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Abstract

Background and Objective: Epilepsy is one of the most common neurological disorders, 

whose development is typically detected via early seizures. Electroencephalogram (EEG) is 

prevalently employed for seizure identification due to its routine and low expense collection. 

The stochastic nature of EEG makes manual seizure inspections laborsome, motivating automated 

seizure identification. The relevant literature focuses mostly on supervised machine learning. 

Despite their success, supervised methods require expert labels indicating seizure segments, which 

are difficult to obtain on clinically-acquired EEG. Thus, we aim to devise an unsupervised method 

for seizure identification on EEG.

Methods: We propose the first fully-unsupervised deep learning method for seizure identification 

on raw EEG, using a variational autoencoder (VAE). In doing so, we train the VAE on recordings 

without seizures. As training captures non-seizure activity, we identify seizures with respect to the 

reconstruction errors at inference time. Moreover, we extend the traditional VAE training loss to 

suppress EEG artifacts. Our method does not require ground-truth expert labels indicating seizure 

segments or manual feature extraction.

Results: We implement our method using the PyTorch library and execute experiments on an 

NVIDIA V100 GPU. We evaluate our method on three benchmark EEG datasets: (i) intracranial 

recordings from the University of Pennsylvania and the Mayo Clinic, (ii) scalp recordings from 

the Temple University Hospital of Philadelphia, and (iii) scalp recordings from the Massachusetts 

Institute of Technology and the Boston Children’s Hospital. To assess performance, we report 

accuracy, precision, recall, Area under the Receiver Operating Characteristics Curve (AUC), and 

p-value under the Welch t-test for distinguishing seizure vs. non-seizure EEG windows. Our 

approach can successfully distinguish seizures from non-seizure activity, with up to 0.83 AUC 
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on intracranial recordings. Moreover, our algorithm has the potential for real-time inference, by 

processing at least 10 s of EEG in a second.

Conclusion: We take the first successful steps in deep learning-based unsupervised seizure 

identification on raw EEG. Our approach has the potential of alleviating the burden on clinical 

experts regarding laborsome EEG inspections for seizures. Furthermore, aiding the identification 

of early seizures via our method could facilitate successful detection of epilepsy development and 

initiate antiepileptogenic therapies.
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1. Introduction

Epilepsy is one of the most common neurological disorders, affecting over 70 million 

people worldwide [1]. Epilepsy development is typically identified via seizures, involving 

uncontrolled jerking movements or momentary losses of awareness due to abnormal 

excessive or synchronous activities in the brain [2]. The degraded quality of life for 

patients strongly motivates seizure identification, as early seizures have been shown as 

prognostic markers for later epileptogenic development [3]. Successful identification of 

early seizures can facilitate early detection of epilepsy development, and in turn, can initiate 

antiepileptogenic intervention and therapies that can remarkably improve the quality of 

life for patients and their caregivers. To this end, electroencephalogram (EEG) recordings 

received particular attention for identifying seizure segments on EEG [3], due to their 

routine and low expense collection compared to, e.g., neuroimaging. Seizure on EEG is 

defined as generalized spike-wave discharges at three per second or faster, and clearly 

evolving discharges of any type that reach a frequency of four per second or faster [4].

Despite their volume and richness, EEG recordings are prevalently known to contain many 

artifacts other than seizure due to movement, physiological activity such as perspiration, and 

measurement hardware [5]. The stochastic nature of EEG makes seizure identification via 

manual inspections laborsome and difficult, leading to significant variability across clinical 

labels of different experts [6]. This challenge motivated the recent literature to focus on 

automated identification of epileptic seizures on EEG as a promising complement to manual 

inspection.

The literature on automated seizure identification on EEG is vast (c.f. Section 2), 

focusing mostly on well-established supervised machine learning methods. Supervised 

methods employ both spatiotemporal feature extraction followed by classification algorithms 

[7,8,9,10], as well as deep learning algorithms applied on raw time-series without 

feature extraction [11,12,13,14]. Despite their success, these methods require expert labels 

indicating EEG segments that contain seizures, which are difficult to obtain due to the 

stochastic nature of clinically-acquired EEG [6].

Unsupervised machine learning methods that do not rely on labeled data have not yet 

been widely explored. A few shallow machine learning models, including K-means 
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clustering, Hierarchical clustering, and Gaussian mixture models have been applied on 

both raw EEG [15], as well as extracted features [16,17,18]. Recently, You et al. [19] 

implemented an unsupervised deep learning method for seizure identification on EEG, 

albeit requiring manual feature extraction prior to training. They preprocess EEG to extract 

time-frequency spectrogram images and train a generative adversarial network (GAN) [20] 

on the spectrograms that do not contain seizures. As the GAN is trained with non-seizure 

activity, test spectrograms that significantly differ from the spectrograms generated by GAN 

are identified to contain seizures.

