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Learning the protein language of proteome-wide
protein-protein binding sites via explainable
ensemble deep learning
Zilong Hou1,4, Yuning Yang2,4, Zhiqiang Ma2, Ka-chun Wong 3 & Xiangtao Li 1✉

Protein-protein interactions (PPIs) govern cellular pathways and processes, by significantly

influencing the functional expression of proteins. Therefore, accurate identification of

protein-protein interaction binding sites has become a key step in the functional analysis of

proteins. However, since most computational methods are designed based on biological

features, there are no available protein language models to directly encode amino acid

sequences into distributed vector representations to model their characteristics for protein-

protein binding events. Moreover, the number of experimentally detected protein interaction

sites is much smaller than that of protein-protein interactions or protein sites in protein

complexes, resulting in unbalanced data sets that leave room for improvement in their

performance. To address these problems, we develop an ensemble deep learning model

(EDLM)-based protein-protein interaction (PPI) site identification method (EDLMPPI).

Evaluation results show that EDLMPPI outperforms state-of-the-art techniques including

several PPI site prediction models on three widely-used benchmark datasets including

Dset_448, Dset_72, and Dset_164, which demonstrated that EDLMPPI is superior to

those PPI site prediction models by nearly 10% in terms of average precision. In addition,

the biological and interpretable analyses provide new insights into protein binding site

identification and characterization mechanisms from different perspectives. The EDLMPPI

webserver is available at http://www.edlmppi.top:5002/.
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Protein–protein interactions (PPIs) have an essential role in
all the major cellular processes which assist in elucidating
protein function, but also for interpreting most of the

biology of the cells. In particular, key proteins in these protein
interactions may provide the basis for the development of tar-
geted therapeutic drugs in the related diseases, also informing on
the underlying molecular basis of diseases1. While there are
numerous databases such as BioLip2 and PDB3 available for
querying protein–protein interaction sites, they appear over-
whelming due to the increasing number of proteins now known
to humans4. Similarly, biological experiments for the detection of
binding sites, such as two-hybrid analysis and affinity systems, are
very time-consuming and expensive5. To bridge this gap, many
computational methods have been developed to address protein
interactions and associated sites. In recent years, many deep
learning-based protein interaction site identification models have
been proposed by incorporating the powerful feature extraction
capabilities of deep learning, resulting in a qualitative leap in
prediction performance compared to traditional machine learn-
ing. For example, Zeng et al.6 used TextCNN as a feature
extractor to learn features using convolutional kernels of different
sizes, which can improve the prediction performance. Xie et al.7

adopted a simple CNN to learn local features between residues.
Yang et al.8 presented a deep neural network with local weight
sharing to predict amino acid interaction sites. Sun et al.9

developed a deep learning architecture based on residual neural
networks for predicting interacting amino acids in transmem-
brane proteins. Zhang et al.10 used a simplified LSTM to predict
PPI, aiming to learn the contextual information of the features
using LSTM’s ability to grasp the global context. Li et al.11 inte-
grated local contextual information and long-range dependencies
by incorporating CNN and RNN, which improves the model’s
performance. Unfortunately, most of these computational meth-
ods are very unstable and poorly generalized, especially for these
highly unbalanced benchmark datasets, implying some room for
improvement.

On the other hand, a plethora of protein sequence encoding
methods has been proposed for modeling protein sequences into

a feature matrix. One-hot encoding of protein interaction sites is
a very efficient method that has been used in many computational
approaches10,12. However, they cannot accurately express func-
tional differences between amino acids. Position-specific scoring
matrix (PSSM) is frequently employed for sequence-level and
residue-level prediction tasks to characterize the relationship
between sequences and functions4,6,10,11,13, which is relatively
time-consuming due to the fact that PSSM requires sequence
alignment of large databases. Recently, the development of word
embedding models in natural language processing has provided
the possibility of addressing protein-coding. Some word embed-
ding models such as Word2Vec14, Doc2Vec15, fastText16, and
GloVe17 have been widely adopted in the field of bioinformatics;
for instance, Zeng et al.6 encoded amino acids using a static word
embedding model based on ProtVec18, which improves the
accuracy of PPIs prediction. The iCircRBP-DHN proposed by
Yang et al.19 advances the identification accuracy of circRNA-
RBP interaction sites by Doc2Vec15. Min et al.20 carried out
chromatin accessibility prediction by using GloVe17 as an
embedding method for gene sequences. Hamid21 used
Word2Vec22 to represent protein sequences for differentiating
bacteriocins. Unfortunately, such static word vector embeddings
do not capture well the association between sequences and
structures and neglect the potential connections between
sequence contexts. To address these limitations, dynamic word
embeddings, as represented by the Bidirectional Encoder Repre-
sentations from Transformers (BERT) model have demonstrated
very good performance in semantic analysis, able to learn
sequence context of protein sequences by pre-training large-scale
unlabeled corpora in a bidirectional manner23–25.

In our study, we propose an ensemble deep learning model
(EDLMPPI)-based protein–protein interaction site identification
method, as depicted in Fig. 1. We suggest adopting ProtT5 based
on transformer architecture as the amino acid feature extractor,
to fully exploit the global contextual association of each amino
acid, and then, we incorporate eleven additional feature
descriptors to further enrich the feature representation. In
EDLMPPI, the deep learning architecture is composed of

Fig. 1 Overview of the proposed method, an ensemble deep learning model (EDLMPPI)-based protein–protein interaction site identifier consisting of
two main components: Bi-directional Long Short-Term Memory (BiLSTM) for extracting long-range dependencies of features and capsule network for
exploring the intrinsic association between features and preserving inter-sample location information. On the one hand, this design can capture the
correlation between features in both directions and fully considers the contextual information. On the other hand, the capsule can retain key information as
much as possible while reducing the dimensionality of features, avoiding information leakage, and improving the efficiency of the algorithm.
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BiLSTM26 and capsule network27, where BiLSTM can learn fea-
tures in both forward and backward directions of protein
sequences in a comprehensive manner, and the capsule network
can further discover correlations between features. To cope with
the impact of the unbalanced datasets, we train multiple deep
learning models to form ensemble deep learning and then per-
form predictions. To investigate the effectiveness of our proposed
EDLMPPI, we conducted experiments on the network mechan-
ism and feature extraction parts. All experiments were based on
the training and test sets described in the section “Methods”. The
validation set was randomly token as 20% of the training set, and
we also used stratified random sampling to divide the validation
set to ensure consistency of the distribution of the training and
validation sets. To validate the effectiveness of EDLMPPI, we
compare it with ten different machine learning models and deep
learning models on the benchmark datasets. Further, we also
compare EDLMPPI with other PPI site prediction models and
demonstrated that EDLMPPI is in front by a large margin, which
validates the efficiency of EDLMPPI’s feature extraction and
network architecture. To explore the biological significance of
EDLMPPI, we extract the structural domains of protein sequen-
ces. Compared with other methods, the interaction sites predicted
by EDLMPPI showed a higher correlation with the native sites in
the structural domain. In addition, we conducted an interpretable
analysis to demonstrate the internal process of EDLMPPI’s fea-
ture representation. We built a web server for EDLMPPI pre-
diction at http://www.edlmppi.top:5002/.

