Table 2.
Performance evaluation results of anomaly detection using various Machine Learning Algorithms
| K-Fold | Algorithm name | Precision | Recall | Accuracy | F1 Score |
|---|---|---|---|---|---|
| 3-Fold | SVM | 0.63 | 0.99 | 80.94 | 0.77 |
| Isolation forest | 0.94 | 0.99 | 96.23 | 0.96 | |
| Elliptic Envelope | 0.94 | 0.94 | 93.83 | 0.94 | |
| Local Outlier Factor | 0.82 | 0.99 | 90.63 | 0.90 | |
| k-means | 0.94 | 0.99 | 96.43 | 0.96 | |
| Mini Batch k-Means | 0.94 | 0.99 | 96.43 | 0.96 | |
| Mean Shift | 0.61 | 0.64 | 63.30 | 0.63 | |
| Birch | 0.33 | 0.99 | 66.19 | 0.49 | |
| 5-Fold | SVM | 0.75 | 0.99 | 86.98 | 0.85 |
| Isolation forest | 0.94 | 0.99 | 96.14 | 0.96 | |
| Elliptic Envelope | 0.94 | 0.90 | 91.81 | 0.92 | |
| Local Outlier Factor | 0.81 | 0.99 | 90.06 | 0.89 | |
| k-means | 0.94 | 0.99 | 96.43 | 0.96 | |
| Mini Batch k-Means | 0.94 | 0.99 | 96.43 | 0.96 | |
| Mean Shift | 0.61 | 0.64 | 63.47 | 0.63 | |
| Birch | 0.20 | 1.00 | 60.07 | 0.34 | |
| 10-Fold | SVM | 0.65 | 0.99 | 82.06 | 0.78 |
| Isolation forest | 0.93 | 0.99 | 96.14 | 0.96 | |
| Elliptic Envelope | 0.94 | 0.86 | 89.54 | 0.90 | |
| Local Outlier Factor | 0.82 | 0.99 | 90.38 | 0.90 | |
| k-means | 0.94 | 0.99 | 96.43 | 0.96 | |
| Mini Batch k-Means | 0.95 | 0.72 | 79.44 | 0.82 | |
| Mean Shift | 0.61 | 0.64 | 63.64 | 0.63 | |
| Birch | 0.11 | 1.00 | 55.31 | 0.20 |