To the best of our knowledge, an unsupervised deep learning method that does not require 

manual feature extraction has not yet been studied. To this end, we make the following 

contributions:

• Our main contribution is to propose the first fully-unsupervised deep learning 

method for seizure identification on raw EEG. To this end, we train a variational 

autoencoder (VAE) [21] on EEG recordings that do not contain seizures. As 

training captures non-seizure activity, we identify seizures with respect to (w.r.t.) 

the median of reconstruction errors at inference time.

• We extend the traditional training objective of VAE with a sparsity-enforcing 

loss function to suppress EEG artifacts, motivated by similar applications in 

other domains including probabilistic background modeling [22], and anomaly 

detection in energy-time series [23].

We validate the seizure identification performance of our method on three publicly 

available benchmark EEG datasets: (i) intracranial recordings from the University of 

Pennsylvania and the Mayo Clinic, (ii) scalp recordings from the Temple University 

Hospital of Philadelphia, and (iii) scalp recordings from the Massachusetts Institute of 

Technology and the Boston Children’s Hospital. Our VAE-based unsupervised approach 

can successfully distinguish between non-seizure vs. seizure windows and consistently 

outperforms clustering. Particularly on intracranial recordings, we attain 0.83 Area under the 
Receiver Operating Characteristics Curve (AUC), outperforming state-of-the-art supervised 
methods. We further demonstrate that our algorithm has the potential of performing real-

time inference, as it can compute seizure evidence scores over at least 10 s of EEG in a 

second.

Our method establishes the first successful steps in deep learning-based unsupervised 

seizure identification, without the need for ground-truth expert labels indicating seizure 

segments or manual feature extraction prior to seizure identification. Thus, our approach is 

amenable to save time and effort for both clinical experts, as well as the scientists that devise 

automated identification methods to aid experts. Aiding the identification of early seizures 

via our method could facilitate successful and early detection of epilepsy development, and 

in turn, initiate clinical trials of antiepileptogenic therapies.

The remainder of this paper is organized as follows. Section 2 introduces the literature on 

automated seizure identification on EEG. Section 3 formalizes our VAE-based unsupervised 

method. Section 4 presents our experimental results. Section 5 discusses our results in 

Yıldız et al. Page 3

Comput Methods Programs Biomed. Author manuscript; available in PMC 2023 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



relation to the recent literature. We make concluding remarks and present future directions in 

Section 6.

2. Related work

The literature on automated seizure identification on EEG is vast, we refer the reader to the 

review by Boonyakitanont et al. [24] for more details. A significant body of works focus 

on extracting spatiotemporal features on EEG via, e.g., wavelet transform [7,25,26], Fourier 

transform [8,9], power spectra [10], and reconstructed phase space images [27]. Extracted 

features are used to train supervised machine learning algorithms to identify whether a given 

EEG segment contains a seizure or not. These algorithms employ both shallow models, 

including support vector machines, decision trees, and nearest neighbour methods, as well as 

deep learning models, including convolutional neural networks (CNN).

Deep learning-based supervised seizure identification methods lately dominated the 

literature [28,29], reducing the need for manual feature extraction. Deep models further 

improved in combination with long-short term memory (LSTM) networks to aid time-

series modeling [11], adversarial training to generalize identification across patients [14], 

autoencoder-based feature extraction [30], attention mechanisms [13], and transformer 

architectures that improve predictions and interpretability [31,12,32]. In Section 5, we 

expand upon the state-of-the-art supervised methods applied on the same datasets we 

employ and compare our approach with them.

All in all, the literature on automated seizure identification often focused on supervised 

machine learning, with well-established methods over several benchmark EEG datasets. 

Despite their success, these methods require expert labels indicating EEG segments that 

contain seizures, which are difficult to obtain due to the stochastic nature of EEG 

[6]. Meanwhile, few methods employed unsupervised learning via K-means clustering, 

Hierarchical clustering, and Gaussian mixture models, on both raw EEG [15], as well as 

extracted features [16,17]. Charupanit et al. [18] applied hierarchical clustering on High 

Frequency Oscillations (HFOs), which correlate with epilepsy development and have been 

found to be prone to false detections. Overall, unsupervised seizure identification methods 

that do not rely on labeled data have not yet been widely explored compared to supervised 

learning, except for a few shallow machine learning models.

