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An essential step of RNA sequencing (RNA-seq) data 
analysis is normalization, whereby different sources of 
unwanted variation are removed to make gene expres-

sion measurements comparable within and between samples1–4. In 
cancer RNA-seq data, within-sample normalization should adjust 
for gene length, GC content and cellular compositions, whereas 
between-sample normalization should remove the impact of library 
size, tumor purity and batch effects on the data. Efficient removal of 
such variation from RNA-seq data is still a challenge. This variation 
can introduce artifactual or obscure true biological signals in the 
data and, consequently, lead to false or missed discoveries, resulting 
in misleading biological conclusions1,5–8.

Most RNA-seq normalizations adjust for library size variation 
using global scaling factors calculated based on either total counts 
or other statistical features of the raw count data, such as their upper 
quartiles3,9,10. These normalizations simply divide all gene counts in 
each sample by a single scale factor. The implicit assumption under-
lying such methods is that all the gene-level counts are proportional 
to the scale factors and that it should be adequate to adjust them 
for library size in this way across samples. A current challenge for 
RNA-seq normalizations arises when the counts for a reasonable 
proportion of genes cannot be properly adjusted for library size by 
the use of a single scale factor, regardless of how it is computed. The 
bias between gene-level counts and library size has been discussed 
in single-cell RNA sequencing data11,12; however, this has not been 
recognized in RNA-seq data.

Tumor purity—that is, the proportion of cancer cells in solid 
tumor tissues—is another major source of variation in cancer 
RNA-seq data. This variation has been viewed as an intrinsic char-
acteristic of tumor samples and has been linked to several clinical 
outcomes in patients with various cancer types13–16. Tumor purity 
could be considered as a source of unwanted variation in studies 
whose aims are restricted to tumor-specific expression. Variation in 
tumor purity can affect comparisons of a gene’s expression within 
and between samples, which can compromise downstream analyses 
in cancer RNA-seq studies17–19. Current RNA-seq normalizations 
and batch correction methods are unable to remove this kind of 
variation from the data. Adjusting counts for tumor purity varia-
tion using regression models risks removing biological signal if that 
signal is confounded with purity.

Batch effects are obvious sources of unwanted variation in large 
RNA-seq studies, where samples are necessarily processed across a 
range of conditions—for example, chemistry, protocol and facility. 
Most batch correction methods are based on linear regression. For 
individual gene expression, they fit a linear model with blocking 
terms for batch. Then, the coefficient for each blocking term is set 
to zero, and the corrected expression values are computed from the 
residuals20–22. An implicit assumption underlying such methods is 
that the biological populations are evenly distributed within each 
batch—that is, that there is no association between batch and bio-
logical condition. However, if there is such an association (due to 
confounding), then correcting gene expression counts for batch 
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effects using these methods risks removing biological signal along 
with the batch effects. Furthermore, batch effects usually influence 
subsets of genes in different ways6,8; sample-wise normalization, 
including normalizations that rely on global scaling factors, gener-
ally fail to remove this variation from the data.

We previously developed a normalization method, called remov-
ing unwanted variation III (RUV-III), for gene expression studies 
with technical replicates8. The RUV-III method is a linear model 
through which the presence and impact of known and unknown 
unwanted factors can be inferred via technical replicates and nega-
tive control genes. However, RUV-III has two limitations. First, it 
is not designed to be used effectively in situations where technical 
replicates are not available or well-distributed across the sources of 
unwanted variation. Second, because a sample’s tumor purity will 
be essentially the same across all of its technical replicates, the origi-
nal RUV-III is unable to estimate and remove this kind of variation 
using standard technical replicates.

Here we propose an approach, called pseudo-replicates of 
pseudo-samples (PRPS), to deploy RUV-III to efficiently remove the 
impact of library size, tumor purity and batch effects from RNA-seq 
data. The PRPS approach overcomes the limitations of RUV-III 
in situations where suitable technical replicates are not available or 
where variation due to tumor purity is to be removed from cancer 
RNA-seq data. To use RUV-III with PRPS, we first need to iden-
tify the sources of unwanted variation and major expression-based 
biological populations in the data. We then create pseudo-samples, 
which are in silico samples derived from small groups of samples 
that are roughly homogeneous with respect to unwanted variation 
and biology. Two or more pseudo-samples with the same biology 
will be regarded as a pseudo-replicate set. The gene expression dif-
ferences between such pseudo-samples will largely be unwanted 
variation. RUV-III makes use of such differences, together with 
negative control genes, to estimate and remove unwanted variation 
from the data.

We make use of three RNA-seq datasets from The Cancer 
Genome Atlas (TCGA) studies to show that RUV-III with PRPS 
can effectively remove library size, tumor purity and batch effects 
and lead to meaningful biological results that are not compromised 
by this kind of variation. We will demonstrate that RUV-III with 
PRPS can be used to normalize multiple RNA-seq studies. We also 
present comprehensive strategies for revealing unwanted variation 
in large-scale RNA-seq studies, such as those of the TCGA project.

Results
TCGA RNA-seq datasets. The TCGA Research Network gener-
ated RNA-seq data from ~11,000 tumor and normal sample tis-
sues obtained from 33 cancer types. To understand some potential 
sources of unwanted variation, fresh-frozen tissue samples were col-
lected from tissue source sites (TSSs), allocated to 96-well sequenc-
ing plates (hereafter called plates) and processed at various times 

(Supplementary Table 1). Some TCGA RNA-seq datasets, such as 
uveal melanoma and kidney chromophobe, were generated using 
a single plate. In general, plates are completely confounded with 
times, making it difficult to distinguish plate effects from time 
effects. There are also formalin-fixed, paraffin-embedded samples 
among the TCGA RNA-seq samples, and these were excluded from 
the data discussed here. Low-quality samples and lowly expressed 
genes were also excluded from individual datasets before the anal-
yses in this paper (Methods). The TCGA RNA-seq datasets are 
available in the form of raw gene counts, fragments per kilobase of 
transcript per million mapped reads (FPKM) and FPKM followed 
by upper-quartile normalization (FPKM.UQ).

Library size, tumor purity and plate effects are major sources 
of unwanted variation across TCGA RNA-seq datasets. We first 
considered the role of sample RNA-seq library size as a source of 
unwanted variation. Ideally, the gene-level counts should have no sig-
nificant association with library size variation in a well-normalized 
dataset (Fig. 1a). Consequently, any downstream analysis, including 
dimensional reduction, gene co-expression and differential expres-
sion, should also not be influenced by library size variation.

For most TCGA RNA-seq studies, library sizes vary greatly both 
within and between years (Fig. 1b). The first five principal compo-
nents (PC) cumulatively are strongly associated with (log) library size 
in the raw gene counts (Fig. 1c, first panel). The FPKM and FPKM.
UQ normalizations reduced the effects of library size, but they 
showed shortcomings—high correlation between PCs and library 
size—in several cancer types (Fig. 1c, first panel). For each cancer 
type, the association between individual gene-level counts and library 
size was quantified using Spearman correlation (Fig. 1d, first panel, 
and Supplementary Fig. 2a). The results show that a large propor-
tion of genes have high positive correlations with library size in the 
raw gene count datasets. However, in these datasets, there are reason-
able numbers of genes whose expression levels have no correlation 
or a negative correlation with library size (Fig. 1d, first panel) and, 
thus, present a challenge for the standard RNA-seq normalizations. 
Supplementary Fig. 1 shows that the association between gene-level 
raw counts and library size is partially explained by average gene 
expression level and is never constant. The FPKM and FPKM.UQ 
normalizations introduce or exacerbate library size effects in genes 
whose expression has no or negative association with this variation. 
This will be discussed in more detail for the rectum adenocarcinoma 
(READ) and colon adenocarcinoma (COAD) RNA-seq datasets.

Next, we used linear regression and Spearman correlation analy-
ses to quantify the variation in tumor purity in the TCGA RNA-seq 
datasets (Fig. 1c, second panel, and Fig. 1d, second panel). The 
results indicate the presence of substantial variation in tumor purity, 
and FPKM and FPKM.UQ normalizations cannot correct for this 
in the datasets (Fig. 1c, second panel, and Supplementary Fig. 2b).  
We discuss how the tumor purity variation can compromise  

Fig. 1 | Unwanted variation in individual TCGA RNA-seq datasets. a, Illustrative examples showing data with and without unwanted variation. Data with 
unwanted variation exhibit high correlation between the first five PCs and this variation (top left). Data without unwanted variation have low correlation 
with unwanted variation (bottom left). The histograms show Spearman correlations and log2 F-statistics between individual genes and different sources of 
unwanted variation. Data with large library size and tumor purity variation show high Spearman correlations between individual gene expression and this 
variation. Data with plate effects exhibit high F-statistics obtained from ANOVA between individual gene expression and plates as factor. In contrast, data 
without such unwanted variation show low Spearman correlations and F-statistics. b, Distribution of (log2) library size colored by years for the individual 
TCGA cancer types. The year information was not available for the LAML RNA-seq study. The library sizes are calculated after removing lowly expressed 
genes for each cancer type. c, R2 obtained from linear regression between the first, first and second, and so on, cumulatively to the fifth PC and library size 
(first panel), tumor purity (second panel) and RLE medians (third panel) in the raw count, FPKM and FPKM.UQ normalized datasets. The fourth panel 
shows the vector correlation between the first five PCs cumulatively and plates in the datasets. Ideally, we should see no significant associations between 
PCs and sources of unwanted variation. Gray color indicates that samples were profiled across a single plate. d, Spearman correlation coefficients between 
individual gene expression levels and library size (first panel), tumor purity (second panel) and the RLE medians (third panel) in the datasets. The fourth 
panel shows log2 F-statistics obtained from ANOVA of gene expression levels by the factor: plate variable. Plates with fewer than three samples were 
excluded from the analyses. ANOVA was not possible for cancer types whose samples were profiled using a single plate.
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downstream analyses, including gene co-expression and subtype 
identification, as was observed in the TCGA breast invasive carci-
noma (BRCA) RNA-seq data.

