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Nirmatrelvir, an oral antiviral targeting the 3CL protease of SARS-CoV-2, has been
demonstrated to be clinically useful against COVID-19 (refs.?). However, because

SARS-CoV-2 has evolved to become resistant to other therapeutic modalities®”,
thereisaconcern that the same could occur for nirmatrelvir. Here we examined

this possibility by in vitro passaging of SARS-CoV-2 in nirmatrelvir using two
independent approaches, including one on alarge scale. Indeed, highly resistant
viruses emerged from both and their sequences showed a multitude of 3CL protease
mutations. Inthe experiment peformed with many replicates, 53 independent
virallineages were selected with mutations observed at 23 different residues of

the enzyme. Nevertheless, several common mutational pathways to nirmatrelvir
resistance were preferred, with a majority of the viruses descending from T211, P252L
or T304l as precursor mutations. Construction and analysis of 13 recombinant
SARS-CoV-2 clones showed that these mutations mediated only low-level resistance,
whereas greater resistance required accumulation of additional mutations. E166V
mutation conferred the strongest resistance (around 100-fold), but this mutation
resultedin aloss of viral replicative fitness that was restored by compensatory
changes such as L50F and T211. Our findings indicate that SARS-CoV-2 resistance

to nirmatrelvir does readily arise via multiple pathways in vitro, and the specific
mutations observed herein form a strong foundation from which to study the
mechanism of resistance in detail and to inform the design of next-generation

protease inhibitors.

The COVID-19 (coronavirus disease, 2019) pandemic has continued to
affect the global populace. The rapid development and deployment
of effective vaccines, as well as monoclonal antibody therapeutics
beginning in late 2020, have helped greatly to curtail its impacts™® 7.
Nevertheless, the aetiologic agent, SARS-CoV-2 (severe acute respira-
tory syndrome coronavirus 2), has continuously evolved to develop
resistance to antibody-mediated neutralization* . In particular, several
recent Omicron subvariants exhibit such strong antibody resistance
that vaccines have had their protection against infection dampened
and amajority of current monoclonal therapeutics have lost efficacy**%,
as manifested by increasing levels of breakthrough infections in con-
valescing and/or vaccinated individuals®.

Fortunately, treatment options remain. In the United States, three
antivirals have received emergency use authorization for COVID-19 treat-
ment: remdesivir”®, molnupiravir®? and nirmatrelvir'? (also known

as PF-07321332, used in combination with ritonavir and marketed as
PAXLOVID). The first two target the RNA-dependent RNA polymerase
(RdRp) and the latter targets the 3CL protease (3CL™, also known as
main protease (MP°) and nonstructural protein 5 (nsp5)). Both enzymes
are essential for the viral life cycle and are relatively conserved among
coronaviruses*?, Remdesivir is administered intravenously and has a
reported relative risk reduction of 87% (ref.’), whereas molnupiravir and
nirmatrelvir are administered orally and have reported clinical efficacies
of 31% (ref.?°) and 89% (ref.?), respectively, in lowering rates of hospitali-
zationor death. Asthe use of these antiviralsincreases thereisaconcern
that drug resistance may arise, particularly if given as monotherapies.
Forremdesivir, invitro andinvivo studies have shown mutations associ-
ated withresistance®?*%, and resistance to molnupiravir or nirmatrelvir
isnowunder activeinvestigation. Here we report that there are multiple
routes by which SARS-CoV-2 can gainresistance to nirmatrelvir in vitro.
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Fig.1|Identification of nirmatrelvir resistancein Vero E6 cells. a, Changes
inICs,during passaging of SARS-CoV-2 with nirmatrelvir. Vero E6 cells were
infected intriplicate with SARS-CoV-2 (USA-WA1/2020) and passaged to

fresh cells every 3 days for 30 passages (Methods). b-d, Validation of
nirmatrelvir resistance for the indicated passage from each of the three
lineages (A (b), B (c) and C (d)). e, Inhibition of passage 30 viruses from each
lineage by remdesivir. f, Mutationsin 3CLP™ found in the indicated passages

Nirmatrelvir resistancein Vero E6

To select for resistance to nirmatrelvir, SARS-CoV-2 (USA-WA1/2020
strain) was passaged in the presence of increasing concentrations of
the drug (Methods). We conducted thisinitial experimentintriplicate,
using Vero E6 cells because they have been one of the standard cell lines
used in COVID-19 research. After 30 passages each of the three lineages
demonstrated a high level of resistance, with half-maximal inhibitory
concentration (ICy,) values increasing 33- to 50-fold relative to that
of the original virus (Fig. 1a-d). Examination of earlier viral passages
confirmed a stepwise increase in nirmatrelvir resistance with successive

fromeachlineage. Dotsindicate WT at that residue. Mutations are shaded
accordingtofrequency. g, Residues mutated with passagingin Vero E6 cells
overlaid onto the 3CLP™structure with nirmatrelvir bound. The Ca of each
mutated residueis denoted by ared sphere. The 3CLP"-nirmatrelvir complex
wasdownloaded from PDB under accessioncode 7VH8. a-e, Error bars denote
mean +s.e.mof four technical replicates.

passaging (Fig. 1b—d), with no evidence of resistance to remdesivir
(Fig.1e). Theresistant viruses selected by passaging maintained their
replicative fitness in vitro, with growth kinetics similar to those pas-
saged without nirmatrelvir (Extended Data Fig.1).

We then sequenced the 3CL"" gene from the three viral lineages col-
lected every three passages to investigate which mutations might confer
resistance (Fig. 1f). We found that the three lineages harboured unique
mutations with only one mutation, at most, overlapping between the
differentlineages (T21lin lineages A and B, L50F in lineages B and C
and T304l in lineages A and C). The observed mutations occurredin a
stepwise manner, mirroring the increasesin drugresistance (Fig. 1f) and
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Fig.2|Identification of nirmatrelvirresistance at scalein Huh7-ACE2 cells.
a, Passaging scheme: 480 wells were infected with SARS-CoV-2-mNeonGreen
and passaged to fresh Huh7-ACE2 cells every 3-4 days, with the concentration
of drugdoubled every two passages. b, Validation of nirmatrelvir resistance of
three wells from passage 16. These viral populations had the following
mutations: 3A8 (T211, T3041), 1E11 (T211, N51Y, T3041) and 5A2 (L50F, E166V).
See Supplementary Table 1for exact frequencies. Representative curves froma
single experiment from two biologicallyindependent experiments are shown.
Error bars denote mean +s.e.mofthree technical replicates. ¢, Mutations in

anumber ofthem, but notall, were situated near the nirmatrelvir-binding
site (Fig. 1g). Specifically, F140L and L167F were within 5 A of nirmatrel-
vir. These results suggested that SARS-CoV-2 could readily develop
nirmatrelvir resistance using any one of several mutational pathways.