Recently, You et al. [19] implemented an unsupervised deep learning method for seizure 

identification on EEG, albeit requiring manual feature extraction prior to training. They 

preprocess EEG to extract spectrogram images and trains a GAN on the spectrograms 

that do not contain seizures. For each spectrogram at testing time, they have to search 

for the latent GAN input that leads to the smallest loss value, and use the corresponding 

generated spectrogram for seizure identification. As the GAN is trained with non-seizure 

activity, test spectrograms that significantly differ from the spectrograms generated by 

GAN are successfully identified to contain seizures. We differ from You et al. [19] by 

applying a fully-unsupervised VAE on raw EEG. Our seizure identification metric is based 

on reconstruction errors made by the VAE, which is trained on non-seizure activity and 

does not require a sophisticated minimax optimization such as GAN training. Moreover, 
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we implement the method by You et al. [19] (c.f. Section 4.4) on publicly available EEG 

datasets and observe that the training objective diverges.

3. Problem formulation

We consider a dataset of N EEG recordings, each collected from M electrode channels and 

consisting of T time points. Formally, we denote each EEG recording by X(i) ∈ ℝM × T , 

for i ∈ [1, …, N]. Our aim is to design an unsupervised method that does not rely on ground-

truth expert labels during learning and can identify the existence of seizures in a given 

EEG recording. To this end, we employ a variational autoencoder (VAE) neural network 

architecture [21], trained with a sparsity-enforcing loss function to suppress EEG artifacts 

(c.f. Section 3.2). Our main contribution is to propose the first fully-unsupervised deep 

learning method that can identify seizures on raw EEG. Note that our method naturally 

generalizes to EEG recordings comprising different number of time points and channels; we 

refer the reader to our preprocessing setup in Section 4.2.

3.1. Variational autoencoder

A VAE extracts low-dimensional stochastic latent features z ∈ ℝD that govern the generation 

of all samples in a given dataset [21]. Latent features are sampled from a Gaussian 

distribution with diagonal covariance, in which standard deviation varies by each of the 

D dimensions. A VAE contains an encoder network gϕ:ℝM × T ℝ2 × D and a decoder 

network pθ:ℝD ℝM × T , with trainable parameters ϕ ∈ ℝdg and θ ∈ ℝdp, respectively. 

The encoder receives a sample X(i) ∈ ℝM × T  and predicts the mean μ ∈ ℝD and standard 

deviation σ ∈ ℝ+
D of the Gaussian distribution generating latent features. The decoder 

samples a latent feature z ∈ ℝD from the predicted Gaussian distribution N(μ, diag(σ)), with 

diag denoting diagonalization, and reconstructs a data sample X(i) ∈ ℝM × T . Traditional 

VAE training aims for input and reconstructed samples to have the same probability 

distribution generated from the latent features. Particularly, given an input X(i), a traditional 

VAE is trained by minimizing the following objective w.r.t. ϕ ∈ ℝdg, θ ∈ ℝdp:

1
2 ∑

j = 1

D
σj2 + μj2 − logσj2 − 1 − 1

L ∑
l = 1

L
logpθ X(i) ∣ z(l) , (1)

in which l ∈ [1, …, L] is the index of each latent feature z(l) sampled from N(μ, diag(σ)).

The second term in Eq. (1) performs maximum-likelihood estimation of parameters θ under 

the generative model pθ(X ∣ z), while the first term enforces the encoder distribution gϕ
to be similar to the prior distribution N(μ, diag(σ)) of the latent features. As sampling is 

not a continuous operation within the training process, Kingma and Welling [21] employ 

the reparametrization trick: They first sample an auxiliary variable ϵ(l) from the standard 

Gaussian N(0, I), and reparametrize ϵ(l) to obtain z(l) = μ + σ ⊗ ϵ(l), where represents 

elementwise product.
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3.2. Sparsity-enforcing loss function

As also discussed in Section 1, EEG recordings are prevalently known to contain many 

artifacts other than seizures due to movement, physiological activity such as perspiration, 

and measurement hardware [5]. To this end, we assume that VAE reconstructions introduce 

additive error w.r.t. inputs, where these errors follow a Laplace distribution with identity 

covariance. It is well-known that maximum likelihood estimation in this setting is equivalent 

to minimizing the ℓ1-norm of the difference between input and reconstructed recordings 

[33], which is a standard technique for outlier and artifact suppression [34]. Motivated by 

this observation, we replace the second term of the traditional VAE loss function (1) by the 

ℓ1-norm of the reconstruction error. The resulting training objective of our VAE architecture 

is:

1
2 ∑

j = 1

D
σj2 + μj2 − logσj2 − 1 − 1

L ∑
l = 1

L
X(i, l) − X(i)

1, (2)

where X(i, l) is the reconstruction from the latent feature sample z(l) for each l ∈ [1, …, L]. 
Note that VAE training with sparse reconstruction errors has been motivated and employed 

in other domains, including probabilistic background modeling [22], and anomaly detection 

in energy-time series [23].