In most TCGA RNA-seq studies, biospecimens were profiled 
necessarily across plates, which can impact on gene expression lev-
els. Vector correlation and analysis of variance (ANOVA) (Methods) 
reveal the presence of plate effects in the raw gene counts, FPKM 

and FPKM.UQ normalized datasets (Fig. 1c, third panel). We found 
that the major known biological populations are well-distributed 
across plates in TCGA READ, COAD, lung adenocarcinoma and 
BRCA RNA-seq data, showing the absence of large confounding 
effects in the data.

Finally, we examined the medians of relative log expres-
sion (RLE)23 for the raw count and TCGA normalized datasets 
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(Methods). In the absence of unwanted variation, the RLE medians 
should be centered around zero, so any deviation from zero indicates 
the presence of unwanted variation in the data. Supplementary Fig. 
3 illustrates that the RLE medians of the raw count datasets deviate 
greatly from zero, which further confirms the presence of unwanted 
variation. We then investigated the associations between the first 
five PCs cumulatively and the RLE medians (Fig. 1c, third panel) 
and also computed the Spearman correlation between individual 
gene expression with the RLE medians for each cancer type (Fig. 1d, 
third panel). Ideally, we should see no associations; however, we see 
many associations in the raw counts and the FPKM and FPKM.UQ 
normalized datasets. We will demonstrate the importance of scruti-
nizing the association between the RLE medians and both principal 
component analysis (PCA) and individual gene expression in the 
TCGA breast cancer RNA-seq data.

Taken together, our results show that all the TCGA RNA-seq 
datasets, both raw and normalized, are greatly affected by the three 
major sources of unwanted variation. Next, we used the READ, 
COAD and BRCA RNA-seq datasets to illustrate the effects of 
unwanted variation on certain downstream analyses and show the 
performance and effectiveness of RUV-III with PRPS for these data-
sets. The details of each study are provided separately below.

TCGA READ RNA-seq study. Study outline. The READ RNA-seq 
study involved 176 assays generated using 14 plates over 4 years. 
The RNA-seq library sizes vary greatly between samples pro-
filed in 2010 and the other samples (Supplementary Fig. 4). The 
major gene-expression-based biological populations—consensus 
molecular subtypes (CMSs)24—were identified using the R package 
CMScaller25 (Methods) in the data normalized by different meth-
ods. See Supplementary Figs. 5 and 6 and the Supplementary File 
for further details. These subtypes will be used for both assessing 
the performance of normalization methods and creating PRPS for 
RUV-III normalization.

RUV-III removes substantial library size variation and plate effects 
from the data. Substantial library size variation between samples 
profiled in 2010 and the other samples are clearly visible in the RLE 
and PCA plots (Supplementary Fig. 7a and Fig. 2a, top panel) of the 
raw count data. Although the FPKM and FPKM.UQ normalizations 
reduced this variation, both methods exhibited shortcomings—for 
example, by not fully mixing samples with large library size differ-
ences (Fig. 2a, top row).

PCA plots and linear regression between the first five PCs 
cumulatively and library size clearly illustrate that RUV-III with 
PRPS improved upon the FPKM and FPKM.UQ normalizations in 
removing the variation in library size from the data (Fig. 2a, top row, 
and Fig. 2b, top plot).

Spearman correlation analyses between the individual gene 
expression values and library size reveal a large proportion of genes 
showing strong positive or negative correlations with library size in 
the FPKM and FPKM.UQ normalized datasets, whereas this cor-
relation was significantly reduced in the RUV-III normalized data 
(Fig. 2b, bottom). Furthermore, differential expression (DE) analy-
sis (Methods) was performed between samples with high and low 
library size. Ideally, we should see little evidence of differential gene 
expression, whereas we see a lot in the FPKM and FPKM.UQ data-
sets, far more than in the RUV-III normalized data (Fig. 2c, top). 
Finally, the silhouette coefficient and adjusted Rand index (ARI) 
analyses (Methods) showed that RUV-III performs better in mix-
ing the samples with large library size differences (Fig. 2c, bottom).

To examine plate effects and separate this variation from the 
large library size variation in the data, we performed our evalua-
tion within each key time interval. The results showed that RUV-III 
clearly improves over the FPKM and FPKM.UQ normalizations in 
removing plate effects from the data (Fig. 2d).

Note that, here we have not attempted to remove variation 
caused by tumor purity. Consequently, the tumor purity estimates 
obtained from the RUV-III and FPKM.UQ normalized data were 
highly correlated (Supplementary Fig. 7b). This illustrates the abil-
ity of RUV-III to remove only the variation that the user wants to 
remove and no more—that is, to retain other variation that is of 
biological origin.

We next explored the relationship between RLE medians and 
both library size and tumor purity—the two major variations in the 
data—for the different normalizations (Supplementary Fig. 7c). The 
library size variation is the largest variation in the raw counts data, 
and RLE medians are strongly associated with this variation. The 
TCGA and RUV-III normalizations reduced the variation in the 
library size; therefore, the tumor purity became the largest variation 
in these datasets. Then, the RLE medians of the TCGA and RUV-III 
normalized data show a strong association with tumor purity 
(Supplementary Fig. 7d). These results were further supported by 
comparisons of the Spearman correlation analyses between the 
individual gene expression levels and RLE medians with the same 
analyses between the individual gene expression levels and library 
size and with tumor purity (Supplementary Fig. 8). Together, these 
results show the value of exploring the association of the RLE medi-
ans with known sources of unwanted variation in the data. Later, 
we will show that the RLE medians have no correlation with gene 
expression in the TCGA BRCA RUV-III normalized data when 
variations in both library size and tumor purity are removed.

RUV-III improves the separation between consensus molecular sub-
types. Colorectal cancers are classified into four transcriptomic-based 
subtypes—CMSs—with distinct features24. PCA plots of the 
RUV-III normalized data show distinct clusters of the CMSs for 
the READ RNA-seq samples, whereas these subtypes are not as 
clearly separated in the TCGA normalized datasets (Fig. 2a, bottom 
row). To confirm the pattern of the CMS clusters in the PCA plots 
of the RUV-III normalized data, we applied PCA within the key 
time intervals in the FPKM and FPKM.UQ normalized datasets. 
The results show that the CMS clustering within each time interval 
in the FPKM.UQ data is highly consistent with that obtained with 
RUV-III using the full set of data (Supplementary Fig. 9).

Furthermore, the vector correlation analysis between the first 
five PCs cumulatively and the CMS confirmed that the RUV-III 
normalization leads to a better separation of the CMS clusters 
than the TCGA normalized datasets (Fig. 2e, top). These results 
were strengthened by silhouette coefficient and ARI analyses (Fig. 
2e, bottom). Additionally, gene set enrichment analyses showed 
that the CMSs obtained from the RUV-III normalized data are 
associated with known gene signatures25 (Supplementary Fig. 6b). 
Supplementary Fig. 10 shows the Kaplan–Meier survival plots of the 
CMSs identified by different normalization methods. The survival 
outcome difference between CMS2 and CMS4 that were obtained 
from the RUV-III normalized data is clearer than the TCGA nor-
malized datasets (Supplementary Fig. 10).

RUV-III improves gene co-expression and gene-level survival analy-
ses. Unwanted variation introduced by the large sample library 
size differences can compromise downstream analyses, such as 
gene co-expression and gene-level survival analyses, in the TCGA 
READ RNA-seq data. This variation can have two effects on gene 
co-expression analysis. It can lead to apparent correlations between 
genes that are most likely un-correlated. For example, the correla-
tion between the TMF1 (TATA element modulatory factor 1) and 
BCLAF1 (Bcl-2-associated transcription factor 1) genes are ρ = 0.8 
and ρ = 0.7 in the TCGA FPKM and FPKM.UQ normalized data, 
respectively. The role of the TMF1 gene has not been characterized in 
COAD, although the BCLAF1 gene shows a pro-tumorigenic role in 
this cancer type26. One might suggest that the TMF1 gene expression  
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may have a role in tumorigenesis in colon cancer due to its high cor-
relation with the BCLAF1 gene expression. However, we see no such 
correlation in the RUV-III normalized data, which is consistent with 
the correlation obtained from an independent platform, namely the 
TCGA READ microarray data (Fig. 3a). On the other hand, the 
unwanted variation can obscure correlations between gene–gene 
expression levels that are likely to be truly correlated. For example, 
the overall correlation between the MDH2 (malate dehydrogenase 2)  

and EIF4H (eukaryotic translation initiation factor 4H) genes is 
ρ = −0.05, whereas they exhibit a high correlation within each key 
time interval in the TCGA normalized data (Fig. 3a). The overall 
correlation of these genes was 0.7 in the RUV-III normalized data, 
consistent with what was seen in the TCGA READ microarray data 
(Fig. 3a). The MDH2 and EIF4H genes show important roles in 
cancer growth and metastasis; thus, they are of clinical importance 
for cancer treatment27,28. The high correlation between these two 
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c, Top: the frequency of P < 0.05 obtained from DE analysis between samples with low and high library size. Bottom: Scatter plot shows silhouette 
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genes revealed by RUV-III may suggest that they are involved in 
a co-expression network, which has not been previously reported.

