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Probabilistic embedding, clustering, and
alignment for integrating spatial tran-
scriptomics data with PRECAST

Wei Liu 1,10, Xu Liao 1,10, Ziye Luo 1,2, Yi Yang1, Mai Chan Lau3, Yuling Jiao 4,
Xingjie Shi 5, Weiwei Zhai 6, Hongkai Ji 7, Joe Yeong 3,8 & Jin Liu 1,9

Spatially resolved transcriptomics involves a set of emerging technologies that
enable the transcriptomic profiling of tissues with the physical location of
expressions. Although a variety of methods have been developed for data
integration, most of them are for single-cell RNA-seq datasets without con-
sideration of spatial information. Thus, methods that can integrate spatial
transcriptomics data from multiple tissue slides, possibly from multiple indi-
viduals, are needed. Here, we present PRECAST, a data integrationmethod for
multiple spatial transcriptomics datasets with complex batch effects and/or
biological effects between slides. PRECAST unifies spatial factor analysis
simultaneously with spatial clustering and embedding alignment, while
requiringonly partially shared cell/domain clusters across datasets. Usingboth
simulated and four real datasets, we show improved cell/domain detection
with outstanding visualization, and the estimated aligned embeddings and
cell/domain labels facilitate many downstream analyses. We demonstrate that
PRECAST is computationally scalable and applicable to spatial transcriptomics
datasets from different platforms.

Spatially resolved transcriptomics (SRT) encompass a set of recently
developed technologies that characterize the gene expression profiles
of tissues while retaining information on their physical location. The
methodologies used for resolving spatial gene expression are pri-
marily categorized into in situ hybridization (ISH) technologies (e.g.,
MERFISH1–3, seqFISH4,5, seqFISH+6), and in situ capturing technologies
(e.g., ST7, HDST8, Slide-seq9,10, and 10x Genomics Visium11)12. The in situ
capturing technologies are unbiased and involve transcriptome-wide
expression measurements, while ISH-based methods are targeted and
require prior knowledge of the genes of interest. These technologies
have provided extraordinary new opportunities for researchers to

characterize the transcriptomic landscape within a spatial context;
explore how cells influence and are influenced by the cells around
them13; identify genes with spatial variations other than cell/domain
differences, e.g., cell morphology14; and identify spatial trajectories or
RNA velocity in tissues15,16, among other applications17.

Similar to single-cell RNA-sequencing (scRNA-seq) studies, in SRT
studies of a single slide, identifying the cell/domain clusters for each
spot with the collation of both spatial information and expression
measurements is an important step18–20. Recently, multiple studies
have involved the analysis of SRT datasets from multiple slides,
requiring to further remove unwanted variations from different
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batches. For example, SRT profiles were characterized in 12 human
cortex tissue slides from three adult donors using 10x Visium21 and in
multiple sections from a mouse olfactory bulb (OB) that were equally
distributed along the anterior-posterior axis of the same mouse using
Slide-seqV222. Moreover, when multiple SRT datasets from different
clinical/biological conditions are available, integrative analysis to
estimate shared embeddings of expressions representing variations
between cell/domain types can provide the first step towards detect-
ing genes that are differentially expressed between conditions23. Thus,
it is important to develop rigorous methods that are capable of per-
forming data integration across multiple SRT datasets by aligning
shared embeddings of biological effects between cell/domain types
while accounting for complex batch effects and/or biological effects
between slides24.

An ideal data integration method for SRT datasets should be
capable of the following three tasks: (1) estimating the shared
embeddings of biological effects between cell/domain types across
SRT datasets and slide-specific embeddings that account for local
microenvironments (spatial dimension reduction); (2) aligning the
shared embeddings that capture cellular biological variation across
datasets with heterogeneous batch effects and/or biological effects
between slides (data alignment); (3) clustering the aligned embeddings
to obtain cell/domain clusters across datasets that promote spatial
smoothness (spatial clustering). Most existing data integration meth-
ods, includingMNN24, Scanorama25, Seurat V326, Harmony23, scVI27, and
scGen28, have been developed for scRNA-seq datasets without any
consideration of spatial information. More recently, MEFISTO was
proposed as a way to analyze datasets with repeated spatio-temporal
measurements29, and PASTEwasproposed as amethod to stack and/or
integrate SRT data from multiple adjacent tissue slices into a single
slide, but it is not applicable to the integration of tissue sections from
different individuals30. In addition, most existing methods perform
data integration in low-dimensional space using the principal com-
ponents (PCs) of conventional dimension reduction, e.g., principal
component analysis (PCA), without considering the consistent loss
functions of dimension reduction, alignment acrossdatasets, or spatial
clustering.