Nirmatrelvir resistance in Huh7-ACE2 cells

We therefore set out to conduct another passaging experiment to
select for nirmatrelvir resistance, but this time at a larger scale with
many replicates to better capture the multitude of solutions that
SARS-CoV-2 could adopt under drug pressure. For these later studies,
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3CLP"foundin passage 16 from 53 wells. Dots indicate WT at that residue.
Mutations are shaded accordingto frequency. d, Residues mutatedin
passaging in Huh7-ACE2 cells overlaid onto the 3CLP™ structure with
nirmatrelvirbound. All 23 mutated residues across all resistant populations
areindicated foranyindividualisolate having between one and six mutations.
The Caofeachresidue that was mutated is denoted by ared sphere for
mutations observed more thantentimes, andis denoted by an orange sphere
for mutations observed fewer than ten times. The 3CLP™-nirmatrelvir complex
was downloaded from PDB under accessioncode 7VH8.

we utilized Huh7-ACE2 cells to examine whether differences would
arise in human cells, and because Vero E6 cells express high levels of
P-glycoprotein, an efflux transporter that limits the intracellular accu-
mulation of nirmatrelvir?. We passaged SARS-CoV-2-mNeonGreen
(USA-WA1/2020 background with ORF7 replaced by mNeonGreen?®)
independently in 480 wells for 16 passages with increasing concen-
trations of nirmatrelvir over time, and viruses from every fourth pas-
sage were subjected to next-generation sequencing (NGS) (Fig.2aand
Methods). After 16 passages, varying degrees of nirmatrelvir resistance
were observed as exemplified by the three viruses shown in Fig. 2b.
Sequencing of 3CLP" in all wells that retained mNeonGreen signal
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Fig.3|Pathways for SARS-CoV-2 resistance to nirmatrelvir. a, Phylogenetic
tree of sequences from passaging in Huh7-ACE2 cells. Only sequences with
mutations are shown. Sequences are denoted as passage number, followed by
the well number. Mutations that arose along particular branches are annotated
inred; -~ denotes whenamutation appears to havebeenlost fromaparticular
branch. b, Observed pathways for nirmatrelvir resistance in Huh7-ACE2 cells.
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these pathways (Methods and Supplementary Table 2). Nodes are shaded from
darktolight, with founder mutations darker. Percentagesindicate the
frequency by which child nodes derive from theimmediate parental node.
Descendentarrows that donotsumto100%indicate thata proportiondid not

identified 53 mutant populations (Fig. 2c). Across all of these popu-
lations, mutations were observed at 23 residues within the enzyme
(between one and six mutations in each isolate), both proximal
(at least 5 A; S144A, E166(A/V), H172(Q/Y) and R188G) and distal
(over 5 A) to nirmatrelvir (Fig. 2d). Whereas there was widespread

-~ T211 + S144A L50F + E166V
- T211 + E166V -e- T211 + A173V + T304l
- T211 + A173V

o

T
12 24 36 48
Hours post infection

advancebeyond theindicated mutations in the experiment. ¢, Growth assay
withrecombinant live SARS-CoV-2 carrying single (top) and combination 3CL"™
mutations (bottom). Huh7-ACE2 cells were infected with 0.01 multiplicity of
infection (MOI) of virus, and luminescence was quantified at theindicated time
points.S144A,E166V and T211 + S144A are statistically significant from WT at
48 h (two-way analysis of variance with Geisser-Greenhouse correction
followed by Dunnett’s multiple comparisonstest; P=0.0039,P=0.0006,
P=0.0006, respectively). Representative curves fromasingle experiment
from two biologicallyindependent experiments are shown. Error bars denote
mean +s.e.mofthreetechnical replicates. RLU, relative luminescence units.

diversity among the passaged populations, seven mutations appeared
ten or more times across replicates: T21l, L50F, S144A, E166V, A173V,
P252L and T304l. The only 3CLP™ cleavage site mutation frequently
observed was T304I, which corresponds to the cleavage site nsp5/6
T(P3)I. Other sites were only rarely observed to mutate, suggesting
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Fig.4|Validation ofidentified mutationsinisogenicrecombinant
SARS-CoV-2.a, Individual inhibition curves of recombinant live SARS-CoV-2
carryingsingle (left) and combination 3CLP™ mutations (right) by nirmatrelvir.
Representative curves fromasingle experiment from three biologically
independent experimentsare shown. Error bars denote mean +s.e.mofthree

that substrate cleavage site alterations are largely not responsible
for nirmatrelvir resistance (Extended Data Fig. 2), with the possible
exception of cis-cleavage.

Sequencing of the same wells at earlier passages showed less diversity
in3CLP", withtotals of 11,16 and 22 unique mutations detected across
allpopulations from passages 4, 8 and 12, respectively (Supplementary
Table 1). Because a standard phylogenetic analysis showed a rather
complex stepwise order of acquisition of mutations for each passaged
lineage (Fig. 3a), we more carefully analysed the order in which muta-
tions arose across the various lineages (Methods and Supplementary
Table 1) and generated a pathway network delineating the most com-
mon routes taken by SARS-CoV-2invitro to develop nirmatrelvir resist-
ance (Fig. 3b and Supplementary Table 2). The majority of these viral
lineages descended initially from T21I, P252L and T304, suggesting
that these mutations may serve as ‘founder’ or ‘precursor’ mutations
when drug concentrations are relatively low. Additional mutations
then occurred, probably to increase the level of resistance as drug
concentrations were increased and/or to compensate for reduced
viralfitness. These findings indicated that, although there are multiple
means by which SARS-CoV-2 can resist nirmatrelvir, several common
mutational pathways are favoured.