We extended this analysis to all possible gene–gene correlations 
of the genes that have the highest correlation with library size in the 
FPKM.UQ normalized data (Fig. 3b). Strikingly, the results show 
numerous strong but likely spurious correlations between gene 
pairs in the FPKM.UQ normalized data, whereas using RUV-III 
significantly reduced these correlations (Fig. 3b).

Figure 3c depicts the differences (ρmicroarray – ρRNA-seq) between all 
possible gene–gene Spearman correlations ρ using the TCGA READ 
microarray data and the FPKM.UQ and RUV-III normalized data.

Association between gene expression and survival outcomes of 
patients is another downstream analysis that can be influenced 
by the library size variation in the TCGA READ RNA-seq data. 
For example, RUV-III, as opposed to the TCGA normalized data, 
revealed that the expression of the RAB18 (Ras-related in brain 

18) and FBX14 (F-box and leucine-rich repeat protein 14) genes 
are highly associated with overall survival outcome of patients in 
the data (Fig. 4). The reason is clear from the expression patterns 
across time: dividing samples based on median expression mainly 
resulted in two groups with low and high library size, which 
was not biologically meaningful for the TCGA normalizations  
(Fig. 4). RAB18 gene expression plays pivotal roles in cell pro-
liferation and metastasis, and high expression is associated with 
poor survival in different cancer types29. FBXL14 gene expression 
mediates the epithelial–mesenchymal transition (EMT) in cancer, 
which indicates that FBXL14 could function as an EMT inhibi-
tor to suppress metastasis in human cancers30. Other examples 
are PTPN14 and CSGALNACT2, whose associations with survival 
have been previously shown in colorectal cancer (Supplementary 
Fig. 11)31. We found a remarkable number of genes whose expres-
sion levels were associated with survival using the RUV-III  
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normalized data, which were not found using the FPKM and 
FPKM.UQ normalized data.

Gene-level counts are not proportional to library size. The FPKM and 
FPKM.UQ normalizations rely on global scale factors computed 
based on library size or upper quartiles of samples in the raw count 
data (Fig. 5a) to remove library size effects. These methods assume 
that gene-level counts all are proportional to the global scale fac-
tors. However, we show that, in the READ raw count data, differ-
ent groups of genes exhibit different relationships to the global scale 
factors used in the FPKM and FPKM.UQ normalizations (Fig. 5b).

The first group consists of genes whose counts are proportional 
to the global scale factors. For these genes, the FPKM and FPKM.
UQ normalizations are adequate to remove the association between 

library size variation and gene expression. The DDX23 (DEAD-box 
helicase 23) gene is an example from this group (Fig. 5c, first row). 
The second group includes genes whose expression levels are 
greater than those expected using the global scaling factors, and so 
those factors are insufficient for adjusting their expression levels to 
be independent of library size. The LARP7 (La ribonucleoprotein 
7) gene represents the behavior of genes in this group (Fig. 5c, sec-
ond row). The third group contains genes such as ALKBH7 (AlkB 
homolog 7), whose expression levels are not associated with library 
size in the raw count data. Then, the FPKM and FPKM.UQ normal-
izations introduce the library size variation to the expression levels 
of genes in this group (Fig. 5c, third row). Finally, there are genes 
such as TMEM160 (transmembrane protein 160) whose expression 
levels relate to library size in a manner opposite to that motivating 
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the use of global scaling factors. Applying scaling factors to such 
genes exacerbates, rather than removes, variation associated with 
library size (Fig. 5c, fourth row).

Note that we found the same issue in the TCGA RNA-seq data-
sets, such as kidney chromophobe and uveal melanoma, where 
samples were profiled using a single plate (Fig. 1c, first panel, and 
Supplementary Fig. 12).

TCGA COAD RNA-seq study. The COAD RNA-seq study involved 
479 assays generated across 4 years. As with the READ RNA-seq 
data, there are large library size differences between samples pro-
filed in 2010 and the other samples. The FPKM and FPKM.UQ 
normalizations removed library size effects from the data more 
effectively than was the case for the READ RNA-seq data, but these 
also had shortcomings.

It should be noted that the first two PCs of the FPKM and FPKM.
UQ data did not reveal that the library size effects have not been 
properly removed. This highlights the importance of gene-level 
assessment, such as correlation between individual gene expres-
sion and library size or DE analysis between batches, to assess the 
performance of normalizations. See the Supplementary File and 
Supplementary Figs. 13–25 for full details of this dataset and results 
analogous to those just presented for the READ data.

TCGA BRCA RNA-seq study. Study outline. The BRCA RNA-seq 
study involved 1,180 assays that were carried out on samples from 
40 TSSs, distributed across 38 plates, and profiled over 5 years from 
2010 to 2014 (Supplementary Fig. 26). The samples collected in 
2010 and 2011 were profiled using one flow cell chemistry, and the 
remaining samples were profiled using a different flow cell chemis-
try (personal communication from TCGA). There were 94 adjacent 
normal breast tissue samples and seven paired primary-metastatic 
samples in the study (Supplementary Fig. 26). The major intrin-
sic biological populations, prediction analysis of microarray 50 
(PAM50) of the TCGA BRCA RNA-seq samples, were identi-
fied using different approaches. See the Supplementary File and 
Supplementary Figs. 27 and 28 for full details.

RUV-III removes the effects of tumor purity, flow cell chemistries and 
library size. As with most of the other TCGA RNA-seq studies (Fig. 
1), tumor purity is one of the major sources of variation in the BRCA 
study. For this dataset, we designed our PRPS to remove the effects 
of tumor purity as well as other technical variation (Methods).

Linear regression between the first five PCs cumulatively and 
tumor purity within the individual PAM50 subtypes showed that 
the RUV-III normalization substantially removed this variation 
from the data (Fig. 6a). These results were supported by Spearman 
correlation analyses between individual gene expression levels and 
tumor purity within each of the PAM50 subtypes and a DE analysis 
between samples with low and high tumor purity (Fig. 6b,c). The 
variation of tumor purity estimated using the RUV-III normalized 
data was significantly smaller than that observed in the correspond-
ing measurements on the FPKM.UQ normalized data (Fig. 6d).

As mentioned above, the TCGA BRCA RNA-seq samples were 
profiled over two batches of flow cell chemistries. PCA plots of the 
FPKM and FPKM.UQ normalized datasets showed noticeable vari-
ation due to the use of two flow cell chemistries, whereas RUV-III 
effectively removed this variation from the data (Supplementary 
Fig. 29a). This conclusion was supported by a vector correlation 

analysis between the first ten PCs cumulatively and the binary flow 
cell chemistry variable, silhouette analyses, the ARI and ANOVA 
between individual gene expression measurements and the flow cell 
chemistry factor (Fig. 6e–g and Supplementary Fig. 29b,c).

An expression heat map of the most highly affected genes by the 
flow cell chemistries showed that different genes are affected in dif-
ferent ways (Fig. 6h). Interestingly, the heat map also revealed two 
clusters within the samples processed by the first flow cell chem-
istry. This suggests that there are additional sources of unwanted 
variation of unknown origin within each flow cell chemistry. To 
explore this more fully, we took the set of most highly affected genes 
by the flow cell chemistries and scored samples against this gene set 
(hereafter called the batch score) using the R/Bioconductor pack-
age singscore32 on the FPKM.UQ normalized dataset. Batch scores 
clearly distinguished samples from the flow cell chemistry batches 
and separated the samples into clusters within each flow cell chem-
istry (Fig. 6i). We then used cutoffs to divide the samples into four 
groups based on their batch scores. These groups were not visible in 
the batch scores obtained from the RUV-III normalized data (Fig. 
6i). Spearman correlation analyses showed that a surprising number 
of genes had either high positive or high negative correlations with 
the batch scores in the FPKM.UQ normalized data (Fig. 6j), whereas 
these correlations were much lower in the RUV-III normalized data.

Tumor purity and flow cell chemistries effects compromise gene 
co-expression and survival analysis. Just as we saw above with library 
size, tumor purity variation can affect downstream analyses, such 
as gene co-expression and the association between gene expression 
levels and survival outcomes of patients in the data. As with library 
size, this variation can introduce correlation between genes that are 
probably un-correlated. For example, Fig. 7a shows that the gene 
expression levels of ZEB2 (zinc finger E-box-binding homeobox 2) 
and ETS1 are both highly correlated with tumor purity. The ZEB2 
gene is a one of the regulators of the EMT process that induces inva-
sion of cancer cells33,34. ETS1 is member of a large family of transcrip-
tion factors characterized by their ETS DNA‐binding domain. The 
gene appears to have dichotomous roles as an oncogene and a tumor 
suppressor gene in different cancer types35,36. The high correlation 
of ETS1 with ZEB2 in the TCGA BRCA RNA-seq data may confirm 
its oncogene role, but this is most likely a consequence of their cor-
relations with tumor purity. The RUV-III normalized data and the 
breast cancer laser microdissection microarray data37 showed that 
the expression levels of these two genes are uncorrelated (Fig. 7b).