Results and discussion
EDLMPPI can provide a more efficient scheme for character-
izing protein sequences. In our study, we adopted a multi-
channel strategy to form combined features with MBF (Multi-
source Biological Features, including the evolutionary informa-
tion, physical properties, and physicochemical properties of
protein residues) and ProtT5 as inputs to the model, respectively.
Then, the two sets of vectors were concatenated and normalized
before the softmax classification layer. In MBF, the sliding win-
dow mechanism was employed to encode the local contextual
information for each residue, which can effectively prevent
overfitting and improve the generalization of the model. More-
over, for a window size of n (n is an odd number), the middle-
most amino acid is the target amino acid to be predicted, and the
sliding step is 1. Therefore, we first conducted an experiment to
find the optimal window size in MBF by evaluating the perfor-
mance of the MBF model with different window sizes from the set
{5, 11, 15, 21, 25, 33}. The experimental results of different
window sizes are summarized in Fig. 2a with Dset_448 as an
example. It is clear that the model achieved the best performance
measured by several key metrics including AP, AUROC, and
MCC for a window size of 25. However, the overall performance
of the algorithm decreased with a window size of 31, which
indicates that larger windows are not always better. Therefore, in
our study, we choose a window size of 25 as the final size.

In addition, to further investigate the superiority of our
proposed feature descriptor, we compared the combined features
in EDLMPPI with a single feature descriptor including MBF and
ProtT5, respectively. The experimental results are tabulated in
Table 1 and Fig. 2b. It can be observed that combining the
features of MBF and ProtT5 greatly outperformed the individual
feature descriptors on all three datasets. Indeed, for the evaluation
metric AP, frequently used to evaluate unbalanced data, the
combined features surpassed MBF on the three datasets,
respectively, and outperformed ProtT5 by 1.8%, 3%, and 2.9%,
respectively, revealing that the combined features enriched the
protein expression and enhanced the performance of the model.

Moreover, when comparing Prot5 and MBF, it can also be
revealed that the AP values of Prot5 perform better than on those
three datasets and outperforms MBF by 10.7%, 11.2%, and 8.6%,
respectively for AUROC, unveiling the effectiveness of dynamic
word embedding in protein–protein binding site prediction. The
reason may be that ProtT5 captured better the difference between
amino acids (binding sites and non-binding sites) from our
labeled training data while MBF had difficulty distinguishing
amino acid specificity based on evolutionary information and
other biological functions.

Comparing ProtT5 with other protein language models. In
recent years, language models based on Transformer architecture
have been widely used in protein prediction problems. The self-
attention-based Transformer can directly calculate the two-by-
two association between residues and capture the inter-
dependence between amino acids at different positions. In addi-
tion to ProtT5, several alternative protein pre-training models
including ESM-1b28 and ProGen229 have been proposed to
characterize protein sequences. ESM-1b uses a RoBERTa-based
architecture with the Uniref50 2018_03 database as the unsu-
pervised training corpus while using pre-activation layer nor-
malization to optimize hyperparameters in the translator.
ProGen2 was scaled to 6.4 billion parameters and trained on
different sequence datasets with more than 1 billion proteins from
genomic, metagenomic, and immune repertoire databases. For a
fair comparison, we replaced the embedding representation
learned by ProtT5 with the embedding representation learned by
ESM-1b and ProGen2. The experimental results are summarized
in Table 2. As depicted in this table, we observe that ProtT5 is
superior to ESM-1b and ProGen2 in AP and AUROC, demon-
strating that the ProtT5 is more suited for characterizing the
amino acid sequences for protein–protein binding events.

EDLMPPI can effectively deal with the overfitting problem
caused by data imbalance. As the number of residues in the
binding sites is only one-tenth of the total number, this unbalanced
data pushes the model training to focus on the major class and
ignores the minor class, leading to overfitting of the model30–32. To
address this issue, we proposed employing ensemble deep learning to
tackle the skewed distribution of categories of unbalanced datasets.
To investigate the performance of the ensemble model, we compared
it to three other different unbalanced data processing algorithms,
including cost-sensitive model33, random over-sampling34, and
random under-sampling34 under these three datasets. In detail, the
cost-sensitive model33 focuses on the samples of categories by
optimizing the lowest total cost of classification errors. Over-
sampling34 generates new samples for the underrepresented classes
by random sampling, while under-sampling34 randomly removes
redundant samples from the major class sample.

The experimental results are summarized in Table 3 and
Fig. 2d. Generally, the ensemble model performed the best,
obtaining higher MCC, AUROC, and AP scores. In terms of AP
scores on the three datasets, the ensemble learning algorithm
comparatively outperformed the competing algorithms with
46.0%, 33.0%, and 41.3%, respectively, indicating an improved
generalization performance with the asymmetric bagging method.
In addition, the average precision of the over-sampling method
on the three data sets was 43.9%, 31.5%, and 40.4%, respectively,
which was lower than the ensemble learning method since the
over-sampling method destroys the dependencies between
features and limits the ability of the model to find correlations
between features. It is worth noting that the under-sampling
method can be considered as a sub-model of the ensemble deep
learning model, which lags for AUROC and AP scores by 1.1% to
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3.9% on all three datasets compared to the ensemble learning
method.

In summary, we can conclude that the ensemble deep learning
method based on asymmetric bagging assures the efficiency of
algorithm execution and enhances its identification performance,
by comparatively reducing the impact of the unbalanced data sets.

Comparing EDLMPPI with different machine learning algo-
rithms. To study the effectiveness of EDLMPPI, we compared it
with five machine learning methods, including three ensemble
learning methods (XGBoost35, LightGBM36, and CatBoost37) and
two other machine learning methods, SGDClassifier (Stochastic

Gradient Descent), and MLPClassifier (Multi-Layer Perception).
Figure 2c and Table 4 depict the experimental results of the
different algorithms on all three datasets. From the results, we see
that our proposed model had better performance than the five
other machine learning algorithms on all three datasets. In par-
ticular, on Dset_448, EDLMPPI outperformed the machine
learning methods by 2.1–3.4% in the average AUROC and by
3.0–6.2% for the average AP on the three datasets, indicating the
large improvement in the predictive ability of EDLMPPI. More-
over, since the same feature descriptor is adopted by EDLMPPI
and these machine learning algorithms, we observe from the
results that the comprehensive performance of the deep learning

Fig. 2 Experimental results are presented to reveal the effectiveness of the model. a Radar chart of evaluation indicators corresponding to the different
window sizes. b Showing the performance comparison of ProtT5, MBF, and combined features on the classifier, where the “Average evaluation metric
values” refers to the average of the eight evaluation metrics (including TPR, TNR, Pre, ACC, F1, MCC, AUROC, and AP) for the different feature descriptors
on these three datasets. c Demonstrating the performance comparison between the EDLMPPI architecture and 10 mainstream machine learning models
and deep learning models: EDLMPPI is particularly strong in key metrics. d Performance comparison between different methods for imbalance dataset
resolution, where the “Average evaluation metric values” refers to the average of the eight evaluation metrics (including TPR, TNR, Pre, ACC, F1, MCC,
AUROC, and AP) for the different algorithms on these three datasets.