Nirmatrelvir resistance mutations

To furtherinvestigate which mutations were responsible for nirmatrel-
vir resistance we proceeded to generate recombinant SARS-CoV-2
clones, each containing a unique mutation or a combination of
mutations. To construct the 15 mutant viruses from the first passage
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technicalreplicates. b, Inhibition of recombinant live SARS-CoV-2 carrying
single and combination 3CLP" mutations by nirmatrelvir, ensitrelvir and
remdesivir. Values shown are fold change of mean values in1C, relative to
inhibition of WT from three biologically independent experiments.

experiment (Fig. 1f) and the 22 mutant viruses from the second
(Fig. 3a,b) would be beyond the scope of the current study. We there-
fore decided to focus on the seven most common single-point mutants
from the large passaging study, as well as on five double mutants and
one triple mutant (Extended Data Fig. 3). All viruses grew similarly
to wild type (WT) in the absence of drug except for S144A, E166V and
T211+S144A, which were significantly impaired in their growth kinetics
(Fig.3c). However, both T211 + E166V and L50F + E166V replicated well
with kinetics similar to WT, suggesting that T211 and L50F each com-
pensated for the fitness loss of E166V. Of the individual mutants tested
against nirmatrelvir, E166V was most resistant (100-fold) with P252L
and T3041 having low-level resistance (around sixfold) and S144A and
A173V only minimal resistance (about threefold or less) (Fig. 4a,b and
Extended Data Fig. 4). Combination of either T211 or L50F with E166V
resulted in a virus that was substantially resistant to nirmatrelvir (83-
and 53-fold, respectively), but with WT replicative kinetics (Fig. 3c).
We next tested this panel of viruses against ensitrelvir? (also known
as S-217622), another 3CL protease inhibitor that has demonstrated
clinical efficacy?, for cross-resistance, together with remdesivir as
control.Only S144A, E166V and T21I + S144A showed substantial (13- to
23-fold) cross-resistance to ensitrelvir (Fig. 4b and Extended Data Figs. 4
and 5). As expected, none of these mutations conferred resistance to
remdesivir. We additionally tested the passage 30 viruses resulting from
the initial selection experiment in Vero E6 cells (Fig. 1) against these
twoinhibitors. Again, all three lineages were as susceptible to remde-
siviras WT and only lineage C (L50F + F140L + L167F + T304l) showed
cross-resistance toensitrelvir (approximately 25-fold) (Extended Data
Fig. 6). This may be due to F140L, because L50F and T304I did not



demonstrate ensitrelvir resistance (Fig. 4b) and L167 does not contact
ensitrelvir (see below). Together these results suggest that some muta-
tions, suchas E166V, can confer a high degree of nirmatrelvir resistance
alone whereas others, such as T21l, P252L and T3041, confer only low
levels of resistance individually. The degree of cross-resistance to ensi-
trelvir was variable among the tested mutant viruses, probably due to
the differencesin binding of these drugs to the substrate-binding site of
3CLP"* (Extended DataFig.7a). Nevertheless, it is clear that selection for
nirmatrelvir resistance can yield mutations that confer cross-resistance
to other inhibitors of clinical interest as well.

To begin to understand the mechanisms underlying the resistance
conferred by these mutations, we considered their structural context.
Nirmatrelvir and ensitrelvir both bind within the substrate-binding
site, but in differing modes, which may have resulted in the differ-
ences observed in the inhibition profiles of the mutants (Fig. 4b and
Extended Data Fig. 7a). E166 directly interacts with the lactam ring of
nirmatrelvir via hydrogen bonding, and the valine substitution at this
positionmay abrogate some of these interactionstoresultin the strong
drugresistance observed (Extended Data Fig. 7b). E166 is also able to
form hydrogen bonds with the first residue (S1) of the neighbouring
protomer and is therefore involved in dimerization, whichis essential
for protease activity because 3CLP™ functions as a homodimer®. The
disruption of hydrogen-bondinginteractions (Extended Data Fig. 7b)
may explain the reduced fitness of the E166V mutant (Fig. 3c). The
side chain of S144 forms a hydrogen bond with the main chain of L141
to stabilize the S1 subsite of the substrate-binding site, so the S144A
mutation may disorder this region and hamper the binding of both
nirmatrelvir and ensitrelvir (Extended Data Fig. 7c), althoughi it is not
clear why this requires the T21l mutation in conjunction. L167 partici-
pates in the formation of the S4 subsite, and the L167F mutation may
causeasteric clashwith nirmatrelvir (Extended DataFig. 7d). However,
because ensitrelvir does not extend into the S4 subsite, this mutation
may not be responsible for the cross-resistance observedin lineage C
(Extended DataFig. 6). Because F140 interacts by t-mt stacking interac-
tions with H163, which directly interacts with both nirmatrelvir and
ensitrelvir, the F140L mutation may abrogate this interaction, resulting
inresistance (Extended Data Figs. 6 and 7a,b). For anumber of these
mutations, however, it is not immediately apparent how they confer
drugresistance given that they are distant from the substrate-binding
site where the drugs bind (Extended Data Fig. 3).

Finally, we compared the mutations identified in this study with clini-
cal SARS-CoV-2sequencesreported to the Global Initiative on Sharing
Avian Influenza Data®. Nearly all of the mutations we have identified
were observed among viruses circulating in the population, albeit at
low frequencies (Extended Data Fig. 8a). Comparing the frequencies
of these mutations in periods before and after authorization of the
combination of nirmatrelvir and ritonavir (PAXLOVID) did not show an
appreciableincreaseinthe observed mutations (Extended DataFig. 8b).

Discussion

Because antibody-based interventions for SARS-CoV-2 face increasing
resistance from the emergence of variants of concern, antivirals with
alternative modes of action haveincreased inimportance. Nirmatrelvir,
asanoral antiviral targeting 3CL", isatherapeutic that has shown high
efficacyinlowering severe disease and hospitalizationininfected per-
sonswho areat highrisk and not vaccinated* Indeed, it is the antiviral
drug most commonly used to treat COVID-19 today*. Given the adap-
tations that the virus has already exhibited to other modes of treat-
ment>"?, itis clinically important to understand the mechanisms by
which nirmatrelvir resistance can occur. The results presented herein
demonstrate thatin vitro high-level resistance to nirmatrelvir can read-
ilybeachieved by SARS-CoV-2, and that this can occur inamultitude of
ways. This finding is consistent with our previous report on the extensive
plasticity of 3CLP™, as discovered by deep mutational scanning™.