To extend this observation, we selected 1,300 genes whose gene 
expression levels are highly correlated with tumor purity and then 
calculated Spearman correlations between all possible pairs of these 
genes. In a matching analysis, we computed partial correlations 
between these pairs adjusting for tumor purity (Methods). Figure 
7c shows that there are many gene pairs that have high correlations, 
but these are mostly likely a consequence of their correlation with 
tumor purity.

Variation in tumor purity can also affect the association between 
gene expression levels and survival outcomes. For example, the 
expression of the ZEB2 gene shows to be associated with cancer 
progression and survival outcome in different cancer types38,39. 
The RUV-III normalization revealed that high expression of the 
ZEB2 gene is associated with a poor outcome in the TCGA BRCA 
RNA-seq data, but this was obscured by variation in tumor purity in 
the FPKM.UQ normalized data.

Fig. 5 | Relationship between gene-level (log2) counts and (log2) library size in the TCGA READ RNA-seq data. a, Global scale factors obtained by sample 
library sizes (LS) (left) and upper quartiles (UQ) (right) of READ raw counts versus time. b, Scatter plots of log2 fold change obtained from DE analyses 
of gene expression levels with the major time variation: 2010 versus 2011–2014; (log2) raw READ counts on the horizontal axes of all plots and differently 
normalized counts vertically. c, Expression patterns of four genes (DDX23, LARP7, ALKBH7 and TMEM160) whose counts have different relationships with 
the global scaling factors calculated from the TCGA READ raw count data.
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Another example is the STAB1 (stabilin 1) gene, whose expres-
sion levels are associated with survival in several cancer types, 
including breast cancer40–42. However, this association was only evi-
dent in the present data after removing variation in tumor purity. 
We found many more examples of such genes using the RUV-III 
normalized data.

The complex unwanted variation arising from the change in flow 
cell chemistry and the unknown source noted above clearly com-
promises estimates of gene co-expression in the FPKM.UQ nor-
malized dataset. It introduces correlations between pairs of genes 
that are most likely not correlated. For example, the expression lev-
els of the ESRRA (estrogen-related receptor alpha) and MAP3K2 
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silhouette coefficients and ARIs showing the performance of different normalization methods in mixing samples from the two flow cell chemistries.  
h, Gene expression heat map of the 400 genes that are highly affected by the flow cell chemistries in the TCGA FPKM.UQ data (rows are clustered; 
columns are in chronological order of sample processing). i, Batch scores across samples in the FPKM.UQ (left) and RUV-III (right) normalized datasets. 
The batch scores were calculated by the singscore method using the 400 genes described in h. Samples were divided into four groups based on their batch 
scores. j, Spearman correlation coefficients between the batch scores and individual gene expression levels in the FPKM and RUV-III normalized datasets. 
In the box plots (b and f), the heavy middle line represents the median; the box shows the IQR; the upper and lower whiskers extend from the hinges no 
further than 1.5× IQR; and any outliers beyond the whiskers are shown as points.
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(mitogen-activated protein kinase kinase kinase 2) genes are posi-
tively correlated in this dataset; however, this correlation seems to 
be a consequence of the unwanted variation in the data (Fig. 7e), for 
we do not see it in either the RUV-III normalized data or the TCGA 
BRCA microarray data (Fig. 7f).

To extend this analysis, we first selected the genes that had the 
1,000 highest correlations with the batch scores in the FPKM.UQ 
normalized data and calculated all gene–gene correlations between 
them in both the FPKN.UQ and RUV-III normalized datasets. 
Figure 7j shows that a large number of gene pairs have high correla-
tions in the FPKM.UQ normalized data, something we do not see in 
the RUV-III normalized data.

Interestingly, the overall correlation between expression of the 
E2F4 (E2F transcription factor 4) and CNOT1 (CCR4-NOT tran-
scription complex subunit 1) genes is ρ = 0.1, and the average of 
the correlations of these genes within each of groups 1–4 of the 
unknown source of unwanted variation is ρ = 0.4 (Fig. 7i) in the 
FPKM.UQ normalized data. Both the RUV-III normalized and the 
TCGA microarray data show a high positive correlation between 
the expression levels of the E2F4 and CNOT1 genes.

Supplementary Fig. 30 shows that the RUV-III normalization 
removed library size effects from this dataset more effectively than 
was the case with the FPKM and FPKM.UQ normalizations.

RUV-III improves the separation of the PAM50 clusters. Breast cancer 
intrinsic subtypes, including HER2-enriched, basal-like, luminal A, 
luminal B and normal-like43,44, are based on a 50-gene expression 
signature (PAM50)45. PCA plots, vector correlation between the first 
ten PCs cumulatively and the PAM50 subtypes, silhouette coeffi-
cients and ARI (Extended Data Fig. 1a–c) all show that the RUV-III 
normalization led to better separation of PAM50 subtypes in the 
BRCA RNA-seq data. Kaplan–Meier survival analysis shows that 
the PAM50 calls obtained using RUV-III normalized data exhibit 
significant associations with overall survival outcomes of TCGA 
BRCA patients (Supplementary Fig. 27b,c).

It should be noted the PAM50 subtypes identified using the 
TCGA normalized datasets are compromised by tumor purity, 
particularly samples from normal-like subtype that show very low 
tumor purity. We applied the PAM50 classifier on the breast can-
cer laser capture microdissection (LCM) gene expression data and 
found no normal-like subtype in the dataset. The results confirm 
previous studies that show that the normal-like subtype is due to the 
low tumor purity of samples46–48.

Additionally, Spearman correlation analysis showed that several 
the PAM50 genes exhibit high correlation with tumor purity in the 
FPKM.UQ normalized data (Extended Data Fig. 1d). For example, 
expression of FOXA1 (forkhead box A1) is highly associated with 
tumor purity in the Her2, luminal A and luminal B subtypes in the 
FPKM.UQ normalized data (Extended Data Fig. 1e). This obser-
vation suggests that variation in tumor purity might compromise 
the identification of PAM50 subtypes. In addition, this might also 
explain the differences between the PAM50 calls obtained from 
RUV-III normalized data, where the variation of tumor purity has 
been removed, and those obtained from the FPKM and FPKM.UQ 
normalized datasets (Supplementary Fig. 27a).

We explored the association between the expression levels of the 
PAM50 genes and survival within each of the PAM50 subtypes using 
both the FPKM.UQ and RUV-III normalized data. Interestingly, we 
found with the RUV-III normalized data that higher expression of 
the FOXA1 gene is associated with poorer outcome in the luminal 
B subtype, a conclusion that was obscured by the variation in tumor 
purity of the TCGA RNA-seq data (Extended Data Fig. 1f).

Normalization of multiple RNA-seq studies. We assessed the per-
formance of RUV-III with PRPS on the normalization of multiple 
RNA-seq studies. In this analysis, we normalized three large breast 

cancer RNA-seq datasets, including TCGA and two cohorts from 
Brueffer et al. studies49,50. We did not have access to the raw counts 
data of Brueffer et al. studies, so we performed our normalization 
on the FPKM counts of all three studies. The lowly expressed genes 
were identified using the TCGA BRCA raw counts and removed 
from the other datasets. The PCA and RLE plots of the combined 
datasets show large variation between the TCGA and the other 
two studies (Supplementary Fig. 32a and 32b). As discussed above, 
we first need to identify sources of unwanted variation to create 
PRPS for RUV-III normalization. We used plates as batches for 
the TCGA BRCA RNA-seq data and the RLE medians (Methods) 
within each of the other two studies to identify batches. Their 
medians were clustered into three groups within each study. We 
performed PCA within each study using a set of RNA-seq house-
keeping genes as negative control genes to explore the batches that 
were identified using the RLE medians. Supplementary Fig. 32c 
shows that the first and third PCs capture those batches. Then, 
the PAM50 subtypes were used as known major biological popula-
tions to produce five sets of PRPS (Supplementary Fig. 33a). The 
results demonstrated that RUV-III with PRPS leads to a satisfac-
tory normalization by removing between-study and within-study 
variations and preserving the PAM50 clusters (Supplementary Fig. 
33), whereas the other normalizations, quantile and upper quar-
tile, show visible shortcomings. Furthermore, Supplementary Fig. 
33d shows that several well-known gene–gene correlations51 have 
been preserved in the RUV-III normalized data. We also explored 
the correlation between the two pairs of genes, CNOT1_E2F4 
and MAP3K2 _ESRRA, that were discussed in the TCGA BRCA 
RNA-seq data (Fig. 7). The true correlation between these two 
pairs of genes was preserved in the RUV-III normalized data 
(Supplementary Fig. 33d). The results demonstrate that RUV-III 
with PRPS is applicable to normalizing RNA-seq data from mul-
tiple studies. Note that we would have preferred to use RUV-III 
on the raw counts without any further normalization, but we were 
unable to do so here.

Performance of RUV-III with poorly chosen PRPS. We evalu-
ated the performance of RUV-III with poorly chosen PRPS on the 
TCGA READ and BRCA RNA-seq studies. To simulate poorly cho-
sen PRPS, we randomly shuffled 20%, 40%, 60% and 80% of the 
biological labels, including the CMS and PAM50 subtypes, that 
were originally used to create PRPS for RUV-III normalization. The 
shuffling steps were repeated ten times for each proportion, and the 
results were averaged for normalization performance assessments.