Table 1 Performance comparison under different feature descriptors.

TPR TNR Pre ACC F1 MCC AUROC AP

Dset_448
MBF 0.537 0.738 0.243 0.710 0.335 0.205 0.703 0.272
ProtT5 0.448 0.916 0.455 0.852 0.451 0.366 0.810 0.442
Combine 0.452 0.922 0.477 0.858 0.464 0.383 0.820 0.460
Dset_72
MBF 0.474 0.720 0.167 0.694 0.247 0.130 0.658 0.185
ProtT5 0.336 0.908 0.303 0.848 0.319 0.234 0.770 0.300
Combine 0.318 0.938 0.377 0.872 0.345 0.276 0.788 0.330
Dset_164
MBF 0.591 0.634 0.263 0.626 0.364 0.176 0.654 0.283
ProtT5 0.308 0.909 0.427 0.800 0.358 0.248 0.740 0.384
Combine 0.323 0.916 0.460 0.809 0.380 0.277 0.755 0.413
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method was stronger than that of traditional machine learning,
indicating that the deep learning method can explore the
potential connection between protein sequence and structure
better, thereby improving the prediction of protein binding
sites performance, which further proves the effectiveness of
EDLMPPI.

Comparing EDLMPPI with different deep learning archi-
tectures. To validate the effectiveness and sophistication of the
revised architecture of EDLMPPI, we compared it with other five
deep learning models including TextCNN38, Single-Capsule27,
BiLSTM39, BiGRU40, and Multi-Head Attention41 using the same
feature descriptors. The experimental results of the different deep
learning models are depicted in Fig. 2c and Table 4, where we see
that EDLMPPI performed comparatively better than the other
deep learning models, measured by the evaluation metric AP,
outperforming the second-ranked Multi-Head-Attention by 1.2%,
2.2%, and 1.2% on the three datasets, respectively. Moreover, the
intuitive view of TextCNN’s performance was weaker than several
other deep learning models, which is consistent with our expec-
tation that the CNN structure only extracted the local features,
undermining the integrity of Prot5’s context-based embedding. In
addition, LSTM and GRU perform comparably on Dset_448 and
Dset_72, but LSTM performs better than GRU on Dset 164,
which is the reason for choosing LSTM to learn long-term
dependencies in the final model EDLMPPI.

Comparing EDLMPPI with other PPIs prediction methods. To
further test the advancement brought by EDLMPPI, we compared
it with ten current PPI prediction methods including SPPIDER42,
SPRINT43, PSIVER44, SPRINGS45, LORIS46, CRFPPI47,
SSWRF48, DLPred49, SCRIBER13, and DELPHI11. We obtained
the prediction scores for each protein sequence in the test dataset
through the web server or the available source codes of these
algorithms. We adopted TPR, TNR, Pre, ACC, F1, MCC,
AUROC, and AP as the evaluation criteria and MCC, AUROC,
and AP as the important determinants for evaluating the merits
of the models that are frequently used to evaluate unbalanced
data13. The prediction results are summarized in Table 5 and
Fig. 3a.

We see that EDLMPPI is better than the other PPIs prediction
methods for most evaluation metrics, with AUROCs of 82.0%,
78.8%, and 75.5% on the three datasets, respectively, substantially
higher than the DELPHI method with 73.7%, 71.1%, and 68.5%,
respectively. Furthermore, for the average precision (AP),
EDLMPPI beat DELPHI by 12.3%, 9.3%, and 8.1% on the three
datasets, respectively, which brings considerable improvement.
The reason seems to be that EDLMPPI can address the amino
acid long-range dependency problem based on the transformer of
self-attentive mechanism, which fully explores the global
contextual features and semantic information, indicating that
our proposed deep learning architecture provides an important
contribution to accurate classification. In addition, we incorpo-
rated traditional biological features, such as the evolutionary

Table 2 Performance comparison under different protein language models.

TPR TNR Pre ACC F1 MCC AUROC AP

Dset_448
ESM-1b 0.725 0.652 0.246 0.662 0.368 0.264 0.759 0.349
ProGen2 0.714 0.602 0.220 0.617 0.336 0.218 0.715 0.287
ProtT5 0.448 0.916 0.455 0.852 0.451 0.366 0.810 0.442
Dset_72
ESM-1b 0.674 0.678 0.199 0.678 0.307 0.226 0.738 0.253
ProGen2 0.684 0.554 0.154 0.568 0.251 0.147 0.658 0.176
ProtT5 0.336 0.908 0.303 0.848 0.319 0.234 0.770 0.300
Dset_164
ESM-1b 0.732 0.542 0.261 0.576 0.375 0.211 0.690 0.324
ProGen2 0.758 0.436 0.229 0.495 0.352 0.153 0.650 0.288
ProtT5 0.308 0.909 0.427 0.800 0.358 0.248 0.740 0.384

Table 3 Comparison of algorithm performance with different unbalanced dataset processing strategies.

TPR TNR Pre ACC F1 MCC AUROC AP

Dset_448
None 0.197 0.979 0.601 0.873 0.297 0.293 0.807 0.433
Cost-Sensitive 0.491 0.898 0.431 0.843 0.459 0.369 0.809 0.430
Ensemble 0.452 0.922 0.477 0.858 0.464 0.383 0.820 0.460
UnderSampler 0.652 0.798 0.336 0.778 0.444 0.350 0.809 0.435
OverSampler 0.549 0.870 0.398 0.826 0.462 0.381 0.807 0.439
Dset_72
None 0.209 0.963 0.398 0.883 0.274 0.230 0.779 0.305
Cost-Sensitive 0.386 0.905 0.325 0.850 0.353 0.270 0.775 0.304
Ensemble 0.318 0.938 0.377 0.872 0.345 0.276 0.788 0.330
UnderSampler 0.587 0.783 0.243 0.762 0.343 0.261 0.769 0.291
OverSampler 0.464 0.870 0.298 0.827 0.363 0.271 0.779 0.315
Dset_164
None 0.134 0.978 0.570 0.825 0.217 0.213 0.741 0.404
Cost-Sensitive 0.418 0.868 0.412 0.787 0.415 0.284 0.744 0.404
Ensemble 0.323 0.916 0.460 0.809 0.380 0.277 0.755 0.413
UnderSampler 0.565 0.761 0.343 0.725 0.427 0.274 0.738 0.378
OverSampler 0.452 0.850 0.401 0.778 0.425 0.281 0.742 0.404
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information and several physicochemical properties, to bridge
possible shortcomings of ProtT5, thereby further improving
identification performance. Notably, EDLMPPI showed a higher
advantage on the Dset_448 dataset, comparing full-length
sequences, suggesting that our feature extraction method may
be better and more accurate in the functional expression of
complete protein sequences. Overall, EDLMPPI has been
substantially ahead of existing methods and can be used as a
complementary tool for protein–protein interaction site
annotation.