In both Vero E6 cells (Fig. 1) and Huh7-ACE2 cells (Fig. 2), multiple
lineages with nonoverlapping mutations evolved under increasing
drug pressure, consistent with that seen in similar small-scale stud-
ies?*?3435 Conducting selection at scale, however, showed that there
are multiple mutational pathways to nirmatrelvir resistance but with
several commontrajectories preferred (Figs. 2cand 3a,b). A majority of
lineages descended from viruses that acquired T211, P252L or T304l as
aninitial mutation. Recombinant SARS-CoV-2, constructed to contain
each of these point mutants, exhibited low-level resistance (Fig. 4a,b),
suggesting that each of these precursor mutations may have allowed
the virus to tolerate low concentrations of nirmatrelvir but required
additional mutations as drug pressure wasincreased. Notably, all three
of these mutations are somewhat distal (over 5 A) from nirmatrelvir
(Fig. 2d) and their mechanism for resistance is not evident without
additional studies. We note, however, that T304 corresponds to the P3
site on the nsp5/6 cleavage substrate for 3CL"™ of both SARS-CoV and
SARS-CoV-2 (Extended Data Fig. 2). Although the P3 site is exposed to
solvent and is thus not considered to confer stringent substrate speci-
ficity, it has been shown that a suitable functional group (such as the
side chain ofisoleucine) at the P3 site can assistin increasing inhibitor/
substrate potency and selectivity for 3CLP™ (refs. **38), Therefore, it
is possible that T304 could facilitate binding of the nsp5/6 cleavage
site or promote the autocleavage process. The differing mutations
observed between the two cell lines further emphasize the complexity
and variety of pathways leading to nirmatrelvir resistance, althoughit is
notyet clear why certain mutations are specific to the Vero E6 cell line.

Analyses withisogenic mutants also showed that several mutations
are responsible for the observed nirmatrelvir resistance, with the
E166V mutation conferring the most resistance (100-fold) (Fig. 4b),
asreported elsewhere®*, This mutation also conferred a degree of
cross-resistance to ensitrelvir, another clinically relevant 3CL" inhibi-
tor?®%, The mechanism of resistance of E166V can be explained because
itresidesinthe substrate-bindingsite, and valine substitution disrupts
its hydrogen bonding to the lactam ring of nirmatrelvir (Extended
Data Fig. 7b). However, this mutation lowered the replicative fitness
of the virus in vitro (Fig. 3¢), perhaps because of a loss of interaction
with the first residue of the neighbouring protomer in dimerization
(Extended Data Fig. 7b)*°. Importantly, replicative fitness was restored
when T211 or L50F was added (Fig. 3¢), with no significant impact on
drug resistance (Fig. 4b). How these two mutations compensate for
the fitness loss of E166V remains unknown. It is worth mentioning
that the E166V mutation was reportedly found in viral isolates from
several PAXLOVID-treated individuals in the EPIC-HR clinical trial* (see
Fact Sheet for Healthcare Providers: Emergency Use Authorization for
PAXLOVID, revised 6 July 2022 (ref. *)).

We have also found that a number of additional mutations could
confer resistance to nirmatrelvir in vitro. T21l + S144A mediated not
only significant resistance to nirmatrelvir but also cross-resistance
to ensitrelvir (Fig. 4b), but this virus exhibited slower growth kinetics
(Fig. 3c). Likewise, we inferred that both L167F and F140L were prob-
ably mediating drug resistance inthe C-P30 lineage of the firstin vitro
passaging experiment (Fig. 1f) as discussed above, along with possible
structural explanations. Itis clear, nevertheless, that we have studied
only alimited number of the mutational pathways taken by SARS-CoV-2
to evade nirmatrelvir. Furthermore, many of the mutations shown by
our study are without astraightforward structural explanation at this
time, andindeed, whereas otherinvitro or insilico studies have identi-
fied residues such as E166 to be ofimportance, they have missed these
other residues that are distant from the substrate-binding site** . It
should also be mentioned that our studies were conducted with the
ancestral WAl strain, and the currently circulating Omicron variants—
all of which except for BA.3 contain a P132H mutation in 3CLP°—may
differ in their nirmatrelvir evasion pathways. Whereas this mutation
has been reported to have no direct effect on nirmatrelvir resistance,
it may influence the emergence of subsequent resistance-conferring
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mutations®. It will require extensive virological, biochemical and struc-
tural studies to delineate which mutations confer resistance and how, as
wellas to understand how certain mutations play compensatoryroles.
Abetter understanding of the mechanisms of nirmatrelvir resistance
could provide insight into the development of the next generation of
3CLP"inhibitors.

At the time of writing, nirmatrelvir has been used to treat COVID-19
for only 6 months or less in most countries. SARS-CoV-2 resistance
to this drugin patients has yet to be reported, and we see no appreci-
able difference in frequencies of the 3CL"™ mutations that we have
uncovered in periods before and after emergency use authorization
(Extended DataFig. 8). Perhaps the absence of nirmatrelvir resistance
inpatientsto dateis due to the high drug concentrations achieved with
the prescribed regimen, making it difficult for the virus toaccumulate
mutations in astepwise manner. Inaddition, the drugis administered
while theimmune systemis also actively eliminating the virus, including
anyresistant forms that may have emerged. Therefore, it makes sense
tofocusoursurveillance effort onimmunocompromised individuals on
nirmatrelvir treatment for the appearance of drug-resistant virus. Past
experience with other viral infections tells us thatif drug resistance can
be selected in vitro, it surely will occur also in vivo. Although current
COVID-19therapies have been largely administered as monotherapies,
itis possible that future treatment will benefit from the use of acom-
bination of drugs to minimize the likelihood of SARS-CoV-2 escape.
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Methods

Biosafety

AIISARS-CoV-2 passaging, infection and recombinant virus production
was conducted in BSL-3 laboratories at Columbia University Irving
Medical Center under procedures and guidelines approved by the
Columbia University Institutional Biosafety Committee.

Compounds
Nirmatrelvir was purchased from Aobius, ensitrelvir from Glixx Labo-
ratories and remdesivir from Selleckchem.

Cells

Vero E6 cells were obtained from ATCC (no. CRL-1586), HEK293T cells
from ATCC (no. CRL-3216) and Vero E6-TMPRSS2-T2A-ACE2 cells from
BEIResources (no.NR-54970). Huh7-ACE2 cells were generated previ-
ously****, Cell morphology was visually confirmed before use and all
celllines tested mycoplasma negative. All cells were maintained at
37 °Cunder 5% CO,.