The results show that, even with poorly chosen PRPS, RUV-III 
outperforms the FPKM and FPKM.UQ normalization in terms of 
removing large library size differences and preserving the CMS 
clusters in the TCGA READ RNA-seq data (Supplementary Fig. 
34a,b). The correlations between two pairs of genes, MDH2_EIF4H 
and TMF1_BCLAF1 (Fig. 3), were also preserved in the RUV-III 
datasets with poorly chosen PRPS (Supplementary Fig. 34c). 
Furthermore, the association between RAB18 gene expression 
and the survival outcome (Fig. 4) was identified in all the RUV-III 
datasets with poorly chosen PRPS. However, we found this associa-
tion for the FBXL14 gene only in RUV-III with 20% shuffled labels 
(Supplementary Fig. 34d).

We performed a similar analysis on the TCGA BRCA RNA-seq 
data. Our results showed that the RUV-III normalizations with 
poorly chosen PRPS also show satisfactory performance compared 
to both FPKM and FPM.UQ in terms of removing the flow cell 
chemistry and tumor purity effects. However, RUV-III with 60% and 
80% shuffled labels show a slightly lower performance compared 
to FPKM and FPKM.UQ normalization regarding the separation 
of the PAM50 subtypes (Supplementary Fig. 35). The gene–gene 
correlations and association between gene expression and sur-
vival outcomes demonstrated that the RUV-III normalizations  
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Fig. 7 | Impact of tumor purity and flow cell chemistry variation on gene co-expression and survival analysis in the TCGA BRCA RNA-seq data.  
a, Relationship between tumor purity scores and the ZEB2 and ETS1 gene expression in the FPKM data. b, Scatter plots exhibit relationship between the 
ZEB2 and ETS1 gene expression in the FPKM data (left), the RUV-III normalized data (middle) and the LCM microarray data (right). c, Scatter plots show 
the Spearman correlation coefficients and partial correlation coefficients for all possible pairs of the genes that have the 1,300 highest correlations with 
tumor purity in the TCGA FPKM.UQ (left) and RUV-III normalized data (right). d, Kaplan–Meier survival analysis shows the association between the 
ZEB2 gene expression and overall survival in the FPKM.UQ (left) and the RUV-III normalized data (right). e, Relationship between the ESSRA and MAP3K2 
gene expression with the batch scores in the FPKM.UQ data. f, Scatter plots show the relationship between the ESSRA and MAP3K2 gene expression in 
the FPKM.UQ (left), the RUV-III normalized data (middle) and the TCGA BRCA microarray data (right). g, Scatter plots display Spearman correlation 
coefficients of all possible pairs of genes that are highly affected by flow cell chemistries in the FPKM.UQ and the RUV-III normalized data. h, Kaplan–Meier 
survival analysis shows the association between the ESSRA gene expression and overall survival in the FPKM.UQ (left) and the RUV-III normalized data 
(right). i, Scatter plots exhibit the relationship between the E2F4 and CNOT1 gene expression in the FPKM.UQ (left), the RUV-III normalized data (middle) 
and the TCGA BRCA microarray data (right).
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with poorly chosen PRPS results in satisfactory normalization 
(Supplementary Fig. 35d–f).

Overall, our results illustrate that RUV-III shows a very satisfac-
tory performance in a situation where PRPS is poorly chosen.

Performance of RUV-III with partially known biological labels. 
We assessed the performance of RUV-III with PRPS in situations 
where the biological labels are partially known (hereafter called the 
RUV-III-P). To simulate such situations, we used one of the CMS 
subtypes, CMS4, to create PRPS for RUV-III normalization of the 
TCGA READ RNA-seq data. Note that this subtype is not present 
across all the plates. Our results clearly show that RUV-III-P nor-
malization led to very satisfactory normalization by removing the 
large library size differences and plate effects and also preserving 
the CMS clusters (Supplementary Fig. 36). RUV-III-P also pre-
served the association between RAB18 gene expression and survival 
outcomes in the TCGA READ RNA-seq data. However, this nor-
malization did not show the same result for the FXBL14 gene. This 
might be explained by the presence of the CMS4 subtype in eight 
out of 14 plates in the TCGA READ RNA-seq data.

Similar analyses were performed on the TCGA BRCA RNA-seq 
data. We used the basal and luminal A subtypes to create PRPS. The 
results demonstrated that performance of RUV-III-P was largely 
similar to the initial RUV-III normalization, in which all the PAM50 
subtypes were used for producing PRPS (Supplementary Fig. 37).

These analyses show that RUV-III with PRPS can be used for 
normalization of RNA-seq data in situations where the biological 
labels of samples are only partially known.

Discussion
The main goal of RNA-seq normalization is to remove unwanted 
variation that can compromise downstream analyses while pre-
serving biological variation. A suitable normalization method for 
cancer RNA-seq data must be able to remove unwanted variation 
introduced by sample library size differences, tumor purity (where 
appropriate), batch effects and other technical variation in data.

We proposed an approach, called PRPS, to deploy RUV-III for 
normalization of RNA-seq in situations where suitable technical 
replicates are not available. Our PRPS approach requires the pres-
ence of at least a homogenous biological population across sources 
of unwanted variation. Then, we create pseudo-samples by averaging 
gene expression of a group of samples that are roughly homogeneous 
regarding the unwanted variation and biology. The gene expression 
differences between pseudo-samples are mainly unwanted variation. 
These samples will be used by RUV-III as a set of pseudo-replicates 
to estimate one aspect of unwanted variation in the data.

We made use of three TCGA RNA-seq studies to compare the 
performance of RUV-III with PRPS with the state-of-art normaliza-
tions proposed for RNA-seq data. RUV-III is not limited to TCGA 
data normalization, and we have also shown that the method can be 
used to normalize RNA-seq data, when the data come from mul-
tiple studies. Our comparisons are based on statistical summaries, 
biological positive and negative controls and concordance with the 
corresponding TCGA or independent microarray studies.

We began by carefully identifying different known sources of 
unwanted variation in all the TCGA RNA-seq raw count, FPKM 
and FPKM.UQ normalized datasets. We illustrated that library size, 
tumor purity and plate or time effects are major sources of unwanted 
variation in these studies, and we showed how they can influence 
downstream analyses. These unwanted variations are likely to affect 
other downstream analyses not investigated in this study.

In the TCGA READ RNA-seq study, noticeable library size dif-
ferences between samples remained in the FPKM and FPKM.UQ 
normalized data due to the presence of genes whose raw counts 
showed weak or negative association with library size. In such situa-
tions, normalizations that rely on a global scale factor can introduce, 

rather than remove, library size variation. We found this issue in 
several TCGA cancer studies, even those that used a single plate for 
profiling. We took advantage of the gene-wise normalization abil-
ity of RUV-III to remove library size effects only from genes that 
are affected by this variation. Our results showed that RUV-III with 
PRPS effectively removed the library size effects from the TCGA 
READ RNA-seq data and led to better downstream analyses of 
gene–gene co-expression and association of gene expression with 
survival. Furthermore, the results showed that the variation due to 
tumor purity was highly similar for the TCGA and the RUV-III nor-
malized datasets, as we did not attempt to remove the variation. This 
demonstrates the ability of RUV-III with PRPS approach to remove 
just the sources of unwanted variation that users aim to remove.

We found that the TCGA COAD RNA-seq data are affected by 
the same sources of unwanted variation that were identified in the 
corresponding READ RNA-seq data, although their effects were less 
severe in the COAD data compared to the READ data. The first 
two PCs of the FPKM and FPKM.UQ dataset did not show that the 
library size effects have not been properly removed. This highlights 
the importance of gene-level examinations to assess the perfor-
mance of normalizations.

In the TCGA BRCA RNA-seq data, we designed our PRPS 
to remove variation in tumor purity as well as other sources of 
unwanted variation, including library size, flow cell chemistry and 
plate effects. We used LCM gene expression data to demonstrate 
the effects of tumor purity on the PAM50 subtype identification 
and gene co-expression analysis in the FPKM.UQ normalized data. 
We identified that the use of two flow cell chemistries introduced 
unwanted variation into the TCGA BRCA RNA-seq data. This 
introduced correlations between genes that were not truly associ-
ated and obscured the correlation between genes that were truly 
associated. We used the TCGA microarray data as an orthogonal 
platform to compare the gene expression patterns and their correla-
tions in differently normalized datasets. The results of this compari-
son showed that the agreement between the RUV-III normalized 
data and the microarray data was much better than that found with 
the two TCGA normalized datasets.

The performance of RUV-III with the PRPS approach relies on 
the identification of major gene-expression-based biological popu-
lations in the data. Our results clearly showed that a rough iden-
tification of such populations using inadequate normalizations is 
satisfactory for creating the PRPS. In the three TCGA RNA-seq 
studies used in this study, the major biological populations were 
identified using TCGA normalized data that included sources of 
unwanted variation. However, we observed an equally good per-
formance of RUV-III with PRPS using the biological populations 
identified in the RUV-III normalized data as we did using TCGA 
normalized data. Furthermore, we demonstrated that RUV-III is 
reasonably robust to poorly chosen PRPS.