3.3. Seizure identification

We aim to employ the trained VAE to distinguish between EEG recordings that contain 

seizures and those which do not. Thus, we train our VAE architecture on recordings that 

do not contain seizures, using the sparsity-enforcing loss function (2) to suppress EEG 

artifacts. This allows for the learned latent features to capture non-seizure activity rather 

than seizures [19]. In real-life applications, EEG data with no seizure activity can be easily 

augmented with recordings from healthy individuals, which are much more commonly 

accessible compared to patients experiencing seizures.

At inference time, each reconstruction from the trained VAE is compared with the 

corresponding input recording. As training captures non-seizure activity, recordings with no 

seizures are expected to be reconstructed with low error. Meanwhile, a larger reconstruction 

error w.r.t. the input recording indicates evidence for a seizure. Our overall unsupervised 

identification algorithm is summarized in Algorithm 1. We explain our exact metric for 

seizure identification in Section 4.5.

4. Experiments

4.1. Datasets

We evaluate our method on three publicly available benchmark EEG datasets collected at: (i) 

the University of Pennsylvania and the Mayo Clinic [35], (ii) the Temple University Hospital 

of Philadelphia (TUH) [36], and (iii) the Massachusetts Institute of Technology (MIT) and 

the Boston Children’s Hospital [37].
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The UPenn dataset contains 1 s long EEG recordings of 8 patients, acquired intracranially 

at 500 − 5000 Hz from a maximum of M = 72 channels. 1307 recordings correspond 

to consistent seizures. The total duration of non-seizure recordings is 7164 s and seizure 

recordings is 653 s.

The TUH dataset contains continuous EEG recordings of 10,874 patients, acquired on the 

scalp with 250 Hz sampling rate from a maximum of M = 38 channels. 1229 seizure 

recordings were labeled w.r.t. their start and end times. The total duration of non-seizure 

recordings is 49,922 s and seizure recordings is 2600 s.

The MIT dataset contains continuous EEG recordings of 24 patients, acquired on scalp with 

256 Hz sampling rate from a maximum of M = 38 channels. 198 seizure recordings were 

labeled w.r.t. their start and end times. The total duration of non-seizure recordings is 40,800 

s and seizure recordings is 2889 s.

4.2. Preprocessing

EEG recordings are typically preprocessed before the application of any analysis [19] to 

eliminate the powerline noise at 60 Hz. We first unify the sampling rates in each dataset 

by downsampling to the smallest sampling rate across all recordings. Then, we filter the 

recordings via a 4th order Butterworth bandpass filter with frequency range 0.5–50 Hz.

Algorithm 1

Our unsupervised seizure identification algorithm. We employ a variational autoencoder 

architecture comprising an encoder network gϕ:ℝM × T ℝ2 × D and a decoder network 

pθ:ℝD ℝM × T , with trainable parameters ϕ ∈ ℝdg and θ ∈ ℝdp, respectively. We train 

our architecture on EEG recordings that do not contain any seizures, employing a sparsity-

enforcing loss function to suppress EEG artifacts (c.f. Section (3)). As training captures 

non-seizure activity, we identify seizures w.r.t. the reconstruction errors at inference time.

