Table 3.
Comparison of algorithm performance with different unbalanced dataset processing strategies.
| TPR | TNR | Pre | ACC | F1 | MCC | AUROC | AP | |
|---|---|---|---|---|---|---|---|---|
| Dset_448 | ||||||||
| None | 0.197 | 0.979 | 0.601 | 0.873 | 0.297 | 0.293 | 0.807 | 0.433 |
| Cost-Sensitive | 0.491 | 0.898 | 0.431 | 0.843 | 0.459 | 0.369 | 0.809 | 0.430 |
| Ensemble | 0.452 | 0.922 | 0.477 | 0.858 | 0.464 | 0.383 | 0.820 | 0.460 |
| UnderSampler | 0.652 | 0.798 | 0.336 | 0.778 | 0.444 | 0.350 | 0.809 | 0.435 |
| OverSampler | 0.549 | 0.870 | 0.398 | 0.826 | 0.462 | 0.381 | 0.807 | 0.439 |
| Dset_72 | ||||||||
| None | 0.209 | 0.963 | 0.398 | 0.883 | 0.274 | 0.230 | 0.779 | 0.305 |
| Cost-Sensitive | 0.386 | 0.905 | 0.325 | 0.850 | 0.353 | 0.270 | 0.775 | 0.304 |
| Ensemble | 0.318 | 0.938 | 0.377 | 0.872 | 0.345 | 0.276 | 0.788 | 0.330 |
| UnderSampler | 0.587 | 0.783 | 0.243 | 0.762 | 0.343 | 0.261 | 0.769 | 0.291 |
| OverSampler | 0.464 | 0.870 | 0.298 | 0.827 | 0.363 | 0.271 | 0.779 | 0.315 |
| Dset_164 | ||||||||
| None | 0.134 | 0.978 | 0.570 | 0.825 | 0.217 | 0.213 | 0.741 | 0.404 |
| Cost-Sensitive | 0.418 | 0.868 | 0.412 | 0.787 | 0.415 | 0.284 | 0.744 | 0.404 |
| Ensemble | 0.323 | 0.916 | 0.460 | 0.809 | 0.380 | 0.277 | 0.755 | 0.413 |
| UnderSampler | 0.565 | 0.761 | 0.343 | 0.725 | 0.427 | 0.274 | 0.738 | 0.378 |
| OverSampler | 0.452 | 0.850 | 0.401 | 0.778 | 0.425 | 0.281 | 0.742 | 0.404 |