Protein binding domains analysis. Protein domains are closely
related to the completion of physiological functions of the pro-
teins and serve as the structural basis for their cellular
functions50. To gain insight into the potential relationship
between protein structural domains and protein–protein inter-
action sites, we performed an experiment to verify whether
EDLMPPI accurately predicts PPIs in the protein domain. We
annotated 448 protein sequences in the Dset_448 dataset by
Pfam51 to remove any overlapping structural domains and finally
obtained 501 structural domains. Figure 3b shows the corre-
spondence between structural domains of each size and the
number of PPIs in them, while we compare the prediction results
of EDLMPPI, DELPHI, and SCRIBER13. In addition, we added a
control group to enhance the rationality of the experiment: a
fragment of the same size as the protein domain was randomly
selected from the sequence. From the results, the prediction

results of EDLMPPI were more optimistic than the other two
methods, with the number of PPIs predicted by EDLMPPI
increasing with the growth of the structural domain. According to
a previous study52, the length-deviant domain superfamilies are
highly interacting, more mixed in function, and regulated by
multiple proteins, which supports the plausibility of EDLMPPI in
predicting protein function. In addition, we counted the pro-
portion of predicted PPIs estimated by EDLMPPI, DELPHI, and
SCRIBER for each structural domain and calculated the Pearson
correlation coefficient with the true proportion vector. EDLMPPI
presented the highest correlation with the native annotations with
a score of 0.70, while DELPHI, SCRIBER, and the control group
scored 0.63, 0.57, and 0.21, respectively.

To further indicate that EDLMPPI can accurately predict the
performance of binding sites in protein domains, we selected
three enzyme proteins with high catalytic activity, P19821 -
DPO1_THEAQ, P9WHH9 - DLDH_MYCTU, and P17109 -
MEND_ECOLI to demonstrate the difference in performance
predicted by different methods. Since SCRIBER and DELPHI
provided better performance in the prediction of PPIs than other
PPI site prediction models, we employed the prediction results of
SCRIBER and DELPHI in these three sequence species as
comparisons, and the results are displayed in Table 6. With a
protein structural domain size of 337 in P19821 -
DPO1_THEAQ, the true number of experimentally detected
PPIs is 31, and the prediction of EDLMPPI was 36, closer to the
true number compared to SCRIBER and DELPHI. This

Table 4 Performance of different machine learning methods and deep learning methods on Dset_448, Dset_72, and Dset_164.

TPR TNR Pre ACC F1 MCC AUROC AP

Dset_448
XGBoost 0.477 0.886 0.396 0.830 0.433 0.336 0.792 0.409
LGBM 0.524 0.865 0.378 0.819 0.439 0.341 0.797 0.415
CatBoost 0.498 0.869 0.374 0.819 0.427 0.326 0.786 0.398
SGD 0.480 0.900 0.431 0.843 0.454 0.364 0.799 0.430
MLP 0.480 0.900 0.431 0.843 0.454 0.364 0.799 0.430
TextCNN 0.478 0.893 0.411 0.836 0.442 0.348 0.797 0.419
Capsule 0.537 0.871 0.395 0.826 0.455 0.360 0.806 0.422
GRU 0.534 0.881 0.414 0.834 0.466 0.374 0.815 0.448
LSTM 0.540 0.881 0.416 0.835 0.470 0.378 0.815 0.449
MultiHead 0.524 0.888 0.423 0.838 0.468 0.377 0.815 0.448
EDLMPPI 0.452 0.922 0.477 0.858 0.464 0.383 0.820 0.460
Dset_72
XGBoost 0.501 0.818 0.246 0.785 0.330 0.239 0.743 0.274
LGBM 0.410 0.880 0.288 0.830 0.338 0.249 0.759 0.295
CatBoost 0.406 0.876 0.279 0.826 0.330 0.240 0.751 0.270
SGD 0.521 0.812 0.247 0.781 0.335 0.246 0.748 0.293
MLP 0.504 0.826 0.256 0.792 0.340 0.250 0.759 0.283
TextCNN 0.418 0.878 0.289 0.829 0.342 0.253 0.760 0.301
Capsule 0.544 0.829 0.274 0.799 0.364 0.282 0.773 0.305
GRU 0.425 0.878 0.293 0.830 0.347 0.259 0.774 0.308
LSTM 0.421 0.881 0.296 0.832 0.347 0.260 0.765 0.316
MultiHead 0.279 0.940 0.354 0.870 0.312 0.244 0.776 0.308
EDLMPPI 0.318 0.938 0.377 0.872 0.345 0.276 0.788 0.330
Dset_164
XGBoost 0.553 0.759 0.336 0.722 0.419 0.263 0.723 0.361
LGBM 0.480 0.821 0.372 0.759 0.419 0.274 0.733 0.375
CatBoost 0.576 0.741 0.330 0.711 0.419 0.263 0.719 0.364
SGD 0.496 0.804 0.359 0.749 0.417 0.268 0.730 0.371
MLP 0.457 0.822 0.362 0.756 0.404 0.255 0.720 0.358
TextCNN 0.412 0.868 0.409 0.786 0.410 0.280 0.728 0.394
Capsule 0.438 0.852 0.395 0.777 0.415 0.279 0.741 0.388
GRU 0.443 0.853 0.399 0.779 0.420 0.285 0.747 0.394
LSTM 0.447 0.855 0.405 0.781 0.425 0.291 0.751 0.401
MultiHead 0.447 0.855 0.405 0.781 0.425 0.291 0.751 0.401
EDLMPPI 0.323 0.916 0.460 0.809 0.380 0.277 0.755 0.413
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performance is more evident in P9WHH9 - DLDH_MYCTU and
P17109 - MEND_ECOLI, where the number of PPIs predicted by
EDLMPPI differs from the true value by only 1–2, indicating the
effectiveness of EDLMPPI in predicting the binding sites of
protein structural domains and also validating our previous
conclusion that EDLMPPI can provide more binding sites in the
structural domains of proteins.

Interpretability analysis. To investigate the effectiveness of the
EDLMPPI architecture, we extracted the intermediate layer out-
puts of the model at various stages and mapped them onto a two-
dimensional space for clustering, as shown in Fig. 4a. We see that
the original embedding was distributed haphazardly, while after
the BiLSTM layer, a more obvious clustering effect can be seen.
The capsule layer further preserved the key classification features,
and the binding and non-binding sites appeared as separate
clusters. Finally, after the softmax function, accurate identifica-
tion was achieved.

In addition, we explored the contributions of different features
to the protein–protein binding site recognition and the interac-
tion relationship. Figure 4b shows the 20 features that have the
greatest impact on PPIs identification, and reveals how they act in
predicting the non-binding sites and bindings sites, respectively.
The red color represents higher feature values while the blue
represents lower feature values. Taking features 1027 and 33 as
examples, the higher feature 1027 tends to classify samples as
binding sites while the higher feature 33 is more likely to classify
samples as non-binding sites. Compared with the impact of a
single feature on the model, the interaction of features was more
important. Figure 4c shows how Feature 1027 and Feature 569
interact with the other features. We note that Feature 1027 had no
significant interaction with the other features, which is consistent

with our judgment that Feature 1027 represents solvent
accessibility and is encoded as a vector of length 1, without too
much dependency on the other features. On the other hand, a
strong correlation was shown between Features 569 and 72, and
the effect of Feature 72 on classification was weakened at lower
values of Feature 569. This comes from the fact that ProtT5
contains global context dependency, and the expression of
features is based on joint action with other features, which
further validates the effectiveness of ProtT5. Figure 4d is a stacked
diagram showing the effect of each feature on each sample, which
allows us to observe which features affect the identification of a
sample.