Note that we could have created the PRPS using adjacent normal 
tissue, which is more homogeneous than cancer tissue, had these 
samples been more uniformly distributed across batches. However, 
we were not able to use such samples to create PRPS across the two 
flow cell chemistries for the BRCA study, as all 94 adjacent nor-
mal breast tissue samples were profiled using just one of the two 
chemistries. We found the same problem for the TCGA READ and 
COAD RNA-seq data. In these datasets, all normal adjacent tissues 
were profiled within a key time interval. It should be also noted 
that tumor purity is essentially the same across any set of technical 
replicates; thus, these sample are not useful to estimate and remove 
variation in tumor purity by the RUV-III normalization.

In large-scale genomics studies such as TCGA, samples are inev-
itably profiled using different reagents and platforms at different 
times, which can introduce unwanted variation into the data. As 
such, we strongly recommend including technical replicates across 
any possible source of unwanted variation. These samples can be 
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used by any technical-based normalizations and considered as posi-
tive control to assess of any normalizations. We also recommend 
distributing the biology of interests across batches, to the extent 
that this is possible, as this will assist the use of RUV-III with PRPS. 
However, as it is difficult to predict all sources of unwanted variation 
and appropriately design technical replicates across them, RUV-III 
with PRPS provides a tool to remove this unwanted variation from 
large-scale cancer and genomics studies.
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Methods
Datasets. The TCGA consortium aligned RNA-seq reads to the hg38  
reference genome using STAR aligner and quantified the results at gene 
level using HTSeq and GENCODE version 22 gene annotation52. The TCGA 
RNA-seq data are publicly available in three formats: raw counts, FPKM and 
FPKM.UQ. All these formats for individual cancer types (33 cancer types, 
~11,000 samples) were downloaded using the R/Bioconductor package 
TCGAbiolinks (version 2.16.1)53. The TCGA normalized microarray gene 
expression data were downloaded from the Broad GDAC Firehose repository 
(https://gdac.broadinstitute.org), data version 2016/01/28. TSSs and batches 
of sequencing plates were extracted from individual TCGA patient barcodes 
(https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA_Barcode/), and 
sample processing times were downloaded from the MD Anderson Cancer 
Center TCGA Batch Effects website: https://bioinformatics.mdanderson.org/
public-software/tcga-batch-effects. Pathological features of patients with cancer 
were downloaded from the Broad GDAC Firehose repository (https://gdac.
broadinstitute.org). The details of processing the TCGA BRCA RNA-seq samples 
using two flow cell chemistries were received by personal communication from 
Dr. Katherine Hoadley. The TCGA survival data reported by Liu et al.54 were 
used in this paper. The breast cancer LCM microarray dataset was downloaded 
using the GEOquery R/Bioconductor package (version 2.62.2) from the National 
Center of Biotechnology Information (NCBI) Gene Expression Omnibus 
(GSE78958 (ref. 37)). The two non-TCGA RNA-seq datasets were downloaded 
from the NCBI Gene Expression Omnibus with accession numbers GSE96058 
and GSE81538 (refs. 49,50). The consensus measurement of purity estimation 
(CPE) was downloaded from the Aran et al. study17.

Filtering samples and genes. We applied the following filtering steps to the 
individual TCGA RNA-seq datasets. Plates with fewer than three samples were 
removed. Samples with log2 library sizes of three median absolute deviations lower 
than the median of all log2 library sizes were excluded from the data.

The R/Bioconductor package biomaRt (version 2.48.3) was used to annotate 
genes. All pseudo-genes and immunoglobulin genes were excluded. For the 
pan-cancer analyses, we retained genes with at least 15 raw read counts in at 
least 20% of samples. We considered numbers of samples in the biological 
subpopulations and sources of unwanted variation when removing lowly expressed 
genes in the TCGA READ, COAD and BRCA data. To do so, we kept genes that 
have at least 15 counts in the smallest biological subpopulations within each of the 
key time intervals in the datasets.

Tumor purity estimates. We estimated tumor purity for all TCGA RNA-seq cancer 
samples using the stromal and immune gene signatures (Supplementary Table 1) 
from the Yoshihara et al. study55 and the R/Bioconductor package singscore version 
(1.12.0)32. The stromal–immune scores were transformed to 1–stromal–immune 
scores for downstream analyses. These measurements are called tumor purity 
scores in this study. The tumor purity scores showed high positive correlation 
(mean = 0.95, Pearson correlation) with the ESTIMATE measurements from the 
Aran et al. study17 (Supplementary Fig. 38).

Sample library size. Sample library sizes were obtained by adding all gene raw 
counts for individual samples after removing pseudo-genes, immunoglobulin and 
lowly expressed genes. All sample library sizes are transformed to log2 in this study.

RUV-III normalization. Before we can describe the linear model underlying 
RUV-III, we need to introduce the m × m1 mapping matrix M connecting assays 
to distinct samples, which captures the pattern of replication in our assays. Here, 
m is the number of assays, and m1 is the number of distinct samples being assayed. 
M (i, h) = 1 if assay i is on sample h and M (i, h) = 0 otherwise. Each row of 
M sums to 1, and the columns sum to the distinct sample replication numbers, 
the elements of MTM. We also define an m1 × p design matrix X to capture the 
biological factor(s) of interest indexed by sample rather than assay. There are no 
constraints on p; indeed, X could be the m1 × m1 identity matrix. Our goal here is 
to remove unwanted variation, not to estimate regression parameters.

The linear model we use is:

Y = 1μ + MXβ + Wα + ε

where the data Y = (yij) and unobserved errors ε = (εij) are m × n; the matrices 
X and M have just been defined; µ is the 1 × n row of gene means; β is p × n; the 
matrix W whose columns capture the unwanted variation is m × k; and α is k × n.  
1 = 1m is the m × 1 column vector of 1s. Here, m = number of assays, n = number 
of genes and p is the dimension of the wanted variation X and k that of the 
unwanted variation W. Assume that W⊥1.

Also, we suppose that we have a subset of nc of negative control genes whose  
m × nc submatrix Yc satisfies Yc = 1μc + Wαc + εc, where we have assumed that  
βc = 0—that is, that there is no true association between these genes and the 
biology of interest.

The projection PM = M(MTM)
−1MT replaces each entry yij of Y by the simple 

average of the entries yi′j over all i′ for which M (i, h) = M
(

i′, h
)

= 1—that is, 

over all i′ such that i′ and i label replicate assays of the same unique sample (or 
pseudo-sample) labeled h.

Write RM = I − PM for the corresponding residual projector. This is our source 
of information on the unwanted variation that we will remove. If the replication 
is technical at some level, then RMY mainly contains information about unwanted 
variation in the system after the technical replicates were created. Depending 
on the study details, technical replicates could be created immediately before 
the assay was run, in parallel with or immediately after sample was collected 
or somewhere in between. The earlier the creation of technical replicates, 
the more unwanted variation will be captured in their differences. The use of 
pseudo-replicates of suitable pseudo-samples enables us to start to deal with 
pre-technical unwanted variation.

Write the spectral decomposition of RMYYTRM = UDUT, where U is an  
m × m orthogonal matrix and D is an m × n diagonal matrix with entries ordered 
from largest to smallest eigenvalue. Let P1 be the orthogonal projection onto 1m.
For a chosen k, 1 ≤ k ≤ m−m1,

	 I.	 Define α̂(k)
= U(k)TY , where U(k) is the first k columns of U

	 II.	� Estimate W by regressing the centered negative controls (I − P1)Yc  
on α̂(k)T

c

Ŵ(k)
= (I − P1)Yc

(

U(k)TYc
)T

[

(

U(k)TYc
)(

U(k)TYc
)T

]

−1

Finally, we:

	 III.	 Form the adjusted/normalized Y, Y(k)
= Y − Ŵ(k) α̂(k).

PRPS. We used our recently developed normalization method, RUV-III, which makes 
essential use of technical replicates and negative control genes, to estimate unwanted 
variation and remove it from the data8. Ideally, technical replicates are placed across 
batches so that unwanted variation between any pair of batches is captured via 
differences of expression values between technical replicates. We previously showed 
the performance of RUV-III with pseudo-replicates in removing unwanted variation 
from gene expression data. Pseudo-replicates are samples from the same biological 
groups across batches. The idea of pseudo-replicates has also been used to remove 
batch effects in TCGA RNA-seq data with the unpublished algorithm EB++56.

As there are no technical replicates in the TCGA RNA-seq datasets, we 
developed an approach, PRPS, to be able to use RUV-III to remove unwanted 
variation from the data. To use RUV-III with PRPS, we first need to find sources 
of unwanted variation that we aim to remove from the data and identify relatively 
homogenous biological subpopulations among the samples. Then, we build 
pseudo-samples, which are in silico samples derived from a group of samples that 
are roughly homogeneous with respect to the unwanted variation and biology. The 
pseudo-samples from each biological groups will be a set of pseudo-replicates.

To make the process clear, we illustrate the PRPS for TCGA COAD and BRCA 
RNA-seq studies. For example, with the TCGA COAD samples, we regarded 
the 12 combinations of four CMSs (CMS1, CMS2, CMS3 and CMS4) with three 
microsatellite instability (MSI) statuses (MSI-high, MSI-low and MS-stable) as 
defining biological subpopulations. The key time intervals 2010 and 2011–2014 
contribute the main unwanted variation that we saw after preliminary exploration 
of the data. As these times are totally confounded with sequencing plates (that 
is, different plates are used across different times), we considered plates to be the 
batches when defining PRPS. In addition, we were able to remove plate effects 
within each key time interval. As a result, to remove unwanted variation from 
the COAD data without removing biology, we created sets of pseudo-samples as 
follows: (1) select those biological subpopulations out of the 12 mentioned above 
that have at least three samples in at least two plates while also ensuring that, in 
the end, there are samples from plates within and across the two key intervals; 
and (2) average the gene expression levels of the corresponding samples within 
the individual plates to create one pseudo-sample. Having done this for all 12 
biological subpopulations, we suppose all the pseudo-samples created across plates 
for a particular biological subpopulation to form a pseudo-replicate set.

