TABLE 2.
Skin lesion segmentation performance of our SL-HarDNet and several popular segmentation methods on the ISIC-2016&PH2 test set and ISIC2018 dataset.
Datasets | Methods | DIC | JAC | ACC | SEN | SPE |
---|---|---|---|---|---|---|
ISIC-2016&PH2 | FCN | 0.889 | 0.811 | 0.932 | 0.967 | 0.922 |
U-Net++ | 0.910 | 0.844 | 0.937 | 0.925 | 0.960 | |
CA-Net | 0.894 | 0.819 | 0.936 | 0.938 | 0.947 | |
TransFuse | 0.914 | 0.850 | 0.945 | 0.972 | 0.919 | |
TransUNet | 0.917 | 0.853 | 0.942 | 0.968 | 0.915 | |
SL-HarDNet (Ours) | 0.927 | 0.871 | 0.953 | 0.975 | 0.926 | |
ISIC-2018 | U-Net | 0.848 | 0.769 | 0.945 | 0.881 | 0.964 |
DeepLabv3 | 0.894 | 0.825 | 0.962 | 0.910 | 0.967 | |
CE-Net | 0.906 | 0.839 | 0.969 | 0.916 | 0.976 | |
UCTransNet | 0.910 | 0.849 | 0.971 | 0.920 | 0.976 | |
BAT | 0.911 | 0.848 | 0.971 | 0.925 | 0.974 | |
SL-HarDNet (Ours) | 0.915 | 0.853 | 0.972 | 0.926 | 0.980 |
The bold value is to emphasize that this value is optimal.