total PDL1+/cytokeratin+ × 100) of the median presented
improved PFS (P , .005) and OS (P = .018; Figs 3A-F);
higher total PD-L1 expression was also associated with
improved survival outcomes (Data Supplement). The me-
dian TMB did not differ between patients with PD-L1–high
versus PD-L1–low tumors (data not shown). GSEA analysis
showed that PD-L1–high tumors were enriched for hall-
marks such as allograft rejection (P , .001), IFN-γ re-
sponse (P , .001), and inflammatory response (P = .008)
compared with PD-L1–low tumors. By contrast,
transforming growth-factor-β signaling (P = .031) and
myogenesis (P = .037) hallmarks were enriched in PD-
L1–low compared with PD-L1–high tumors (FDR ≤ 0.25;
Data Supplement).

We also investigated association of RNAseq features
with PD-L1 IHC expression. Using CIBERSORTx, we
observed a higher relative fraction of M1 macrophages
(P = .004), CD8+ T cells (P = .009), and follicular helper
T cells (P = .013) among PD-L1–high tumors compared
with PD-L1–low tumors. By contrast, the relative fraction
of CD4+ T cells was higher in patients with PD-L1–low
tumors (P = .029; Data Supplement).

Molecular Features of TNBC with Durable Response

to Immunotherapy

In this study cohort, five patients with durable response to
immunotherapy, here defined as being free of disease
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FIG 1. Genomic characteristics of the study population. (A) Summary of clinical history, sample collection, andmolecular profiling of patients
included in this study. (B) Most frequent mutations observed in 25 tumor samples collected before starting (continued on following page)
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progression at the time of analysis (durable responders),
had PFS rates ranging from 26 to 60 months. Durable
responders tended to have higher TMB than patients with
no benefit although the result was not statistically signifi-
cant, likely because of small numbers (P = .13; Fig 4A).
Three of three durable responders withmIF data had PD-L1
positivity, compared with three of six patients with intrinsic
ICI resistance (P = .46; data not shown). Interestingly, we
found that the tumor from only one of the five durable
responders seemed to be driven by defects in the ho-
mologous repair machinery compared with the tumors of
seven of eight patients (87.5%) with intrinsic resistance
(P = .032), consistent with the observed association of this
signature with worse OS (Fig 4B).

Using CIBERSORTx, we found a significantly higher
relative fraction of follicular helper T cells (P = .016)
and activated CD4+ memory T cells (P = .036) among
patients with durable responses compared with pa-
tients with intrinsic resistance to ICI-based regimens
(Fig 4C). GSEA revealed that patients with durable benefit
to immunotherapy presented tumors enriched for hall-
marks such as PI3K-AKT-mTOR signaling (P = .023),
heme metabolism (P = .023), and inflammatory response

(P = .046) compared with patients with intrinsic resistance
(FDR ≤ 0.25; Figs 4D-4F).

Tumor Evolution during Immunotherapy

We postulated that reduction in tumor burden or disease
control in response to anti–PD-1 treatment may be asso-
ciated with depletion in tumor clones that are sensitive to
antitumor immunity. To test this hypothesis, we examined
the association of clonal evolution with time to progression
in four patients treated with the anti–PD-1 agent nivolumab
and cabozantinib, an inhibitor of multiple tyrosine kinases
including MET, AXL, and VEGFR2 (Fig 1A).

One patient (Pt14) had an almost complete depletion of the
primary clone encoding neoepitopes with a number of
strong predicted binders to the patient’s HLA alleles, in-
cluding one derived from a nonsynonymousmutation in the
cancer driver gene INPPL1 (Fig 5A). This patient remained
without progression of disease 26 months after treatment at
last follow-up. Pt15 had decreases in cancer cell fractions
of two subclones, along with increased cancer cell fractions
in a third subclonal population, and had an intermediate
PFS of 13months (Fig 5B).19 By contrast, two other patients
(Pt19 and Pt18) showed no change in clonal structure at

FIG 1. (Continued). ICI-based therapy. Top tracks, benefit status, and PFS per patient. Patients are sorted by increasing PFS. Five patients
with durable responses are marked with an asterisk. Top histogram, mutation rate per sample. Right histogram, frequency of somatic
alterations. heatmap, and distribution of synonymous and nonsynonymous mutation events. (C) Recurrent focal deletions (top panel) and
amplifications (bottom panel) identified by GISTIC2. (D) Mutational signatures prevalent in the cohort. ctDNA, circulating tumor DNA; HR,
homologous recombination; ICI, immune checkpoint inhibitor; mcIF, multicolor immunofluorescence; PFS, progression-free survival;
RNASeq, RNA sequencing; SBS, single base substitution; WES, whole-exome sequencing.