To address the challenges presented by SRT data integration and
facilitate the downstream analyses of combinations of multiple tissue
slides, we propose the use of a unified and principled probabilistic
model, PRECAST, to simultaneously estimate low-dimensional
embeddings for biological effects between cell/domain types, per-
form spatial clustering, and most importantly, align embeddings for
normalized gene expression matrices from multiple tissue slides. As a
result, PRECAST can resolve aligned representations, provide out-
standing visualizations, and achieve higher spatial clustering accuracy
for combined tissue slides. The resolved aligned representations and
estimated labels from PRECAST can be used in multiple downstream
analyses, e.g., removing batch effects, identifying differentially
expressed genes under different conditions/stages, and recovering
spatial trajectories/RNA velocity, etc. In addition, PRECAST uniquely
estimates slide-specific embeddings that capture the spatial depen-
dence in neighboring cells/spots, providing an opportunity to under-
stand the spatial impact of various microenvironments. We illustrate
the benefits of using PRECAST through extensive simulations and
analysis of a diverse range of example datasets collated with different
spatial transcriptomics technologies: 10x Visium datasets of 12 human
dorsolateral prefrontal cortex (DLPFC) samples and four hepatocel-
lular carcinoma (HCC) samples, ST datasets from eight mouse liver
tissue sections and Slide-seqV2 datasets from 16 OB tissue slides.

Results
Spatial transcriptomics data integration using PRECAST
Unlike other integration methods that take as input the top (spatial)
PCs and apply multiple steps to remove batch effects and merge the

data, PRECAST takes as input the normalized gene expressionmatrices
from multiple tissue slides, factorizes the input to each matrix into a
latent factor with a shared distribution in each cell/domain cluster
while simultaneously performing spatial dimension reduction and
spatial clustering, and aligning and estimating joint embeddings for
biological effects between cell/domain types across multiple tissue
slides (Fig. 1a). In the dimension-reduction step, we used an intrinsic
conditional autoregressive (CAR) component to capture the spatial
dependence induced by neighboring microenvironments while in the
spatial-clustering step, we used a Potts model to promote spatial
smoothness within spot neighborhoods in the space of cluster labels.
PRECAST applies a simple projection strategy to non-cellular biologi-
cal effects, e.g., batch effects and/or biological effects between slides,
and implicitly accounts for shifts in the centroid of each cluster using
the intrinsic CAR component in the dimension-reduction step (see
“Methods”). These considerations of PRECAST mimic some of the
recent explorations into self-supervised learning and domain adapta-
tion in deep learning but in a parametric manner. We show that PRE-
CAST outperforms existing data integration methods by more
successfully aligning similar clusters acrossmultiple tissue slides while
separating clusters with outstanding visualization. Uniquely, PRECAST
estimates slide-specific embeddings for spatial dependence among
neighboring cells/spots, providing an opportunity to explore the
impact of neighboring microenvironments.

PRECAST canbe applied to SRTdatasets of various resolutions. By
increasing the resolution for SRT datasets, PRECAST can reveal fine-
scale cell-type distributions. In the following analysis, datasets in Slide-
seqV2 with near-single-cell resolution present spatial patterns with
much more “noise” than those of Visium due to the heterogeneity of
the cell-type distributions.Whenwemerged nearby beads in the Slide-
seqV2 datasets, the recovered spatial patterns resembled those from
Visium.

We use the estimated cell/domain labels and finely aligned
embeddings to showcase some downstream analyses, as depicted in
Fig. 1b. First, users can visualize the inferred embeddings for biological
effects between cell/domain types using two components from either
tSNE31 or UMAP32. Second, because the aligned embeddings obtained
from PRECAST only carry information on the biological differences
between cell/domain types, we provide a module to recover the gene
expression matrices with batch effects removed and further identify
genes differentially expressed either across different cell/domain
clusters and/or under different conditions. Third, using these
embeddings, we can identify genes whose spatial variability is not just
due to biological differences between cell/domain types. Fourth, with
the aligned embeddings estimated by PRECAST, we can perform tra-
jectory inference/RNA velocity analysis to determine either the pseu-
dotime or the pattern of dynamics in spatial spots across multiple
tissue slides.