For the BRCA data, we aimed to remove four different sources of unwanted 
variation—library size, tumor purity, flow cell chemistry and plate effects—from 
the data. Then, we needed to create distinct groups of PRPS for each source of 
unwanted variation. Note that we created a group of PRPS to remove the effects of 
plates and flow cell chemistries, as they are completely confounded with each other.

We considered the PAM50 subtypes (basal, Her2, luminal A, luminal B and 
normal-like) to define the major biological subpopulations and then created 
several sets of PRPS for each source of unwanted variation. To create PRPS for 
library size, we selected plates that have at least 12 samples of a particular PAM50 
subtype and then selected the samples with the three highest and the samples with 
the three lowest values of library size. Then, we created two pseudo-samples within 
each PAM50 subtype per plate by averaging the gene expression values across each 
set of three high library size samples and each set of three low library size samples. 
We adopted the same approach explained above for the COAD data to create PRPS 
for plate effects. For removing the effect of tumor purity in the BRCA data, we 
defined sets of PRPS for each PAM50 subtype in addition to those that we created 
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for removing library size, flow cell chemistries and plate-to-plate variation. We 
performed this by selecting the samples with the three highest and the samples 
with the three lowest values of tumor purity within each PAM50 subtype. Then, 
we created two pseudo-samples within each PAM50 subtype by averaging the 
gene expression values across each set of three high-purity samples and each set 
of three low-purity samples. Finally, the two pseudo-samples (average high and 
average low purity) created for each PAM50 subtype were regarded as forming a 
pseudo-replicate set—that is, a pair of pseudo-duplicates.

Choice of negative control genes and K. Negative control genes for RUV-III 
are genes that are not highly affected by the biological factors of interest but are 
affected by one or more forms of unwanted variation in the data. We previously8 
explained that our approach to negative controls is pragmatic: if regarding a set of 
genes as negative controls helps to remove unwanted variation using RUV-III, as 
evaluated by various metrics, then whether or not they are ideal negative control 
genes is not our concern. For the different cancer types discussed in this paper, we 
used different sets of negative control genes derived from either the literature (for 
example, housekeeping genes or genes found to be stable in the same, or a closely 
related, biological context) or the data itself (for example, genes found to exhibit 
little or no biological, but clear unwanted, variation). Candidate control genes have 
their effectiveness evaluated using various metrics after their use in RUV-III. It 
should be noted that unwanted variation mostly affects different subsets of genes in 
different ways.

To use RUV-III, a dimension K of unwanted variation needs to be determined. 
To find a suitable value, we repeated the analysis with a range of values of K and 
evaluated the quality of each analysis using different statistical metrics and prior 
biological knowledge. RUV-III is generally robust to overestimating K but not always.

RUV-III normalization with PRPS for READ. As described above, the 11 
combinations (we do not have CMS4_MSI-H) of the four CMS subtypes identified 
by the R package CMScaller on the READ FPKM and FPKM.UQ RNA-seq data 
(consensus calls were selected), and the three MSI statuses, were considered 
to be homogenous biological populations for the purpose of creating PRPS. 
Supplementary Fig. 39 displays the numbers of each 11 subpopulations within the 
individual plates. We created pseudo-samples from plates that have at least two 
samples of at least one of the 11 subpopulations. Supplementary Fig. 39b shows the 
library size of pseudo-samples within each subpopulation.

A set of negative control genes was selected in the following way. First, an 
ANOVA was carried out on FPKM.UQ normalized gene expression levels using 
the consensus calls of CMS subtypes as the factor, and the genes with lowest 
F-statistics were selected (~1,000 genes). PCA plots of the READ RNA-seq raw 
counts using the negative control genes showed that they capture the large library 
size differences between the key time intervals and do not capture CMS subtype 
differences (Supplementary Fig. 39c).

RUV-III normalization with PRPS for COAD. Here we first defined CMS using 
the R package CMScaller on the COAD FPKM and FPKM.UQ RNA-seq data and 
selected the samples receiving the same CMS call for both (406 out of 479 samples). 
We used these CMSs and MSIs to define homogenous biological populations for 
the purpose of creating the PRPS (Supplementary Fig. 40). We used a slightly 
complicated approach to select a suitable set of negative control genes for the 
COAD study as follows: (1) carry out an ANOVA on the FPKM.UQ normalized 
gene expression values with CMS subtypes as the factor; (2) calculate Spearman 
correlations between FPKM.UQ normalized gene expression values and tumor 
purity; (3) calculate Spearman correlations between FPKM.UQ normalized gene 
expression values and the average expression level of a set of housekeeping genes57; 
and then (4) select genes (262 genes) that have lowest F-statistics (F-statistics 
< 20) from (1), the lowest correlations (ρ < 0.3) from (2) and the highest 
correlations (ρ > 0.9) from (3). PCA plots of the TCGA COAD RNA-seq raw 
count using negative control genes show that they capture the key time differences 
(Supplementary Fig. 40c).

RUV-III normalization with PRPS for BRCA. The PAM50 subtypes were 
identified by using the R package genefu58 with the FPKM and FPKM.UQ 
normalized data. We selected samples with consensus PAM50 subtypes from the 
two datasets for creating PRPS. Three different groups of PRPS were then created 
to capture the library size, plate and flow cell chemistries and tumor purity effects 
(Supplementary Fig. 41).

The negative control genes were selected as follows: (1) carry out an ANOVA 
on the FPKM.UQ normalized gene expression values with PAM50 subtype as the 
factor, within each flow cell chemistry; (2) carry out a similar ANOVA with flow  
cell chemistry as the factor; (3) calculate Spearman correlations between FPKM. 
UQ normalized gene expression and purity values within the PAM50 subtypes;  
(4) calculate similar Spearman correlations with library size but with the raw counts; 
(5) select genes (4,500 genes) with the lowest F-statistics (F-statistics < 20) from 
(1), the highest F-statistics (F-statistics > 100) from (2), the highest correlations 
(|ρ| > 0.7) from (3) and the highest correlations (ρ > 0.07) from (4). PCA plots of the 
TCGA BRCA RNA-seq raw count using the negative control genes show that these 
genes capture all sources of unwanted variation in the data (Supplementary Fig. 42c).

Other RNA-seq normalization methods. We did not include the SVAseq59, 
ComBat-seq22 and RUVg1 methods in our analysis as these are not specifically 
designed for normalization, although they can be helpful for that task when the 
unwanted variation is orthogonal to the biology, something that is rarely known in 
advance. The same applies to the RUVs method provided in the RUVseq package1. 
Although if there are true replicates (missing from TCGA and most large cancer 
RNA-seq studies), it can be used to normalize RNA-seq datasets5.

PCA. The PCs (in this context also called singular vectors) of the sample × 
transcript array of log counts are the linear combinations of the transcript 
measurements having the largest, second largest, third largest, etc., variation, 
standardized to be of unit length and orthogonal to the preceding components. 
Each will give a single value for each sample. In this paper, PCA plots are of the 
second PC values versus the first PC values and of the third PC versus the first PC. 
The calculations are done on mean-corrected transcript log counts, using the R 
code adopted from the R package EDAseq (version 2.26.1)4.

RLE plots. RLE plots23 are used to reveal trends, temporal clustering and other 
non-random patterns resulting from unwanted variation in gene expression data. 
To generate RLE plots, we first formed the log ratio log(yig/yg) of the raw count yig for 
gene g in the sample labeled i relative to the median value yg of the counts for gene 
g taken across all samples. We then generated a box plot from all the log ratios for 
sample i and plotted all such box plots along a line, where i varies in a meaningful 
order, usually sample processing date. An ideal RLE plot should have its medians 
centered around zero, and its box widths and their interquartile ranges (IQRs) should 
be similar in magnitude. Because of their sensitivity to unwanted variation, we also 
examined the relationships between RLE medians with potential sources of unwanted 
variation and individual gene expression levels in the datasets. In the absence of any 
influence of unwanted variation in the data, we should see no such associations.

Vector correlation. We used the Rozeboom squared vector correlation60 to 
quantify the strength of (linear) relationships between two sets of variables, such as 
the first k PCs (that is 1 ≤ k ≤ 10) and dummy variables representing time, batches, 
plates and biological variables. Not only does this quantity summarize the full 
set of canonical correlations, but it also reduces to the familiar R2 from multiple 
regression (see below) when one of the variable sets contains just one element.

Linear regression. R2 values of fitted linear models are used to quantity the 
strength of the (linear) relationships between a single quantitative source of 
unwanted variation, such as sample (log) library size or tumor purity, and global 
sample summary statistics, such as the first k PCs (1 ≤ k ≤ 10). The lm() R function 
was used for this analysis.

Partial correlation. Partial correlation is used to estimate Pearson (linear) 
correlation between two variables while controlling for one variables61. We 
computed the partial correlation between the expression levels of pairs of genes 
controlling for tumor purity using the pcor.test() function from the R package 
ppcor (version 1.1)61.

