Table 2.
Experimental results of the state-of-the-art supervised seizure identification methods applied on the same datasets we employ.
| Dataset | Study | Methodology | Seizure Identification Performance |
|---|---|---|---|
| UPenn | Sun et al. [30] | Echo State Network → SVM | 0.81 AUC |
| Zhu and Shoaran [10] | Power spectra → Patient-independent adversarial learning | 0.71 Accuracy | |
| TUH | Zhang et al. [14] | Patient-independent adversarial feature extraction → CNN | 0.8 Accuracy |
| Li et al. [13] | Spectral-temporal Squeeze and-Excitation Network | 0.92 Accuracy | |
| MIT | Mehla et al. [8] | Fourier function norms → SVM | 0.99 Accuracy |
| Chakrabarti et al. [11] | Channel-independent LSTM | 0.99 Accuracy |