TABLE 1. Demographic and Clinicopathologic Characteristics of the Study Population
Characteristic PFS <9 Months (n = 16) PFS ‡ 9 Months (n = 13) Total (n = 29)

Median age, years (range) 54.2 (31.8-69.9) 58.9 (46.0-75.9) 58.3 (31.8-75.9)

Female, No. (%) 16 (100) 13 (100) 29 (100)

ECOG PS

0 11 (68.8) 10 (76.9) 21 (72.4)

1 5 (31.2) 3 (23.1) 8 (27.6)

Liver metastases 8 (50.0) 6 (46.2) 14 (48.3)

Prior therapy for metastatic disease

Median (range) 1 (0-6) 0 (0-6) 1 (0-6)

0, No. (%) 2 (12.5) 8 (61.5) 10 (34.5)

1 line, No. (%) 8 (50.0) 1 (7.7) 9 (31.0)

≥ 2 lines, No. (%) 6 (37.5) 4 (30.8) 10 (34.5)

Regimen, No. (%)

ICI monotherapya 6 (37.5) 3 (23.1) 9 (31.0)

Combination with CTb 6 (37.5) 8 (61.5) 14 (48.3)

Nivolumab with cabozantinib 4 (25.0) 2 (15.4) 6 (20.7)

Abbreviations: CT, chemotherapy; ECOG PS, Eastern Cooperative Oncology Group Performance Status; ICI, immune checkpoint inhibitor;
PFS, progression-free survival.

aFive patients received pembrolizumab monotherapy; four patients received atezolizumab monotherapy.
bEight patients received pembrolizumab plus eribulin; six patients received atezolizumab plus nab-paclitaxel.
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progression and had the earliest times to progression at 2
and 6 months after initiation of therapy (Figs 5C and 5D).
We further observed higher TMB and immune cytolytic
activity in the patient with a durable response compared
with other patients (Figs 5E and 5F). Moreover, Pt14 was
marked by a pretreatment infiltrate composition that was
relatively increased in antitumor (CD8 T cells, CD4 memory
activated, follicular helper T cells, M1 macrophages, ac-
tivated NK cells, and activated dendritic cells) and de-
creased in protumor (CD4 memory resting and M0 and M2
macrophages) immune cell fractions compared with other
patients (Fig 5G).

DISCUSSION

In this study, we analyzed a unique cohort by incorporating
multidimensional profiling of immune, genomic, and tran-
scriptomic features associated with survival outcomes in
patients with mTNBC treated with ICI monotherapy or
combination regimens. Moreover, this cohort included
multiple ICI durable responders, with a PFS of at least
26 months and offers the opportunity to interrogate geno-
mic factors associated with these exceptional responders.
Consistent with previous studies,5,7,20-22 we found that

patients with longer PFS and OS more frequently had PD-
L1–positive tumors and higher median TMB. In addition, we
observed that patients with durable responses after ICI had
tumors with a higher relative fraction of follicular helper
T cells and activated CD4+ memory T cells and a higher
expression of genes involved in the inflammatory response.
These data further support the hypothesis that patients with
a T-cell–inflamed mTNBC phenotype are more likely to
derive benefit from PD-1–containing/PD-L1–containing
therapies.

It is clear that PD-L1 is a suboptimal biomarker.23 Thus, it
is important to identify additional biomarkers that can refine
our ability to predict which patients will benefit from ICIs.
In the present study, the median TMB was significantly
higher among patients who achieved PFS ≥ 9 months and
OS ≥ 2 years on ICI-containing regimens, consistent with
other studies in breast cancer.20-22,24,25 As this study
demonstrates, even in the setting of deep characterization
including multiomics, multicolor immunofluorescence, and
standard tissue markers, there is not (to date) one single
biomarker that performs optimally to predict ICI benefit. We
hypothesize that pretreatment, a composite biomarker that
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builds upon the best performing features among distinct
data types may be required. Alternatively, an early bio-
marker of response (eg, circulating tumor DNA change)
may offer a functional readout, as has been seen in other
cancer types.26