ANOVA. ANOVA enables us to assess the effects of a given qualitative variable 
(which we call a factor) on gene expression measurements across any set of groups 
(labeled by the levels of the factor) under study. We use ANOVA F-statistics to 
summarize the effects of a qualitative source of unwanted variation (for example, 
batches) on the expression levels of individual genes, where genes having large 
F-statistics are deemed to be affected by the unwanted variation. We also use 
ANOVA tests (the aov() function in R) to assign P values to the association 
between tumor purity and molecular subtypes.

P value histograms. It has been shown by Leek and Storey62 and others that 
histograms of the raw (that is, unadjusted) P values resulting from testing the same 
hypothesis (for example, of no differential expression across two or more groups 
of samples) on thousands of genes can be powerful indicator of the presence of 
unwanted variation. When there is no such variation and the underlying statistical 
model is appropriate, such P value histograms should be uniform apart from a 
possible peak near zero corresponding to genes where the null should be rejected. 
When there is unwanted variation, the histograms typically look very far from 
uniform apart from a peak near zero.

Silhouette coefficient analysis. We used silhouette coefficient analysis to assess the 
separation of biological populations and batch effects. The silhouette function uses 
Euclidean distance to calculate both the similarity between one patient and the other 
patients in each cluster and the separation between patients in different clusters. A 
better normalization method will lead to higher and lower silhouette coefficients for 
biological and batch labels, respectively. The silhouette coefficients were computed 
using the function silhouette() from the R package cluster (version 2.1.2)63.

ARI. The ARI64 is the corrected-for-chance version of the Rand index. The ARI 
measures the percentage of matches between two label lists. We used the ARI to 
assess the performance of normalization methods in terms of sample subtype 
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separation and batch mixing. We first calculated PCs and used the first three PCs 
to perform ARI.

DE analysis. DE analyses were performed using the Wilcoxon signed-rank test 
with log2-transformed raw counts and normalized data65. To evaluate the effects 
of the different sources of unwanted variation on the data, DE analyses were 
performed across batches. In the absence of any batch effects, the histogram of the 
resulting unadjusted P values should be uniformly distributed. The wilcox.test() R 
function was used for this analysis.

Identification of unwanted variation in TCGA RNA-seq datasets. We made use 
of both global and gene-level approaches to identify and quantify unwanted 
variation in RNA-seq datasets (Extended Data Fig. 2). These approaches are also 
used to assess the performance of different normalization methods as removers of 
unwanted variation and preservers of biological variation in the data.

Our global approaches involve the use of PCA plots, linear regression, vector 
correlation analyses, silhouette coefficients, ARIs and RLE plots23. Our PCA plots 
(see above) are each of the first three PCs against each other, colored by known 
sources of unwanted variation—for example, time—or known biology—for 
example, cancer subtype. Linear regression is used to quantify the relationship 
between the first few PCs and continuous sources of unwanted variation, such as 
(log) library size. The R2 calculated from the linear regression analyses indicates 
how strongly the PCs capture unwanted variation in the data, and we perform 
these calculations cumulatively—that is, continuous source versus all of (PC1, …, 
PCk), for k = 1,…,5 or 10. Similarly to linear regression, we used vector correlation 
analysis to assess the effect on the data of discrete sources of unwanted variation, 
such as years or year intervals. Silhouette coefficients and ARIs were used to 
quantify how well experimental batches are mixed and known biology is separated. 
Finally, RLE plots23 were used to assess the performance of different normalizations 
in terms of removing unwanted variation from the data. We also explored the 
relationship between the medians and the IQRs of the RLE plots with sources of 
unwanted variation.

The gene-level approach includes DE analyses between experimental batches, 
looking at P value histograms and assessing the expression levels of negative 
control genes (see above), positive control genes (genes whose behavior we know), 
Spearman correlation and ANOVA between individual gene expression and 
sources of unwanted variation. These methods assess and quantify the effects of 
unwanted variation on individual gene expression levels in the RNA-seq datasets. 
See Methods section for more details about the assessment tools.

Cancer subtype identification. We identified gene-expression-based cancer 
subtypes to create PRPS for RUV-III normalization. The CMScaller() function 
with default parameters from the R package CMScaller (version 2.0.1)25 was used 
to identify the CMSs in the TCGA READ and COAD RNA-seq data. The function 
provides classification based on pre-defined cancer-cell-intrinsic CMS templates.

We used two approaches to identify the PAM50 subtypes in the TCGA BRCA 
RNA-seq data. We implemented an algorithm proposed by Picornell et al.66 on 
the estrogen receptor (ER) balanced data. The ER estimates = 1.4 were selected to 
divide samples into ER-positive and ER-negative groups, and then the calibration 
(median normalization) factors were calculated.

In addition, we also used the molecular.subtyping() function with the PAM50 
(single sample predictor) model from the R/Bioconductor package genefu 
(version 2.26.0) to identify the PAM50 subtypes. This method performs Spearman 
correlation between the expression of the PAM50 genes of each sample and PAM50 
centroids (these data were downloaded here: https://github.com/bhklab/genefu) 
to calculate the correlation coefficient for individual PAM50 subtypes. Then, the 
individual sample is assigned to a particular PAM50 subtype based on its highest 
correlation coefficient.

We used Kaplan–Meier survival analysis to assess the prognostic values of 
different PAM50 identification approaches. The results showed that the PAM50 
subtypes obtained by the genefu method are slightly more prognostic than those 
obtained by the other method (Supplementary Fig. 27).

Spurious gene–gene correlation. We used two strategies to show spurious gene–
gene correlations in the TCGA normalized data. First, we demonstrated how 
sources of unwanted variation, such as library size, tumor purity and batch effects, 
can introduce such correlations, which we did not see in the RUV-III normalized 
data. Second, we used the TCGA microarray gene expression data as orthogonal 
platform to explore and confirm these correlations. The TCGA microarray data 
contain gene expression data of subsets of samples that were profiled by RNA-seq 
platform. Our normalization assessment showed that the microarray data were not 
influenced by plates and time effects.

To explore spurious gene–gene correlations introduced by tumor purity in 
the TCGA data, we used the LCM microarray data, as these contain only gene 
expression signals from cancer cells. Note that we assessed both purity variation 
and quality of the LCM data.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The TCGA RNA-seq data are publicly available in three formats: raw counts, 
FPKM and FPKM.UQ. All these formats for individual cancer types (33 cancer 
types, ~11,000 samples) were downloaded using the R/Bioconductor package 
TCGAbiolinks (version 2.16.1). We have created summarized experiment objects 
containing expression data (raw counts, FPKM and FPKM.UQ), clinical and batch 
information and gene annotations for all the TCGA RNA-seq data. These files are 
deposited here: https://zenodo.org/record/6326542#.YlN56y8Rquo (ref. 67). The 
TCGA microarray gene expression data level 3 were downloaded from the Broad 
GDAC Firehose repository: https://gdac.broadinstitute.org, data version 2016/01/28. 
TCGA sample processing times were downloaded from the MD Anderson Cancer 
Center TCGA Batch Effects website: https://bioinformatics.mdanderson.org/
public-software/tcga-batch-effects. The TCGA survival data were downloaded from 
the Liu et al. study54. The CPEs were downloaded from the Aran et al. study17. The 
breast cancer LCM and two non-TCGA RNA-seq datasets were downloaded from 
the NCBI Gene Expression Omnibus, with accession numbers GSE78958 (ref. 37), 
GSE96058 and GSE81538 (refs. 49,50) using the GEOquery R/Bioconductor package 
(version 2.62.2). The datasets that are required for the vignettes are deposited here: 
https://zenodo.org/record/6392171#.YlN6Yi8Rquo. The RUV-III normalized data of 
the TCGA READ, COAD and BRCA RNA-seq datasets are deposited here: https://
zenodo.org/record/6459560#.YldJ4S8Rquo (ref. 68).

Code availability
We developed an RShiny application and the tcgaCleaneR package to explore and 
remove unwanted variation in the TCGA RNA-seq datasets. All scripts were used 
to generate the main and supplementary figures, and two comprehensive vignettes 
that show all the steps in processing the TCGA READ and BRCA RNA-seq data 
are available on GitHub at: https://github.com/RMolania/TCGA_PanCancer_
UnwantedVariation (ref. 69).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | RUV-III improves the PAM50 clusters in the TCGA BRCA RNA-seq data. a) Scatter plot of the first two principal components 
colored by the PAM50 subtypes in the FPKM (left), FPKM.UQ (middle), and the RUV-III (right) normalized datasets. b) Vector correlation analysis 
between the first ten principal components cumulatively and the PAM50 subtypes in the differently normalized datasets. c) Silhouette coefficients and 
ARI showing how the PAM50 clusters are separated in the differently normalized datasets. d) The heatmap gives the Spearman correlation coefficients 
between the expression levels of the PAM50 signature genes and the tumor purity scores in the FPKM.UQ data. e) Scatter plots show relationship 
between the gene expression levels of FOXA1 and tumor purity within the individual PAM50 subtypes in the FPKM.UQ (first row) and the RUV-III 
normalized data (second row). f) Kaplan Meier survival analyses for samples with low and high expression of FOXA1 gene in Luminal-B subtype in the 
FPKM.UQ (left) and the RUV-III normalized data (right).
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Extended Data Fig. 2 | RUV-III with PRPS workflow. Workflow to identify known and unknown sources of unwanted variation, and apply RUV-III with 
PRPS normalization to RNA-seq data.
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