Skip to main content
. 2023 Jan 18;12(1):10. doi: 10.1186/s13677-022-00387-2

Table 2.

Performance evaluation results of anomaly detection using various Machine Learning Algorithms

K-Fold Algorithm name Precision Recall Accuracy F1 Score
3-Fold SVM 0.63 0.99 80.94 0.77
Isolation forest 0.94 0.99 96.23 0.96
Elliptic Envelope 0.94 0.94 93.83 0.94
Local Outlier Factor 0.82 0.99 90.63 0.90
k-means 0.94 0.99 96.43 0.96
Mini Batch k-Means 0.94 0.99 96.43 0.96
Mean Shift 0.61 0.64 63.30 0.63
Birch 0.33 0.99 66.19 0.49
5-Fold SVM 0.75 0.99 86.98 0.85
Isolation forest 0.94 0.99 96.14 0.96
Elliptic Envelope 0.94 0.90 91.81 0.92
Local Outlier Factor 0.81 0.99 90.06 0.89
k-means 0.94 0.99 96.43 0.96
Mini Batch k-Means 0.94 0.99 96.43 0.96
Mean Shift 0.61 0.64 63.47 0.63
Birch 0.20 1.00 60.07 0.34
10-Fold SVM 0.65 0.99 82.06 0.78
Isolation forest 0.93 0.99 96.14 0.96
Elliptic Envelope 0.94 0.86 89.54 0.90
Local Outlier Factor 0.82 0.99 90.38 0.90
k-means 0.94 0.99 96.43 0.96
Mini Batch k-Means 0.95 0.72 79.44 0.82
Mean Shift 0.61 0.64 63.64 0.63
Birch 0.11 1.00 55.31 0.20