Skip to main content
. 2023 Jan 5;10:1028690. doi: 10.3389/fbioe.2022.1028690

TABLE 2.

Skin lesion segmentation performance of our SL-HarDNet and several popular segmentation methods on the ISIC-2016&PH2 test set and ISIC2018 dataset.

Datasets Methods DIC JAC ACC SEN SPE
ISIC-2016&PH2 FCN 0.889 0.811 0.932 0.967 0.922
U-Net++ 0.910 0.844 0.937 0.925 0.960
CA-Net 0.894 0.819 0.936 0.938 0.947
TransFuse 0.914 0.850 0.945 0.972 0.919
TransUNet 0.917 0.853 0.942 0.968 0.915
SL-HarDNet (Ours) 0.927 0.871 0.953 0.975 0.926
ISIC-2018 U-Net 0.848 0.769 0.945 0.881 0.964
DeepLabv3 0.894 0.825 0.962 0.910 0.967
CE-Net 0.906 0.839 0.969 0.916 0.976
UCTransNet 0.910 0.849 0.971 0.920 0.976
BAT 0.911 0.848 0.971 0.925 0.974
SL-HarDNet (Ours) 0.915 0.853 0.972 0.926 0.980

The bold value is to emphasize that this value is optimal.