To gain a deeper understanding of the working of EDLMPPI,
we investigated the internal process of ProtT5 embedding for
reliability. First, we selected a complete protein sequence and
encoded it using ProtT5. For each amino acid embedding vector,
we applied the Pearson correlation coefficient to describe the
correlation between residues. The results are displayed in Fig. 5a,
where we see that each amino acid always had a strong
correlation with the amino acid closer to it, but as the distance
becomes farther, ProtT5 could still capture an association
between amino acids, implying that ProtT5 balanced the local
influences and long-term dependence. To further into the
process, we applied Bertviz53 to visualize each attention head
and each layer in ProtT5, and the results are shown in Fig. 5b,c,
where the different colors represent the different attention heads
and the saturation of the lines represents the attention scores.
Figure 5b(a) shows the first layer of attention in all attention
heads, which roughly resembles a full connection, implying that
for each residue, all attention heads tried to find the association
with the target of the other residues. The </s> acts as a sequence
splitter that carries the attention of all residues, which indicates
that for ProtT5, the overall identity of a sequence is determined

Table 5 Performance comparison of the different predictors.

TPR TNR Pre ACC F1 MCC AUROC AP

Dset_448
SPPIDER 0.202 0.870 0.194 0.781 0.198 0.071 0.517 0.159
SPRINT 0.183 0.873 0.183 0.781 0.183 0.057 0.570 0.167
PSIVER 0.191 0.874 0.191 0.783 0.191 0.066 0.581 0.170
SPRINGS 0.229 0.882 0.228 0.796 0.229 0.111 0.625 0.201
LORIS 0.264 0.887 0.263 0.805 0.263 0.151 0.656 0.228
CRFPPI 0.268 0.887 0.264 0.805 0.266 0.154 0.681 0.238
SSWRF 0.288 0.891 0.286 0.811 0.287 0.178 0.687 0.256
SCRIBER 0.334 0.896 0.332 0.821 0.333 0.230 0.715 0.287
DELPHI 0.371 0.901 0.371 0.829 0.371 0.272 0.737 0.337
EDLMPPI 0.452 0.922 0.477 0.858 0.464 0.383 0.820 0.460
Dset_72
SPPIDER 0.188 0.898 0.179 0.823 0.183 0.084 0.522 0.134
PSIVER 0.152 0.899 0.152 0.820 0.152 0.052 0.604 0.141
CRFPPI 0.248 0.911 0.248 0.840 0.248 0.158 0.669 0.200
SSWRF 0.246 0.911 0.246 0.840 0.246 0.157 0.678 0.198
SCRIBER 0.232 0.909 0.232 0.837 0.232 0.141 0.680 0.198
DLPred 0.246 0.901 0.246 0.826 0.246 0.148 0.688 0.215
DELPHI 0.274 0.914 0.274 0.847 0.274 0.189 0.711 0.237
EDLMPPI 0.318 0.938 0.377 0.872 0.345 0.276 0.788 0.330
Dset_164
SPPIDER 0.264 0.828 0.253 0.726 0.258 0.090 0.528 0.220
PSIVER 0.217 0.826 0.216 0.716 0.216 0.043 0.554 0.205
CRFPPI 0.280 0.841 0.280 0.739 0.280 0.121 0.608 0.267
SSWRF 0.266 0.838 0.266 0.734 0.266 0.103 0.606 0.243
SCRIBER 0.327 0.851 0.327 0.756 0.327 0.179 0.657 0.301
DLPred 0.338 0.854 0.338 0.760 0.338 0.192 0.672 0.330
DELPHI 0.352 0.857 0.352 0.765 0.352 0.209 0.685 0.332
EDLMPPI 0.323 0.916 0.460 0.809 0.380 0.277 0.755 0.413

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04462-5 ARTICLE

COMMUNICATIONS BIOLOGY |            (2023) 6:73 | https://doi.org/10.1038/s42003-023-04462-5 |www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


by all amino acids together. Furthermore, Fig. 5b(d) shows clearly
the flow of target amino acids in the different attention heads,
verifying our previous statement that higher attention is seen with
closer proximity. Moreover, Fig. 5c visualizes the evolution of
each attention head in the different layers, as the layers deepened,

the attention pattern shifted from focusing on the association
between different amino acids to transmitting the expression of
the amino acid sequences. In summary, ProtT5 can explore the
connection between the protein-level structure and its function
from local to global, providing a reasonable interpretation that

Fig. 3 Display of the results of comparative experiments and biological analysis experiments. a Demonstrating the results of comparisons between
EDLMPPI and ten other competitive methods, with the “Average evaluation metric values” referring to the average of the eight evaluation metrics
(including TPR, TNR, Pre, ACC, F1, MCC, AUROC, and AP) for the different methods on these three datasets. b A comparison of the predicted PPIs from
EDLMPPI, DELPHI, and SCRIBER compared to native PPIs. By calculating the proportion of PPIs in each domain, EDLMPPI and native PPIs have the highest
correlation.
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EDLMPPI effectively predicts protein–protein interaction bind-
ing sites.

The EDLMPPI user interface facilitates exploration of PPIs
identification
To facilitate researcher use and improve our model and accelerate
progress in protein binding site prediction, we have developed a fully
functional EDLMPPI online prediction webserver for PPI, which is
available at http://www.edlmppi.top:5002/. Given the limited com-
putational resources and the large computational capacity of ProtT5,
we patiently guide users on how to set up the ProtT5 environment in
their local environment, download the model, and extract features in
various scenarios. Furthermore, the online prediction server also
encourages users to upload the extracted ProtT5 features directly on
the EDLMPPI server, so that we can return the prediction results via
email with an interpretation of the results. In addition, we have
synchronized open source data and code on GitHub, which can be
accessed at https://github.com/houzl3416/EDLMPPI.git.

Supplementary Figure 1 summarizes the main modules and
Supplementary Figure 1a illustrates the main interface, which
includes three ways of obtaining ProtT5: extracting it onto your
device, extracting it onto Colab, or downloading the file we
provide. Supplementary Figure 1b shows the prediction module:
once the ProtT5 features are uploaded, the server can send the
prediction results to the user’s email automatically. Finally, there
is the downloadable module depicted in Supplementary Figure 1c,
where users can directly click on the links to download datasets
and models in a rapid manner.

Conclusions
In this study, we propose a protein–protein interaction site pre-
diction method based on ensemble deep learning models, called
EDLMPPI, EDLMPPI adapts the dynamic word embedding
model based on transformer architecture to the study of
protein–protein interaction sites and uses ProtT5 to capture the
contextual and positional information between residues, while
integrating eleven multi-source biological features to further
enrich the feature representation. Meanwhile, we developed a
multi-channel integrated deep learning model that captures both
local context dependence and global context dependence of
protein sequences and effectively solves the data imbalance
problem.