Invitro selection for SARS-CoV-2 resistance to nirmatrelvir in
Vero E6 cells
To select for the development of drug resistance against nirmatrelvir,
WAI (SARS-CoV-2, USA-WA1/2020 strain) was cultured in the presence of
increasing concentrations of nirmatrelvir and passaged 30 times. Virus
isolates recovered from culture at various passages were then character-
ized for their resistance to nirmatrelvir and their replication capacity.
To initiate passaging, Vero E6 cells were seeded in a 24-well plate at
adensity of 1 x10° cells per well in complete medium (DMEM +10%
fetal calf serum + penicillin/streptomycin), and both drug and virus
were then added the following day. The drug was prepared in a three-
fold dilution series based on its original ICs,. The virus was added at
5,000 50%tissue culture infectious dose (TCID,) per well. Three days
postinfection, each well was scored for cytopathic effects (CPE) ina
range of 0 to 4+ based on comparison with control wells as previously
described®, and 100 pl of the supernatant from the well with a CPE score
equaltoorgreater than 2+was passaged to each wellin the next culture
plate. The passage culture was set up in triplicate (lineages A, Band C)
and passaging was performed independently—thatis, virusesin lineage
Awerekeptwithinthe lineage A series of wells at every passage. Along
withthe cultures passaged with nirmatrelvir, WAl was passaged without
nirmatrelvir in two independent wells to serve as a passage control.
Values of IC,, for each lineage in passaging were determined based
on CPEscores at day 3 of each passage; these values were derived using
DeltaGraph (Red Rock Software).

Sequencing of SARS-CoV-2 passaged in Vero E6 cells
For SARS-CoV-2 passagedin Vero E6 cells, passages were sequenced by
either Sanger or Nanopore sequencing. For Sanger sequencing, viral
RNAwasisolated from culture supernatant with the QlAamp Viral RNA
Mini Kit (Qiagen), reverse transcribed to complementary DNA with
Superscript IV Reverse Transcriptase (ThermoFisher) and the priming
primer (nsp5.R1) and subjected to nested PCR with Platinum SuperFi Il
(ThermoFisher) to obtainthe full-length nsp5 gene. Primers for the first
PCRwerensp5.F1: 5-GTAGTGATGTGCTATTACCTCTTACGC-3’ and nspS.
R1:5-GCAAAAGCAGACATAGCAATAATACC-3’. Primers for the second
PCR were nsp5.F2: 5-CTTCAGTAACTCAGGTTCTGATGTTCT-3’ and
nsp5.R2: 5-ACCATTGAGTACTCTGGACTAAAACTAAA-3’. Both PCRs
were run under the same conditions: 98 °C for 30 s, 25 cycles of 98 °C
for15s, 60 °Cfor 10 s and 72 °C for 1 min, followed by 72 °C for 5 min.
PCR products were purified and sequenced (Genewiz). Mixtures of
viruses were determined by inspection of sequencing chromatograms.
Sequences were analysed using Lasergene software (DNASTAR).

For Nanopore sequencing, viral RNA was isolated from culture
supernatant with the QIAamp Viral RNA Mini Kit (Qiagen), Midnight

RT PCR Expansion and Rapid Barcoding kits (Oxford Nanopore) were
used for amplification and barcode-overlapping 1,200-base pair (bp)
amplicons weretiled across the viral genome***’, An Oxford Nanopore
GridION with R9.4.1 flow cells was used for sequencing. Basecalling
was performed in MinKNOW v.22.05.1. Consensus sequence genera-
tion was performed using the ONT Epi2Me ARTIC Nextflow pipeline
v.0.3.16 (https://github.com/epi2me-labs/wf-artic). Pangolin 4.0.6
with UShER v.1.6 was used for parsimony-based lineage assignment.
Sequences have been deposited at GenBank (nos. ON924329-0ON924335
and ON930401-ON930431) (Supplementary Table 3).

Inhibition assay with SARS-CoV-2 passaged in Vero E6 cells
Tocharacterize the inhibition of passaged viruses, each virus was first
propagated in Vero E6 cells in the absence of drug and titrated using
the Reed-Muench method*. Vero E6 cells were then seeded in 96-well
plates at a density of 1.5 x 10* cells per well in complete medium. The
following day, the virus was inoculated at a dose of 500 TCID,, per well
and atwofold dilution series of inhibitor addedin quadruplicate. Three
days post infection, the level of CPE was scored and IC,, was derived
by fitting a nonlinear regression curve to the datain GraphPad Prism
v.9.4 (Dotmatics).

Growth assay with SARS-CoV-2 passaged in Vero E6 cells
Thefitness of passaged viruses was characterized by viral growth assay.
Vero E6 cells were seeded in 96-well plates at a density of 1.5 x 10* cells
per well in complete medium. The following day, the virus was inoc-
ulated at a dose of 200 TCID,, per well in quadruplicate. At 6 h post
infection, free virions in the culture were removed by changing of the
medium twice. At 11, 24, 35 and 49 h post infection, 50 pl of culture
supernatant from each well was collected and replenished with an
equivalent volume of fresh medium. Viral RNA from each time point
was purified using a PureLink Pro 96 Viral RNA/DNA Purification Kit
(ThermoFisher), and viral copy number in each sample was then esti-
mated by quantitative PCR with reverse transcription using TaqPath
1-Step RT-qPCR Master Mix (ThermoFisher) and a2019-nCov CDC EUA
Kit (Integrated DNA Technologies) witha 7500 Fast Dx Real-Time PCR
Instrument (Applied Biosystems).

Invitro selection for SARS-CoV-2 resistance to nirmatrelvir in
Huh7-ACE2 cells

To conduct selection at scale to observe as many resistance pathways
as possible, SARS-CoV-2infection was conducted in five 96-well plates
thereby facilitating 480 independent selection lineages. We hypoth-
esized that the use of limited number of cells would allow for a ‘bottle-
neck effect’ to occur, which would enable observation of rarer events
that may be outcompeted from a larger population.

Toinitiate passaging, 3 x 10* Huh7-ACE2 cells per well were seeded
incomplete medium in five 96-well plates. The following day, all wells
wereinfected with 0.05 MOl of SARS-CoV-2-mNeonGreen (a fluorescent
reporter variant of USA-WA1/2020, gift of P.-Y. Shi)” without drug to
generate passage 0. For each successive passage, cells were seeded
the day before infection and the drug and virus then added 3-4 days
afterinfection of the previous passage. The drugwas initially added at
25nMand thendoubled every other successive passage. Viruses were
transferred between passages by overlaying 50 ul of the supernatant
from the previous passage. After 16 passages all 54 wells positive for
mNeonGreen signal were sequenced, from which 53 lineages could
bedetermined.