1: procedure TRAINING (X(i) ∈ ℝM × T  for i ∈ non-seizure training recordings, gϕ, pθ)

2:  Initialize trainable parameters ϕ and θ
3:  repeat

4:   Sample recording X(i) from non-seizure training recordings

5:   Sample auxiliary variables ϵ(l) ∼ N(0, I), l ∈ 1, …, L
6:   Reparametrize to obtain latent features z(l) = μ + σ ⊗ ϵ(l), l ∈ 1, …, L
7:   Compute sparsity-enforcing loss (2) and its gradients w.r.t. ∼ ϕ and θ
8:   Update trainable parameters ϕ and θ via Adam optimization

9:  until Loss value (2) converged

10: return Trained gϕ, Trained pθ
11: end procedure

1: procedure INFERENCE (X(i) ∈ ℝM × T  for i ∈ test recordings, Trained gϕ, Trained pθ)

2:  repeat
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3:   Sample recording X(i) from test recordings

4:   Sample auxiliary variables ϵ(l) ∼ N(0, I), l ∈ 1, …, L
5:   Reparametrize to obtain latent features z(l) = μ + σ ⊗ ϵ(l), l ∈ 1, …, L
6:

  Compute X(i, l)
 for each z(l)

7:
  Compute decoder reconstruction X(i)

 by averaging X(i, l)
 over l ∈ 1, …, L

8:
  Compute seizure evidence score (3) w.r.t.~the reconstruction error between X(i) and X(i)

9:  until All recordings are tested

10: return Seizure evidence scores for all test recordings

11: end procedure

To attain samples with the same length, we extract sliding windows over each recording, 

where each window contains T time points and overlaps with its consecutive window by 

50%. We choose T based on the shortest seizure segment in each dataset, so as not to omit 

even the shortest seizures. In doing so, T = 500 for UPenn, T = 462 for TUH, and T = 

1536 for MIT. This process results in 14,329 windows with non-seizure activity and 1307 

windows with seizure activity for UPenn, 54,264 windows with non-seizure activity and 

2826 windows with seizure activity for TUH, and 13,600 windows with non-seizure activity 

and 963 windows with seizure activity for MIT. In real-life applications, a typical minimum 

seizure window length can be declared by clinical experts, as in UPenn that directly provides 

1 second-long seizure recordings. The input window length of the VAE architecture would 

be accordingly updated, without a technical change in our approach.

Moreover, we aim to consistently attain M × T size windows, while not disregarding any 

channels with potential seizure activity. Thus, to attain samples with the same number of 

M channels, we reuse data from other channels for the recordings that have missing data 

at certain channels, compared to the recording with the largest number of channels in each 

dataset. Again, in real-life applications, clinical experts can determine which and how many 

channels to employ or discard for seizure identification.

Finally, we apply min-max normalization on all windows to aid the convergence of gradient-

based training [38]. As a result, each preprocessed dataset contains windows of the form 

X(i) ∈ [0, 1]M × T , i ∈ [1, …, N].

4.3. Network architecture and training

Convolutional neural networks have been successfully applied on raw multivariate time-

series data alternative to, e.g., recurrent neural networks, in many domains including seizure 

identification on EEG [14]. Motivated by this, we employ convolutional encoder and 

decoder networks depicted in Fig. 1. We initialize all weights via Xavier initialization [39] 

and all biases as 0.01. For regularization, we apply dropout with probability 0.3 [40]. We 

train our VAE architecture on non-seizure windows via the sparsity-enforcing loss function 

(2) using Adam optimization [41] for 200 epochs, where L = 5. To further emphasize the 

reconstruction quality of VAE [22], we multiply the first term in Eq. (2) by 0.8. We repeat 
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our experiments for D varying in { 16, 64, 256 } and learning rate varying in {1e−2, 1e−3, 

1e−4}, and report the results corresponding to the best seizure identification AUC.

4.4. Competing methods

Following the literature on unsupervised seizure identification methods [15], we implement 

two clustering algorithms as competing methods on raw EEG. We first reduce the dimension 

of all EEG windows in the test set to 3 using the t-Distributed Stochastic Neighbor 

Embedding (t-SNE) [42] algorithm. Then, we apply K-means clustering and hierarchical 

clustering [43] on the resulting windows with two clusters indicating non-seizure and 

seizure.

We further implement the unsupervised deep learning method by You et al. [19]. Following 

EEG window extraction described in Section 4.2, we construct a two-sided power spectral 

density spectrogram for each channel in each window via short-time Fourier transform. Each 

spectrogram is augmented with the mean of the two sides, resulting in three spectrograms 

for each channel in each window. Resulting spectograms are scaled to the range [−1, 

1] via min-max normalization. We employ a discriminator with 4 convolutional layers, 

each followed by batch normalization and leaky relu activation, except for the final layer 

with sigmoid activation. Moreover, we employ a generator with 4 convolutional transpose 

layers, each followed by batch normalization and leaky relu activation, except for the 

final layer with tanh activation. We train the discriminator and the generator in alternating 

turns via cross-entropy loss [20] on the spectograms extracted from non-seizure windows, 

using Adam optimization with learning rate of 0.0 0 02. Unfortunately, the generator loss 

consistently diverges and the GAN cannot be properly trained on our datasets. Note that 

GAN training is commonly difficult to stabilize and converge due to minimax optimization 

[44], as also reported by You et al. [19].