To demonstrate the effectiveness of the EDLMPPI, we com-
pared it to ten different traditional machine learning and deep
learning models on three widely-used benchmark datasets.
Moreover, we compared EDLMPPI with other PPI website pre-
diction models and the predictive performance of EDLMPPI
improves prediction over these models. Besides, in the prediction

of PPIs in protein structural domains, EDLMPPI shows more
biologically consistent results, which indicates that EDLMPPI has
the ability for certain biological analysis and can be used to guide
biologists to make specific experiments on proteins. Meanwhile,
the interpretability analysis fully demonstrates the internal vision
of the EDLMPPI model, which further enhances the rationality of
the model.

In addition, the release of the EDLMPPI online prediction web
server provides detailed guidance on model training and predic-
tion, ensuring that the results of our experiments are repeatable
and operational. The code and data are also open-sourced at
https://github.com/houzl3416/EDLMPPI.git.

In summary, EDLMPPI is a very competitive protein–protein
interaction site prediction tool with the advantages of high effi-
ciency and accuracy, proving a new alternative for protein
interaction site identification. It provides new ideas and insights
into the task of protein–protein interaction site prediction and
can also serve as an important assistant for biologists to effectively
implement PPI prediction and downstream analysis work. The
release of the webserver also greatly facilitates the work of other
researchers to improve our model and achieve more effective
prediction results. In the future, we will incorporate other
dynamic word embedding models into our proposed model and
adapt them to other relevant protein identification problems.

Methods
Datasets. For datasets, we collected three widely-used benchmark datasets,
Dset_18654, Dset_7254, and Dset_16455. Dset_186 was constructed from the PDB
database3 and contains 186 protein sequences with a resolution of <3.0 Å and
sequence homology <25%. This dataset was refined in multiple steps, including the
removal of chains with identical UniprotKB/Swiss-Prot accessions, the removal of
transmembrane proteins, the removal of dimeric structures, the removal of pro-
teins with surface accessibility and interfacial polarity buried within a certain range,
and the removal of similarities. Dset_72 and Dset_164 were constructed in the
same manner as Dset_186, and consist of 72 and 186 protein sequences,
respectively.

Further Dset_1291 is a dataset from the BioLip database, where a binding site is
defined if the distance between an atom of a residue and an atom of a given protein
partner is 0.5 Å plus the sum of the van der Waals radii of the two atoms13. Zhang
et al.13 eliminated the fragmented proteins and then transferred the annotation of
the bound residues to the same UniProt sequence. Therefore, the similarity
between the sequences was reduced to less than 25% under the Blast-Clust method.
Finally, Dset_843 (843 sequences of Dset_1291) was used to train our model, while
the remaining 448 sequences (Dset_448) were employed as the independent
test set.

Using these datasets, we constructed the training and test sets. As Dset_843 and
Dset_448 consist entirely of full-length protein sequences, while Dset_71,
Dset_186, and Dset_164 are composed of fragmented sequences; to enhance the
generalizability of the model, we selected Dset_843 and Dset_186 representing two
different types of datasets as our training datasets, respectively. Then Dset_448,
Dset_72, and Dset_164 were used as independent test sets to test the performance
of the different PPI site prediction models. In addition, to reduce the similarity
between the training and test sets, we performed consistency redundancy removal
between them using the PSI-BlAST56 procedure to ensure the similarity was below
25%. Supplementary Table 1 summarizes the number of protein residues and the
proportion of binding sites in each dataset, where it is easy to see that the
distribution of the datasets is relatively unbalanced, with positive samples
accounting for only 10–18% of the total sample size, which poses a challenge for
the generalizability of the model.

Feature descriptors. To fully explore the structural characteristics of
protein–protein interaction sites, several features, including dynamic global con-
textual information and multi-source biological features, are extracted from protein
sequences as follows.

Dynamic global contextual information. Due to the expensive cost of traditional
biological experiments and the low capability of some deep learning-based tech-
niques, we introduce the dynamic word embedding-based ProtT524 to represent
the feature expression information of proteins to obtain the global context-sensitive
information between the different sequences and amino acids, which has already
been proven to be an effective method experimentally. Specifically, ProtT5 is
employed for generating global contextual embeddings. Indeed, ProtT5 learns a
positional encoding for each attention head in the transformer architecture and
shares it on all levels. In ProtT5, the training corpus is Uniref50, which contains 45

Table 6 Comparison of prediction results of different
methods on catalase protein sequences.

Domin size Native PPIs Predicted PPIs

P19821 - DPO1_THEAQ
SCRIBER 337 31 0
DELPHI 337 31 23
EDLMPPI 337 31 36
P9WHH9 - DLDH_MYCTU
SCRIBER 321 37 5
DELPHI 321 37 26
EDLMPPI 321 37 35
P17109 - MEND_ECOLI
SCRIBER 139 38 3
DELPHI 139 38 14
EDLMPPI 139 38 39
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million protein sequences composed of 15 billion amino acids. Such a huge training
set guarantees that ProtT5 will capture the structural and functional connections
between different types or races of proteins.

ProtT5 first maps each amino acid into a fixed-length vector by means of an
embedding layer, besides, the position embedding in ProtT5 is employed to encode
the relative positional information of each amino acid in the corresponding protein
sequence, and the segment embedding was introduced to distinguish the different
protein sequences. The sum of the token embedding, segmentation embedding, and

position embedding provides not only a non-contextual mapping of amino acids to
the underlying space but also extends the amino acid dependencies in each protein
sequence and the contextual associations between different protein sequences,
which can be defined as follows:

Eword ¼ Etok þ Eseg þ Epos

¼ OtokWtok þ OsegWseg þ OposWpos

ð1Þ

Fig. 4 Presentation of the results of the interpretability analysis experiment. a The t-SNE flow graph shows the clustering effect of the output of the
different intermediate layers of the EDLMPPI architecture. b The 20 features that have the greatest impact on PPIs identification, revealing how they act for
predicting non-binding sites and bindings sites, respectively. c The schematic diagrams show the interaction between feature 1024 and other features, and
the interaction between feature 569 and other features, respectively. d A stacked diagram showing the effect of each feature on each sample.
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where Wtok, Wseg, and Wpos are the corresponding parameter matrices to be
trained. After that, dynamic word embedding, learned from the multi-head self-
attention mechanism in the transformer architecture, is used to correlate the
relevant amino acids in the protein sequence, which can be calculated through the
following formula:

XWQ
i ¼ Qi; XWK

i ¼ Ki; XWV
i ¼ Vi; i ¼ 1; ¼ ;m ð2Þ

Zi ¼ Attention Qi;Ki;Vi

� �
i

¼ SoftMax
QiK

T
iffiffiffiffiffi

dk
p

 !
Vi; i ¼ 1; ¼ ;m

ð3Þ

MultiHeadðQ;K;VÞ ¼ Concat Z1; ¼ ;Zm

� �
WO ð4Þ

where Q(Query), K(Key),V(Value) are obtained through m linear transformations,
which are used to store all word embeddings. Zi represents the attention of each
attention head, which is calculated by the linear transformation of a set of Q, K,V.