Inhibition assay with SARS-CoV-2 passaged in Huh7-ACE2 cells

To characterize the inhibition of passaged viruses, each of the viruses
were first propagated in Huh7-ACE2 cells in the absence of drug and
titrated using the Reed-Muench method*®. Huh7-ACE2 cells were then
seeded in 96-well plates at a density of 2 x 10* cells per well in com-
plete medium. The following day, the virus was inoculated at a dose
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of 0.05 MOl per well and a fivefold dilution series of inhibitor added in
triplicate. At 24 h post infection, supernatant was aspirated and cells
were fixed with 4% paraformaldehyde in PBS and stained with DAPI.
Cells were then imaged for DAPI and green fluorescent protein using
IN Cell 2000 (GE) and analysed with CellProfiler v.4.0.7 (ref. *°). The
IC;, level was then derived by fitting a nonlinear regression curve to
the data in GraphPad Prism v.9.4 (Dotmatics).

Sequencing of SARS-CoV-2 passaged in Huh7-ACE2 cells

For SARS-CoV-2 passagedin Huh7-ACE2 cells, passages were sequenced
by IlluminaNGS. Viral RNA was first extracted using a PureLink Pro 96
ViralRNA/DNA Purification Kit (ThermoFisher). Reverse transcription
was carried out using a Maxima H Minus First Strand cDNA Synthesis
Kit (ThermoFisher) with random hexamers according to the manufac-
turer’'sinstructions. Briefly, 13.75 pl of viral RNA was mixed with 0.25 pl
of random hexamers (50 ng pl™) and 1 pl of deoxynucleotide triphos-
phates (ANTPs) (10 mM), and incubated at 65 °C for 5 min followed
by 4 °C for 1 min. A mixture containing 4 pl of 5x RT buffer, 0.25 pl of
enzyme mix (containing Maxima H Minus RT and RNase inhibitor) and
0.75 pl of H,O was added to each sample and the reactions incubated
at25°C for 10 min, 55 °C for 30 min and 85 °C for 5 min.

Sequencing libraries were prepared by amplification of either nine
fragmentstiled acrossthe 3CL°" open reading frame and adjacent nsp4/5
and nsp5/6 cut sites, or nine fragments containing each of the remain-
ing 3CLP™ cut sites (see Supplementary Table 4 for primer sequences).
Primers amplifying nonadjacent fragments of 3CL"" were pooled and
reactions carried outintechnical duplicate, for atotal of four first-round
PCRspersample. Eachfirst-round PCR contained the following compo-
nents: 1l of cDNA, 0.25 pl of 100 pM pooled primers, 0.4 pl of 10 mM
dNTPs, 2 plof 10x Taq buffer, 0.1 pl of Tag DNA polymerase (Enzymatics)
and16.25 pl of H,0. Cycling conditions were as follows: (1) 94 °C for 3 min,
(2)94°Cfor30s, (3) 54 °Cfor20s,(4) 72°Cfor 30, (5) returnto step 2
for 34 additional cycles, (6) 72 °C for 3 min and (7) hold at 4 °C.

Products fromthe four first-round PCRs for each sample were pooled
and gel purified, and second-round indexing PCR was carried out for
eachsample with the following reagents: 1 pl of template DNA, 0.25 pl
ofeach100 pMindexing primer, 0.4 plof 10 mM dNTPs, 2 pl of 10x Taq
buffer, 0.1 pl of Tag DNA polymerase and 16.25 pl of H,0. Cycling con-
ditions were as follows: (1) 94 °C for 3 min, (2) 94 °Cfor 30, (3) 54 °C
for20s,(4)72°Cfor30s, (5) return to step 2 for sixadditional cycles,
(6) 72°Cfor3 minand (7) hold at 4 °C.

Second-round PCR products were pooled, gel purified and sequenced
onanllluminaNextSeq system with 150-bp single-end reads. For select
samples, sequences were confirmed using nanopore sequencing
(Plasmidsaurus). For samples P16-2D9, P12-1A4 and 4-3A1, the original
Illumina sequencing results were replaced by nanopore sequencing
results.

For each sample, mutations and their frequencies were identified
using the V-pipe computational pipeline (v.2.99.2)*°, with Wuhan-Hu-1
(GenBank accession no. MN908947) set as the reference sequence.
Frequency thresholds for reporting mutations were set at 5and 10%
for lllumina and nanopore sequencing, respectively. Supplementary
Table1shows the absolute frequencies of mutations within each sam-
ple. Raw sequencing data have been deposited with NCBI Short Read
Archive under BioProject Accession ID PRINA852265 (Supplementary
Table 5 gives SRA Accession IDs for each sample). These sequences
were clustered for Fig. 2c using ‘seaborn.clustermap’ under default
settings, which utilizes the UPGMA algorithm through SciPy**2. The
phylogenetic analysis shownin Fig.3awas produced in Geneious Prime
v.2022.1with PHYML extension, using the GTR substitution model with
the optimization conditions of topology/length/rate.

Pathway analysis for SARS-CoV-2 passaged in Huh7-ACE2 cells
Figure 3b was constructed from lineages containing only those muta-
tions found most commonly in passage 16: T211, T3041, A173V, E166V,

P252L,S144A and L50F. These lineages were determined based on the
frequencies of the corresponding mutations in a given well at each
passage. Pairs of mutants whose frequencies summed to greater than
100% were assumed to co-occur onthe same allele. The same logic was
extended to identify triple and quadruple mutants, such that if each
pairwise sum of frequencies within a group of mutations was greater
than 100%, all mutations within that group were assumed to occur
together. The order in which mutations in a given lineage arose was
imputed either from stepwise appearance over time (for example,
passage 4 has mutation 1and passage 8 has mutations 1and2 atatotal
combined frequency greater than100%) with increasing frequencies,
or, in casesin which two mutations arose between sequenced passages
and were deemed to co-occurinasinglevirus, by their relative frequen-
cies (forexample, if passage 4 has no mutations and passage 8 has muta-
tion 1at 99% frequency and mutation 2 at 30% frequency, mutation 1
was assumed to have arisen first). See Supplementary Table 2 for the
datapoints used in this analysis.