4.5. Experiment setup

We employ 5-fold cross-validation to partition the non-seizure windows into train and test 

sets, where each fold contains 80% of all non-seizure windows for training. The remaining 

20% of non-seizure windows, along with all seizure windows are used for testing. For each 

test window i, we compute the reconstruction X(i) by averaging X(i, l) over l ∈ 1, …, L .

To evaluate the seizure identification performance of the trained VAE, we use the pointwise 

absolute error between each input window and the corresponding reconstruction. As training 

does not involve seizures, non-seizure windows are expected to have much lower absolute 

error compared to seizure windows. We employ the median reconstruction error over 

the time points in each EEG window, due to its success as a performance metric in 

anomalous activity identification [45]; we also observe in our experiments that the resulting 

identification performance is higher than, e.g., using mean error. Finally, the seizure 

evidence score for each window i is calculated as the maximum of the median absolute 

error over electrode channels:

maxm ∈ [1, M] mediant ∈ [1, T ] Xm, t
(i) − Xm, t

(i) , (3)

Yıldız et al. Page 9

Comput Methods Programs Biomed. Author manuscript; available in PMC 2023 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where subscript m, t represents the value at channel m and time point t.

We compute AUC and p-value under the independent two sample Welch t-test [46] for 

distinguishing seizure vs. non-seizure windows w.r.t. the evidence score (3). To further 

compute binary decision metrics, we threshold the score at the value for which the geometric 

mean of recall and true negative rate is maximum [47]. Using the respective threshold, we 

calculate accuracy, precision, and recall for binary identification of seizure vs. non-seizure 

windows. We report all prediction performance metrics as averaged over the test folds, along 

with the corresponding standard deviations. In real-life applications, decision thresholds 

may be determined by clinical experts with respect to the desired trade-off between false 

positives and negatives.

4.6. Execution environment and scalability

All experiments are implemented using the Python 3.6 programming language and the 

PyTorch library. Training and evaluations are executed on an NVIDIA V100 GPU with 

32 GB memory. Our code will be made publicly available as a Github repository upon 

publication.

Each training epoch over UPenn, TUH, and MIT training sets takes 0.9, 1.7, and 9.4 

min, respectively, proportionally and modestly scaling with respect to their relative training 

set sizes and window dimensions. Having trained our VAE architecture over non-seizure 

windows, inference stage of our algorithm (c.f. Algorithm 1) takes at most 0.1 s to process 

a 1 second-long EEG window over the test sets of all datasets. This implies that our method 

has the potential of performing real-time inference, by determining seizure evidence scores 

over at least 10 s of EEG in a second.

4.7. Seizure identification performance

Table 1 shows the average seizure identification performance metrics of our method vs. 

t-SNE followed by K-means and hierarchical clustering, along with the corresponding 

standard deviations. Fig. 2 visualizes the corresponding distributions of the performance 

metrics of our method over the 5 test folds.

Our VAE-based unsupervised identification method can successfully distinguish between 

non-seizure vs. seizure windows, with up to 0.83 AUC on UPenn. Clustering on raw 

EEG windows cannot capture the complex evolution of EEG and identifies all windows 

as non-seizure; this is indicated by the fact that the statistical difference between seizure 

evidence score distributions over non-seizure vs. seizure windows attains a p-value of 1.0. 

As the distribution of non-seizure vs. seizure windows is severely imbalanced, identifying 

all windows as non-seizure may lead to well above 0.5 accuracy. This is precisely why we 

also report AUC, which does not require a binary identification threshold. Our method 

consistently and significantly outperforms clustering over all datasets and performance 

metrics, further motivating our more sophisticated VAE-based identification method.

Note that the performance difference on MIT and TUH vs. UPenn stems from 

their acquisition differences; MIT and TUH being collected on scalp compared to 
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UPenn collected intracranially degrades identification performance due to having limited 

spatiotemporal resolution and more artifacts [48].