Indeed, the attention stack of ProtT5 consists of 24 layers, each layer contains
32 attention heads, and the size of the hidden layer is 1024. This stacked mode is
what allows each layer to operate on the output of the previous layer. Through such
a repeated combination of word embedding, ProtT5 can form a very rich
representation as it reaches the deepest layer of the model23. Therefore, in our
study, we extract the embedding of the last layer of the attention stack into our
feature representation.

Multi-source biological features. Further, to improve the prediction performance,
we accessed the evolutionary information, physical properties, and physicochem-
ical properties of protein residues to enrich the feature expression.

(1) Position-Specific Scoring Matrix (PSSM): PSSM provides a flexible way to
represent the specificity of residue interactions, which describes the evolutionary
conservation of the residue positions. It can be described as follows:

scoreða; bÞ ¼ log10 Mða; bÞ=papb
� � ð5Þ

where pa and pb represent the probability of observing amino acids a and b,
respectively, and M(a, b) is the probability score of a mutation. We chose Uniref90
as the comparison database, set the number of iterations to three, and set the
threshold value to 0.001 by PSI-BLAST.

(2) Physical characteristics: Physical characteristics are the graph index,
polarization rate, normalized van der Waals volume, hydrophobicity, isoelectric
point, spiral probability, and sheet probability. The same calculations are
performed using the values reported in ref. 57 to obtain a 7-dimensional vector for
each amino acid.

(3) Physicochemical properties: To accurately express the differences and
connections between different residues, we introduce the physicochemical
properties of amino acids. The physicochemical characteristics of a residue are
described by three values: the number of atoms, the number of electrostatic
charges, and the number of potential hydrogen bonds. These values are only related
to the type of amino acid and do not contain any structural information from the
amino acid residue.

Fig. 5 Presentation of the results of the interpretability analysis experiment. a Correlation heat map of each residue under ProtT5 embedding.
b Attention view with different layers and different attention heads. c Attention flow view between different layers, with each color representing a
different layer.
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Ensemble deep memory capsule network. To capture the crucial information in
the hybrid feature schemes more efficiently, we developed the ensemble deep
memory capsule network (EDMCN) to maximize the feature learning performance
of protein–protein interaction site identification, as depicted in Fig. 1. Deep
memory capsule networks expand the parallelism of traditional memory networks
by linking them with different output sizes to capture the correlation between
amino acids at different depth scales. Besides, the capsule structure can further
explore the intrinsic connections between features and retain location information
between samples. In addition, to promote the generalization and stability of the
model, we introduced an asymmetric bagging algorithm to solve the high imbal-
ance between samples.

Deep memory network. Traditional memory networks such as LSTM39, GRU40, etc.
have achieved good results in organizing the context of features for prediction.
However, these models are parameter-sensitive, which greatly affects the stability of
the prediction. To address this, we developed a deep memory network to enhance the
generalization performance of the model. The central idea of deep memory networks
is to connect multiple memory networks with different output scales to capture the
correlation between residues in a multi-scale manner. Formally, it mainly controls the
protein information flow through three gates (input gate(i), forget gate(f), and output
gate(o)), including when to remember, update, and utilize the information. The forget
gate works by accepting a long-term memory Mt−1 and deciding on which parts to
retain or discard. In a time step t, the forget gate first calculates the forgetting factor ft
from the previous hidden state ht−1 and the current input information mt:

f t ¼ σ Wf � ht�1;mt

� �þ bf
� �

ð6Þ

where σ is the logistic sigmoid function. The input gate mainly controls which input
currents mt can pass through the memory cell, first by generating a control signal to
control the rate rt of inflow:

rt ¼ σ Wr � ht�1;mt

� �þ br
� � ð7Þ

Next, the input gate generates candidate memory cells fMt and calculates the
memory information that eventually passes through the input gate based on the
previously solved rt:

eMt ¼ tanh WM � ht�1;mt

� �þ bM
� � ð8Þ

Mt ¼ f t �Mt�1 þ rt � eMt ð9Þ

Finally, the output gate filters mt by generating the control signal gt to obtain the
output Ot:

gt ¼ σ Wg � ht�1;mt

� �þ bg
� �

ð10Þ

Ot ¼ gt � tanh Mt

� � ð11Þ
Capsule network. Deep memory network effectively captures global contextual
dependencies among features, however, it tends to weaken the strong correlations
among local features and lose topological information about feature types. To solve
this problem, we introduce the capsule network27. Intuitively, the capsule network
contains a convolutional network part along with neurons called capsules, which
decide its perception of features, not only reflected in the importance of the features
but also the various states of the features, including their location information. In
this way, the capsule network can effectively capture the potential associations
between features for our highly context-dependent feature description methods.

The structure of capsule neurons in a capsule network is shown in Fig. 1. In a
capsule network, the capsule neurons are connected in a similar way as a full
connection, for the current layer of capsules c1, c2,…, ci, the position relationship
between the local and global features is learned through the pose transformation
(translation, rotation, deflation):

ĉjji ¼ Wijci ð12Þ

where Wij is the weight matrix. Then, we multiply each transformed vector by a
coupling coefficient oij and pass it to the next layer of capsules, and sum all the
neuron signals received by the j-th capsule of the next layer:

sj ¼ ∑
i
oij ĉjji ð13Þ

and the oij can be calculated as follows:

oij ¼
ebij

∑nebin
ð14Þ

where bij is the logarithmic prior probability of whether two capsules are
connected. Similar to sigmoid, a nonlinear activation function called squash27 is
employed for mapping vectors to [0, 1], and the capsule output vj of this layer can

be calculated as follows:

vj ¼
sj

			 			2
1þ sj

			 			2
sj

sj

			 			 ð15Þ

Ensemble deep learning algorithm. To further improve the stability and general-
ization performance of our proposed model, an ensemble learning method based
on the asymmetric bagging algorithm58 is applied to deal with the skewed dis-
tribution of categories in unbalanced datasets. Bagging is one of the prevailing
ensemble learning methods59, which can integrate the prediction results of multiple
different classifiers and then use the voting principle to determine the class of the
samples in the decision phase, aiming to reduce variance and promote the gen-
eralization performance of the model. Indeed, the principle of variance reduction
by bagging is represented by the following equation:

VarðcXÞ ¼ E ðcX � E½cX�Þ2� �
¼ c2E ðX � E½X�Þ2� �
¼ c2VarðXÞ

ð16Þ

Var X1 þ � � � þ Xn

� � ¼ Var X1

� �þ � � � þ Var Xn

� � ð17Þ

Var
1
n
∑
n

i¼1
Xi


 �
¼ 1

n2
Var ∑

n

i¼1
Xi


 �
¼ σ2

n
ð18Þ

where X represents an independent sample, Var(X) is the variance, and E(X)
represents the mean of sample X. Then, it can be seen that assuming there are n
independent models with an identical distribution and the variance of each model
is σ2, the variance of the ensemble model can be deduced from Eqs. (16) and (17) as
σ2/n. Bagging is sampled with put-back sampling so that there are duplicate
samples between data sets, thus violating the independence assumption in Eq. (18).
In this case, the variance of the ensemble model based on the correlation coefficient
rho between the individual models can be expressed as follows:

Var
1
n
∑
n

i¼1
Xi


 �
¼ σ2

n
þ n� 1

n
ρσ2 ð19Þ

Under that, as the number of classifiers increases or the correlation between
single models decreases, the variance of the ensemble model further decreases.
Motivated by the above observations, we proposed to employ the asymmetric
bagging algorithm to achieve this goal. For the dataset S, in each iteration, we keep
all the samples of protein binding sites as Sp, and separate a subset S0n with the same
scale as Sp from the samples Sn of non-binding sites. This step is repeated for
sampling without replacement until the training process covers all samples, and
eventually, multiple classifiers can be obtained. After that, we sum the softmax
values obtained by these multiple classifiers for each sample to make the final
identification decision. On this basis, asymmetric bagging can adequately ensure a
balanced class distribution of the input data for each model and keep the corre-
lation between individual models as low as possible. It is worth mentioning that
although the ensemble models may increase the computational complexity, the
feasibility of parallelism in asymmetric bagging can effectively reduce the running
time with sufficient computational resources.