Recombinant SARS-CoV-2 production

Areverse genetics system based on the pBeloBAC11bacterial artificial
chromosome (BAC), containing the SARS-CoV-2 genome with aNano-
Luc luciferase reporter replacing ORF7a® (gift of L.-M. Sobrido), was
used to produce recombinant SARS-CoV-2 harbouring 3CLP™ muta-
tions. Mutant BACs were produced as previously described®; see
Supplementary Table 6 for a list of mutagenic primers used. These
BACs (2 pg each) were then transfected into HEK293T cells in 12-well
platesin triplicate using Lipofectamine 3000 Transfection Reagent
(ThermoFisher) according to the manufacturer’s instructions. Two
days post transfection, cells were pooled and overlaid onto Vero
E6-TMPRSS2-T2A-ACE2 cells in 25 cm? flasks. After 3 days, superna-
tant was collected from these cells, clarified by centrifugation then
used to infect Vero E6 cells in 75 cm? flasks. Four days post infection,
supernatant was harvested, clarified by centrifugation and aliquoted.
Viruses were stored at —80 °Cbefore use. An aliquot of all recombinant
viruses was confirmed by nanopore sequencing for the mutation of
interest, and for purity before use.

Inhibition assay with recombinant SARS-CoV-2

Viruses were first titrated to normalize input. To characterize inhibi-
tion, Huh7-ACE2 cells were seeded at a density of 2 x 10* cells per well
in96-well plates. The following day, cells were infected with 0.05 MOI
of virusand treated withinhibitorin afivefold dilution series. One day
postinfection, cells were lysed and luminescence quantified using the
Nano-Glo Luciferase Assay System (Promega), according to the manu-
facturer’sinstructions, witha SpectraMax i3x Multi-Mode Microplate
Reader (Molecular Devices) using SoftMax Prov.7.0.2 software (Molecu-
lar Devices). IC;, values were derived by fitting a nonlinear regression
curve to the datain GraphPad Prism v.9.4 (Dotmatics).

Growth assay with recombinant SARS-CoV-2

Viruses were first titrated to normalize input. To characterize fit-
ness, Huh7-ACE2 cells were seeded at a density of 2 x 10* cells per
wellin 96-well plates. The following day, cells were infected with
0.01 MOl of virus. At 12, 24, 36 and 48 h post infection, cells were
lysed and luminescence quantified using the Nano-Glo Luciferase
Assay System, according to the manufacturer’s instructions, with a
SpectraMax i3x Multi-Mode Microplate Reader using SoftMax Pro
v.7.0.2 software.

Retrieval of clinical mutation frequencies

COVID-19 CG was used to retrieve all clinically observed 3CLP™ muta-
tions from the Global Initiative on Sharing Avian Influenza Data on
26 June 2022, either since the start of the COVID-19 pandemic or for
the periods 26 March-26 June 2022 and 22 September-22 December
2021 (refs. 354,
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of mutants from passaging in Vero E6 cells have been deposited at
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The raw NGS data of passaging in Huh7-ACE2 cells are available from
the NCBI Sequence Read Archive under BioProject Accession ID
PRJNAS852265. The structures of the 3CLP"-nirmatrelvir and 3CLP™-
ensitrelvir complexes were downloaded from PDB under accession
codes 7VH8 and 7VU6, respectively. The Wuhan-Hu-1sequence used for
alignment was downloaded from GenBank (accession no. MN908947).
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com/scipy/scipy), allof which are publicly available software packages.
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Extended DataFig.1|Growth assays with SARS-CoV-2passagedin VeroE6 VeroE6 cellswereinfected with 200 TCIDs, of the indicated viruses and viral
cells. a-d, Growth was quantified for lineage A (a), lineage B (b), lineage C RNA was quantified at theindicated time points. e, The slope during the
(c),and unpassaged SARS-CoV-2 (d, denoted as WT-PO) in comparison to exponential phase (between 11and 24 h post-infection) of growth for the
SARS-CoV-2 passaged without nirmatrelvir for 30 passages (denotedasWT-P30).  indicated viruses.
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Extended DataFig. 3 | Mutations studied asisogenic recombinant
SARS-CoV-2 overlaid onto the 3CL protease structure. The Ca of each
residue that was mutated is denoted with ared sphere. The 3CLP™-nirmatrelvir
complexwas downloaded from PDB under accession code 7VH8.



ICs0 (M) £ SD Nirmatrelvir Ensitrelvir Remdesivir
WT 0.051 £0.010|0.013 + 0.005 | 0.009 + 0.003
T211 0.233 £ 0.028 | 0.021 + 0.006 | 0.005 + 0.002
L50F 0.215+0.108 | 0.034 + 0.006 | 0.007 + 0.004
S144A 0.024 +0.011|0.166 + 0.039|0.003 + 0.003
E166V 510+4.24 |0.294 £ 0.124|0.002 + 0.001
A173V 0.088 + 0.027 | 0.022 + 0.012 |0.017 £ 0.005
P252L 0.297 £ 0.073 | 0.023 + 0.009 | 0.006 + 0.003
T3041 0.278 £ 0.043 |0.019 + 0.011 | 0.006 + 0.002
T211 + S144A 0.478 £ 0.420|0.231 £ 0.148 | 0.005 £ 0.004
T211 + E166V 423+290 |0.042+0.021|0.021 £ 0.006
T211 + A173V 0.160 + 0.038 | 0.006 + 0.005|0.018 £ 0.001
T211 + T304l 0.168 + 0.030 | 0.013 + 0.004 | 0.003 £ 0.001
L50F + E166V 2.70+1.53 |0.046 £ 0.024|0.017 £ 0.000
T211 + A173V + T304/ 0.756 + 0.391 | 0.006 + 0.004 | 0.025 + 0.010

Extended DataFig. 4 |Raw IC,, values for recombinant live SARS-CoV-2 carrying single and combination 3CL?" mutations by nirmatrelvir, ensitrelvir, and
remdesivir. Mean + SD of three biologically independent experiments are shown.
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Extended DataFig. 5|Individual inhibition curves of recombinantlive fromthreebiologicallyindependent experiments are shown. Error bars denote
SARS-CoV-2 carryingsingle and combination 3CL""° mutations by meants.e.mofthreetechnical replicates.

ensitrelvir and remdesivir. Representative curves fromasingle experiment



ICs0 (UM) Nirmatrelvir Ensitrelvir Remdesivir
WT 2.128 0.178 3.840
A-P30 60.7 0.383 5.300
B-P30 61.4 0.534 5.010
C-P30 116.3 4.576 4120

Fold change in ICso

relative to WT Ensitrelvir Remdesivir

Nirmatrelvir

A-P30 -2.15 -1.38
B-P30 -3.00 -1.30
C-P30 -1.07

<10 <-100

Extended DataFig. 6 | Inhibition of passage 30 of SARS-CoV-2 passaged in Vero E6 cells by nirmatrelvir, ensitrelvir, and remdesivir. a, Raw IC;, values.
b, Fold change relative to inhibition of wild-type.