Previous studies in mTNBC have noted that increased tumor-
infiltrating lymphocyte frequencies are correlated with im-
proved response to ICI-containing regimens.27-29 In our study,
tumors from patients with longer survival after ICI had a higher
expression of genes in IFN-γ1, inflammatory response, and
allograft rejection pathways and also had higher relative
fractions of CD8+ T cells, follicular helper T cells, and M1
macrophages. These results are in concordance with the
exploratory analysis of the IMpassion130 study, which showed
that patients who experienced the greatest benefit from the

addition of atezolizumab to chemotherapy had a high CD8-
positive cell infiltration and immune-inflamed tumors.30 Con-
versely, patients in our study with PD-L1–low tumors also had
an increased expression of TGF-β signaling genes. Increased
TGF-β1 expression has been associated with T-cell exclusion,
higher tumor grade, axillary lymph node metastasis, and
shorter disease-free survival in patients with TNBC.31,32 In vitro,
higher levels of TGF-β1 are associated with increased mi-
gration and invasion of TNBC cells.31

In contrast to other solid tumor types treated with ICI,
durable responses lasting more than 24 months are in-
frequent in mTNBC.5-7 We present data from five excep-
tional responders without disease progression (ranging
from 26 to 60 months). Compared with patients with in-
trinsic resistance, the pretreatment tumors from patients
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with durable responses had a significantly higher relative
fraction of follicular helper T cells and activated CD4+
memory T cells. The importance of CD4+ T cells as reg-
ulators of immune responses has been shown in primary
breast cancer.33 We also found that durable responses had
significantly increased inflammatory gene response. In
addition, these patients with durable benefit had tumors
with higher expression of genes in the PI3K-Akt-mTOR
signaling pathway, inflammatory response, and heme
metabolism. Loss of PTEN has been suggested to be as-
sociated with resistance to ICI in mTNBC although the
specific mechanism is unclear.20 One possibility is that
tumors with increased PI3K/Akt activity present with higher
levels of PD-L1 expression in mTNBC,34 which in turn
yields greater sensitivity to regimens that target PD-1/PD-

L1 interactions. We also found that durable responses had
significantly higher expression of genes in the heme
metabolism pathway. Previously, it was shown that ICI-
activated CD8+ T cells promote tumor cell lipid perox-
idation and sensitize tumors to ferroptosis in a IFN-
γ–dependent manner.35 The combination of ferroptosis
activators and ICI could be a promising approach to in-
crease the proportion of patients who benefit from im-
munotherapy in breast cancer.

Finally, our study of evolutionary trajectories of tumor
clones after ICI treatment in a small cohort suggests that
changes in clonal architecture, particularly reductions in
cancer cell fractions of primary clones and those bearing
strong immunogenic targets or driver genes, could serve as
an early indicator of treatment effectiveness. Of note,
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analysis of two of the four patients in this cohort was based
on WES of circulating DNA, demonstrating the feasibility of
developing an early response test on the basis of readily
available liquid biopsy samples.

This study has limitations. First, we identified a small
sample size of patients with mTNBC who were treated with
different ICI-containing regimens in different lines of met-
astatic disease, from 0 to 6 lines of therapy in the metastatic
setting. Larger prospective studies should be conducted to
validate the association between high TMB, immune in-
filtrates, and expression of IFN pathway genes with the

response to ICI-containing regimens in patients with
mTNBC. Second, information about PD-L1 status using
immunohistochemical assays with either the SP142 or
22C3 antibody was not available because this was not
clinically required when the patients were consented to
these clinical trials. Instead, we performed a mIF assay
to evaluate the expression of PD-L1 in the tumor mi-
croenvironment and the type of PD-L1–positive cells.
Immunostaining results with the PD-L1 antibody clone
(405.9A11)36 used in our work have been shown to be
highly correlated with the results of immunostaining with
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other commercially available clones (eg, 22c3, E1L3N,
and SP142) and predictive of clinical response to PD-1
blockade in previous studies.37 Finally, although data
suggest that distinct metastatic sites reflect variation in
the immune microenvironment (eg, fewer tumor-
infiltrating lymphocytes in liver metastases), in our
population, just two biopsies came from the liver; thus,
this small number prevents us from performing specific
analyses around specific metastatic sites.

In summary, we present a comprehensive analysis of
multiomic profiling of patients with mTNBC receiving ICIs
to date. We confirm prior findings regarding the association
of PD-L1 status and high TMB with response to ICIs in
breast cancer; additionally, we found potential novel as-
sociations of response to these agents, including higher
infiltration of CD8-positive cells and higher expression of
genes in IFN-γ, inflammatory response and allograft re-
jection pathways, and clonal evolution while on ICIs.
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