Parameter settings. To demonstrate the effectiveness of our proposed EDLMPPI,
we compare it to several traditional machine learning methods and deep learning
methods. In the following section, we present the details of the parameter settings
of these algorithms.

Deep learning algorithms. For EDLMPPI, we use the tanh function as the activation
function and adopt the Glorot initializer with a uniform distribution to initialize
the weights for the BiLSTM part. Then, for the number of neurons in the hidden
layer, we fix a set of candidate values [32, 64, 128, 256]. For the capsule network,
the main hyperparameters are the number of neural capsules and the dimen-
sionality of each neuronal vector, for which we set a group of candidate values [32,
64, 128, 256] and [3, 5, 7, 10], respectively. To obtain the best hyperparameters, we
optimize the three sets of candidate values above by the grid search method under
Tensorflow 2.5.0 and Keras 2.4.3. The epochs are set to 100 and the early stop
mechanism is applied to prevent overfitting of the proposed algorithm.

To conduct a fair comparison to the other deep learning algorithms including
TextCNN38, Single-Capsule27, BiLSTM39, BiGRU40, and MultiHead Attention41, to
conduct a fair comparison, the hyperparameter optimization methods used the
same principles as EDLMPPI; we also adopted the same rules of the
hyperparameter optimization method as for EDLMPPI, using a grid search
procedure to select reasonable hyperparameters. For TextCNN, the test settings for
different combinations of convolutional kernels of different sizes were {{1, 3, 5, 7},
{7, 9, 11, 13}, {4, 5, 6, 7}, {7, 8, 9, 10}}, where the number of filters for each
combination is chosen from 16, 32, 64, 128, respectively. The number of hidden
layer cells of BiLSTM and BiGRU is chosen from {32, 64, 128}. In the capsule
network, the candidate values for the number of neural capsules and the
dimensionality of each neuronal vector are {32, 64, 128, 256} and {3, 5, 7, 10},
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respectively. Finally, the Multi-Head attention network selects the number of
attention heads from {4, 8, 16, 32}.

Machine learning algorithms. The machine learning methods contain three
ensemble learning methods (XGBoost35, LightGBM36, and CatBoost37),
SGDClassifier (Stochastic Gradient Descent), and MLPClassifier (Multi-Layer
Perceptron), which are under the scikit-learn60 dependency package in Python
environment. XGBoost adopts a level-wise decision tree construction strategy,
LightGBM uses a leaf-wise construction strategy and CatBoost applies a symmetric
tree structure with full binary decision trees. The SGDClassifier is a stochastic
gradient descent learning model with a regularized linear method. The loss gra-
dient is estimated for each sample at a time, and the model is updated in the
process using an intensity-decreasing schedule. MLP is a forward-structured arti-
ficial neural network, which can solve complex problems quickly. The grid search
procedure is also performed to find the optimal hyperparameters for these five
classifiers. The candidate parameters and the optimal parameter combinations are
summarized in Supplementary Table 2.

Evaluation performance. To evaluate the performance of different computational
methods, we used sensitivity (TPR), specificity (TNR), precision (Pre), accuracy
(ACC), F1-score (F1), the Matthews correlation coefficient (MCC), the area under
the receiver operating characteristic curve (AUROC), and average precision (AP)
as measurement criteria, which can be formulated as below:

TPR ¼ TP
TPþ FN

ð20Þ

TNR ¼ TN
TNþ FP

ð21Þ

Pre ¼ TP
TPþ FP

ð22Þ

ACC ¼ TPþ TN
TPþ FNþ TNþ FP

ð23Þ

F1 ¼ 2 ´
TPR ´ Pre
TPR þ Pre

ð24Þ

MCC ¼ TP ´TN� FN ´ FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ ´ ðTPþ FNÞ ´ ðTNþ FPÞ ´ ðTNþ FNÞ

p ð25Þ

where true positives (TP) and false positives (FP) represent the number of
correctly-predicted binding sites and incorrectly predicted binding sites, respec-
tively. True negatives (TN) and false negatives (FN) represent the number of
correctly predicted non-binding sites and incorrectly-predicted non-binding sites,
respectively. TPR describes the proportion of correctly predicted binding sites in all
positive samples, TNR indicates the proportion of correctly predicted non-binding
sites in the total negative samples, and Pre represents the probability of correct
prediction in all samples with predicted binding sites.

In unbalanced data, since ACC cannot accurately capture the strengths of the
model, we adopted ACC as an additional metric for evaluation. In addition,
another two metrics, AUROC and AP are calculated related to the predicted
probability of each amino acid to measure the unbalanced data. AUROC is not
influenced by sample imbalance and can accurately measure model performance in
unbalanced data61. AP is a weighted average of the accuracy of each threshold in
the dataset, with the change in recall as the weight, which can be defined as follows:

AP ¼ ∑
n

Rn � Rn�1

� �
Pn ð26Þ

where Rn and Pn are the recall and precision at the n-th threshold.

Statistics and reproducibility. The statistical analyses of the data were conducted
using the Python software package. We used the asymmetric bagging algorithm to
focus on the imbalance of the data to reduce its impact on the experimental results.
The reproducibility of experiments was ensured by performing a minimum of three
independent replicates for each condition. Replicates were performed by different
researchers, and the data were combined and analyzed using appropriate statistical
tests. Overall, our experiments were designed to be highly reproducible. All
materials and procedures were clearly described in the methods section, and the
data were carefully collected and analyzed using standard statistical methods. We
believe that these measures have increased the reliability and reproducibility of our
results.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We collected four widely-used benchmark datasets, Dset_186, Dset_72, Dset_164, and
Dset_1291. Dset_186, Dset_72, and Dset_164 were constructed from the PDB database
and contains 422 protein sequences with a resolution of <3.0Å and sequence homology
<25%. Dset_1291 is a dataset from the BioLip database, where a binding site is defined if
the distance between an atom of a residue and an atom of a given protein partner is 0.5Å
plus the sum of the van der Waals radii of the two atoms. All data sets are available for
download at http://www.edlmppi.top:5002/ or https://github.com/houzl3416/EDLMPPI.
git. Besides, the numerical source data for graphs and charts can be downloaded at
https://doi.org/10.6084/m9.figshare.21778913.v1.

Code availability
All the code is available at https://github.com/houzl3416/EDLMPPI.git.
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