4.8. Seizure identification examples

We visualize example EEG windows and corresponding seizure identifications from UPenn 

in Fig. 3. We make positive and negative identification decisions using the evidence score 

threshold described in Section 4.5. Agreeing with the clinical descriptions of seizure, true 

seizure-positive windows in Fig. 3a contain high-frequency spikes and waves evolving with 

large amplitude [2]. Meanwhile, true non-seizure windows in Fig. 3b attain significantly 

less amplitude changes and spikes compared to true positive windows. Rarer spikes as in 

Patient 2 seizure window from Fig. 3c may be neglected due to employing median absolute 

error (3). As spikes may indicate both seizure-related behaviour, as well as artifacts such as 

loose electrode placement or bad conductivity [5], this design choice establishes a trade-off 

between artifact suppression and successful seizure identification.

Note that the seizure patterns cannot be successfully identified w.r.t. only large amplitude or 

high frequency, motivating a more complex approach such as ours. For instance, the bottom 

right seizure window in Fig. 3c have the same amplitude range as the non-seizure windows 

in Fig. 3a, while the seizure windows on the right in Fig. 3d have subtle and similar spikes 

with lower frequency such as the non-seizure windows in Fig. 3b and 3d.

4.9. Latent features

To illustrate the discriminative features learned by our VAE architecture on UPenn, we 

apply t-SNE on the latent mean vectors predicted from all windows and project them 

onto 3-dimensional space. Fig. 4 shows the resulting latent means w.r.t. each pair of the 

3 dimensions for seizure (red) vs. non-seizure (blue). Agreeing with the performance on 

UPenn in Table 1, the latent features captured by our method can distinguish between 

non-seizure vs. seizure windows.

5. Discussion

Following the literature on unsupervised seizure identification methods [15], we presented 

two clustering algorithms applied on raw EEG and illustrated that our VAE-based 

unsupervised identification method significantly outperforms both. As virtually all recent 

methods on seizure identification are supervised, we also discuss supervised methods in this 

section and compare them with our approach. Table 2 summarizes the experimental results 

of the state-of-the-art supervised methods applied on our datasets.

To begin with intracranial recordings, Sun et al. [30] and Zhu and Shoaran [10] employ 

the UPenn dataset for supervised seizure identification. Sun et al. [30] extract features 

from raw EEG using forecasting via an echo state network, which is an extension of 

recurrent neural networks. Resulting features are used for seizure identification via a support 

vector machine (SVM), which attains 0.81 AUC over 2 patients. Zhu and Shoaran [10] 

extract power spectrum features, which are transformed to remove patient-specific content 

by unsupervised adversarial learning across patients. Patient-independent features are used 

for cross-patient seizure identification via a decision-tree, which attains 0.71 AUC. Our 
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VAE-based unsupervised identification method outperforms both Sun et al. [30] and Zhu and 

Shoaran [10], by attaining 0.83 AUC and 0.79 Accuracy on UPenn. In doing so, our method 

does not require ground-truth seizure labels for training and manual feature extraction prior 

to seizure identification.

Focusing on scalp recordings, Zhang et al. [14] and Li et al. [13] employ the TUH dataset 

for supervised seizure identification. Zhang et al. [14] extract patient-independent features 

on raw EEG via adversarial learning across patients, paired with an attention mechanism 

to weigh importance over channels. Extracted features are used to train a CNN architecture 

for seizure identification, which attains 0.8 Accuracy over 14 patients. Li et al. [13] employ 

another attention-infused classification architecture called Squeeze and-Excitation Network 

on raw EEG, which weighs importance over channels and across time. The resulting 

architecture attains 0.92 Accuracy for seizure identification. Having noted the success of 

these deep learning approaches and attention mechanism on raw EEG, Zhang et al. [14] 

and Li et al. [13] discard a considerable number of short seizures that do not occur at 

many channels. Zhang et al. [14] discard recordings in which seizures occur on less than 12 

channels or seizures last less than 250 s. Meanwhile, the shortest seizure duration in TUH 

is 1.84 s and there are recordings in which seizures occur on only one or a few channels 

[49]. Li et al. [13] discard seizure events that last less than 4 s and consider only 20 common 

channels across all recordings, although we find that recordings contain up to 38 channels. 

Despite the more limited dataset considered, our VAE-based identification method attains 

similar accuracy to Zhang et al. [14], while not requiring any label supervision in training.

Last but not least, Mehla et al. [8] and Chakrabarti et al. [11] employ the scalp dataset 

from MIT for supervised seizure identification. Mehla et al. [8] extract features from 

raw EEG using vector norms computed from Fourier intrinsic band functions. Extracted 

features are used by an SVM classifier for seizure identification that attains 0.99 Accuracy. 