Article

Ensitrelvir

(52 I

e\ )

Extended DataFig.7|Structural analyses of 3CLP" mutations. a, Overlay
of nirmatrelvir and ensitrelvir binding to 3CLP™. b, Several of the residues
involvedindirectinteraction with nirmatrelvir. c, Several of the residues
involvedin formation of the S1subsite.d, Interaction of L167 with nirmatrelvir.
Ina-d, nirmatrelviris showninyellow, enstirelvirisshowninlime green, the

3CLP"-nirmatrelvir complexis shownin marine, and the 3CLP-ensitrelvir
complexisshowningray. Protomer Ais shownin marine and protomer Bis
showningreen. Hydrogenbonds areindicated as black dashes. The 3CL"™-
nirmatrelvir complex and 3CLP-ensitrelvir complex were downloaded from
PDBunderaccessioncodes 7VH8 and 7VU6, respectively.
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Extended DataFig. 8| Frequencies of identified 3CL"* mutations in GISAID.

a,Alloccurrences of the indicated mutations were tabulated from GISAID.
b, Alloccurrences of the indicated mutations were tabulated from GISAID in
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Data collection  SoftMax Pro 7.0.2 (Molecular Devices, LLC) was used to measure luminescence in the inhibition assays.

Data analysis DeltaGraph version 7 (Red Rock Software) and GraphPad Prism version 9.4 (Dotmatics) were used for determination of IC50 values and
statistical tests. GraphPad version 9.4 was used for data visualization. Lasergene software version 17 (DNASTAR) was used for Sanger
sequencing analysis. MinKNOW v22.05.1, ONT Epi2Me ARTIC Nextflow pipeline v0.3.16, Pangolin 4.0.6 with UShER v1.6, and V-pipe version
2.99.2 was used for next-generation sequencing analysis. seaborn v0.10.0, which utilizes SciPy, was used for clustering. Geneious Prime
v2022.1 with PHYML extension was used for phylogenetic analyses. COVID-19 CG was used for querying sequences deposited to GISAID.
CellProfiler version 4.0.7 was used for image analysis.
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All experimental data are provided in the manuscript. The sequences of mutants from passaging in Vero E6 cells have been deposited to GenBank (ON924329-
ON924335, ON930401-ON930431). The raw next-generation sequencing data of passaging in Huh7-ACE2 cells are available from the NCBI Short Read Archive under
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

>
Q
=)
e
(D
O
@)
=4
o
=
—
(D
O
@)
=
)
(@]
wv
C
=
=
)
<

Y2Iopy




Materials & experimental systems Methods

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research
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Cell line source(s) Vero E6 cells were obtained from ATCC (Catalog #CRL-1586), HEK293T cells were obtained from ATCC (Catalog #CRL-3216),
and Vero E6-TMPRSS2-T2A-ACE2 cells were obtained from BEI Resources (Catalog #NR-54970). Huh7-ACE2 cells were
generated previously (refs 33,40).

Authentication Cell lines were purchased from authenticated vendors, and morphology was also confirmed visually prior to use.
Mycoplasma contamination Cell lines tested mycoplasma negative.

Commonly misidentified lines  No commonly misidentified cell lines were used in this study.
(See ICLAC register)

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[ ] Public health

|:| National security

|:| Crops and/or livestock

|:| Ecosystems
|:| Any other significant area

XXX XX &

Experiments of concern
Does the work involve any of these experiments of concern:
Yes
Demonstrate how to render a vaccine ineffective
Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen
Alter the host range of a pathogen
Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

XXX XXX [X &
OooouoXo

Any other potentially harmful combination of experiments and agents

Precautions and benefits

Biosecurity precautions  All experiments were conducted in a Biosafety Level 3 (BSL-3) facility.

Biosecurity oversight Prior to conducting this work, the protocol was reviewed and approved by Columbia University's Institutional Biosafety Committee
(1BC).
Benefits Understanding of the mutations that confer nirmatrelvir resistance, as well as the mechanisms by which SARS-CoV-2 acquires such

resistance, is critical for clinical surveillance of nirmatrelvir resistance and for the development of future protease inhibitors.




Communication benefits Communication of these results will allow for clinical surveillance and appropriate use of nirmatrelvir, as well as provide insight into
development of the next generation of protease inhibitors. Some of these mutant viruses have already been described elsewhere.
Furthermore, as these described viruses remain susceptible to other therapeutic agents and arose naturally, we believe that
communication of our data outweigh the risks.

>
QO
L
c
)
e,
o)
=
o
=
—
@
S,
o)
=
>
Q
wv
C
3
3
QO
<




	Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir

	Nirmatrelvir resistance in Vero E6

	Nirmatrelvir resistance in Huh7-ACE2 cells

	Nirmatrelvir resistance mutations

	Discussion

	Online content

	Fig. 1 Identification of nirmatrelvir resistance in Vero E6 cells.
	﻿Fig. 2 Identification of nirmatrelvir resistance at scale in Huh7-ACE2 cells.
	﻿Fig. 3 Pathways for SARS-CoV-2 resistance to nirmatrelvir.
	﻿Fig. 4 Validation of identified mutations in isogenic recombinant SARS-CoV-2.
	Extended Data Fig. 1 Growth assays with SARS-CoV-2 passaged in Vero E6 cells.
	Extended Data Fig. 2 Mutations in the 11 3CLpro cut sites found in passage 16 from the 53 wells passaged in Huh7-ACE2 cells.
	Extended Data Fig. 3 Mutations studied as isogenic recombinant SARS-CoV-2 overlaid onto the 3CL protease structure.
	Extended Data Fig. 4 Raw IC50 values for recombinant live SARS-CoV-2 carrying single and combination 3CLpro mutations by nirmatrelvir, ensitrelvir, and remdesivir.
	Extended Data Fig. 5 Individual inhibition curves of recombinant live SARS-CoV-2 carrying single and combination 3CLpro mutations by ensitrelvir and remdesivir.
	Extended Data Fig. 6 Inhibition of passage 30 of SARS-CoV-2 passaged in Vero E6 cells by nirmatrelvir, ensitrelvir, and remdesivir.
	Extended Data Fig. 7 Structural analyses of 3CLpro mutations.
	Extended Data Fig. 8 Frequencies of identified 3CLpro mutations in GISAID.