Chakrabarti et al. [11] apply a channel-independent LSTM classifier on raw EEG and also 

attains 0.99 Accuracy. Having noted the success of these deep learning approaches with 

and without manual feature extraction, Mehla et al. [8] and Chakrabarti et al. [11] balance 

the distribution of non-seizure and seizure windows prior to data partitioning and algorithm 

development. This process not only aids predictions by removing overfitting due to severe 

class imbalance [50], but also hinders applicability in real-life where the distribution of 

non-seizure vs. seizure windows is unknown.

All in all, our novel unsupervised approach attains state-of-the art seizure identification 

performance on intracranial recordings. We also recognize that the performance of our 

method over scalp recordings, particularly MIT, is not as high as the well-established 

supervised methods applied on the same datasets. That said, our method requires no 
ground-truth labels and manual feature extraction for training, saving time and effort for 

both clinical experts, as well as the scientists that devise automated identification methods 

to aid experts. In doing so, our method naturally benefits from no expert supervision, 

unlike supervised learning. Moreover, our approach does not disregard any channels or 

windows based on seizure length or class distribution, making it less restrictive for real-life 

applications.
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6. Conclusions and future work

We propose the first fully-unsupervised deep learning method for seizure identification on 

raw EEG, employing a VAE architecture. Our method captures the non-seizure activity 

without ground-truth seizure labels and manual feature extraction for training, saving 

time and effort for both clinical experts, as well as the scientists that devise automated 

identification methods to aid experts. Following training, we identify seizure activity based 

on the reconstruction errors of VAE. Our method can successfully distinguish between 

non-seizure vs. seizure windows and consistently outperforms clustering. Particularly on 

intracranial recordings, we attain 0.83 AUC, outperforming state-of-the-art supervised 
methods. Moreover, our approach has the potential of performing real-time inference, as 

it can compute seizure evidence scores over at least 10 s of EEG in a second.

Aiding the identification of seizures via our method could facilitate early and successful 

detection of epilepsy development, as early seizures can be prognostic markers for later 

epileptogenic development [3]; this could in turn initiate successful clinical trials of 

antiepileptogenic therapies. Moreover, our method is designed not only to differentiate 

non-seizure vs. seizure windows, but more generally to differentiate anomalous activities 

on EEG. For example, when trained on EEG collected from healthy patients, our method 

can be applied to identify other epileptic activities such as periodic discharges. Overall, 

our unsupervised approach is not limited to seizure identification, and can thus, be easily 

generalized to other applications involving anomalous activity detection on multivariate 

time-series data such as EEG.

Further improvements on training and architecture designs are amenable to improve 

the identification performance, particularly over scalp recordings. For instance, finding 

a more sophisticated encoder-decoder architecture via neural architecture search, and a 

training procedure via, e.g., learning rate scheduling, are likely to aid performance [50]. 

Meanwhile, these design choices are beyond our main contribution in establishing the first 

fully-unsupervised deep learning method for seizure identification on raw EEG, and require 

a more extensive search for training and model optimization. Thus, we present our method 

as a novel proof-of-concept and leave potential experimental improvements as future work.

Beyond identification, unsupervised longitudinal prediction of seizures [51] also remains an 

open direction that would also aid identification performance, as our current approach does 

not capture the time stamps of EEG windows. Given the EEG history of a patient, extending 

our method to predict when the patient will experience seizures via, e.g., incorporating 

recurrent units to capture the evolution of latent features, is a promising future work.
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Fig. 1. 
Our Variational Autoencoder architecture. The encoder contains convolutional (conv.), 

batch-normalization (batch norm.), and fully-connected (FC) layers for latent feature 

extraction, while the decoder contains convolutional transpose (deconv.) and FC layers for 

upsampling and reconstruction [50]. Conv. and deconv. layers apply 4 × 4 convolutional 

filters, with the number of filter channels written next to the filter size. FC layers are 

described via their output dimension. For each layer, the activation function is written in the 

end of the corresponding description.
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Fig. 2. 
Distributions of the seizure identification performance metrics of our VAE-based 

unsupervised method. For each metric, the line inside each box indicates the median, upper 

and lower limits of each box indicate the upper and lower quartiles, and upper and lower 

limits of each vertical line indicate the maximum and minimums attained over the 5 test 

folds.
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Fig. 3. 
Example EEG windows and corresponding seizure identifications on UPenn.
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Fig. 4. 
Latent means predicted from seizure (red) vs. non-seizure (blue) windows on UPenn w.r.t. 

each pair of 3 dimensions. Dimension is reduced from D = 64 to 3 using the t-SNE 

algorithm.
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