Validation using simulated data
We performed comprehensive simulations to evaluate the perfor-
mance of PRECAST and compare it with that of several other methods
(Fig. 1c andSupplementary Figs. S1–S2). Specifically,weconsidered the
following eight integration methods: Harmony23, Seurat V326,
fastMNN24, scGen28, Scanorama25, scVI27, MEFISTO29, and PASTE30, all of
which can be used to estimate the aligned embeddings among sam-
ples, except PASTE, which can only estimate the embeddings of the
center slice. The simulation details are provided in the “Methods”
section. Briefly, we simulated either the normalized or count matrices
of gene expression to compare PRECAST with other methods in terms
of performance in data integration, dimension reduction, and spatial
clustering. To mimic real data, we also considered the two ways to
generate spatial coordinates and cell/domain labels, i.e., Potts models
and real data in threeDLPFCVisium slices. Using real data inDLPFC,we
considered slides either from different or the same donor. In total, we

Article https://doi.org/10.1038/s41467-023-35947-w

Nature Communications |          (2023) 14:296 2



investigatedfive scenarios: (1) Potts +Count,with threedifferent scales
in batch effects (low, middle, high); (2) DLPFC (slides from different
donors) + Count, with three different scales in batch effects (low,
middle, high); (3) DLPFC (slides from the same donor) + Count; (4)
Potts + logCount; and (5) DLPFC (slides from different donors) + log-
Count. Scenarios 1 and 2 were used to examine the impact of scales in
batch effects on data integration performance.

To quantify the performance of the data integration, we calcu-
lated the F1 scores of the average silhouette coefficients, which sum-
marized two similar metrics of silhouette coefficients into a single
quantity, and two versions of the local inverse Simpson’s Index (LISI):
integration LISI (iLISI) and cell-type LISI (cLISI). iLISI was employed to
assess integration mixing, while cLISI was employed to assess the
separation of each domain cluster. In scenarios 1 and 2, data
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integration performance by all methods dropped as the scale of batch
effects increased. However, PRECAST achieved the best performance
in all methods, with the highest F1 scores for the average silhouette
coefficients. In scenario 3, PRECAST was comparable to PASTE (Fig. 1c,
top panel), and in scenarios 4 and 5, PRECASTmarkedly outperformed
othermethods (Supplementary Fig. S1c). Moreover, PRECASTwas able
to merge spots within common cell/domain clusters across datasets,
while separating spots fromdifferent cell/domain clusters (small cLISI,
Supplementary Fig. S1a, top panel; Supplementary Fig. S1c, middle
panel) and, at the same time, maintaining a sufficient mix of different
samples (large iLISI, Supplementary Fig. S1a, c, bottom panel).

We then evaluated the performance of estimating the embed-
dings induced by neighboring microenvironments in PRECAST. The
estimated embeddings due to neighboring microenvironments were
highly correlated with the underlying truth (Fig. 1c, middle panel;
Supplementary Fig. S1d, top panel), suggesting PRECAST was able to
well recover the spatial dependence of spots withmicroenvironments.
Furthermore, the canonical correlation coefficients decreased as the
scales in batch effects became large. Next, we evaluated the perfor-
mance of the models in obtaining embeddings for biological effects
between cell/domain types. For the average canonical correlation
between the estimated aligned embeddings and the true latent fea-
tures, PRECAST ranked at the top in the majority of scenarios (Sup-
plementary Fig. S1b, top panel; Supplementary Fig. S1d, middle panel).
This suggested that the aligned embeddings estimated by PRECAST
were more accurate. We also showed that Pearson’s correlation coef-
ficients between the observed expression and the estimated cell/
domain labels conditioned on the aligned embeddings from PRECAST
were lower than those from other methods, except for scenario 3
(Supplementary Fig. S1b, d, bottom panel), suggesting PRECAST cap-
tured more relevant information regarding cell/domain clusters and,
thus, facilitated downstream analysis.

Last, we compared the clustering performance of each method.
As a unified method, PRECAST simultaneously estimates embeddings
for biological effects between cell/domain types and cluster labels. For
the othermethods, we sequentially performed spatial clustering based
on each of the estimated embeddings using SC-MEB, except for Seurat
V3, which has its own clustering pipeline based on Louvain. PRECAST
achieved the highest adjusted Rand index (ARI) and normalized
mutual information (NMI) in all considered scenarios (Fig. 1c, bottom
panel, and Supplementary Fig. S2a, b), while the other methods, such
as Seurat V3 and Harmony, were sensitive to the data generation
process. Moreover, we observed that all methods correctly chose the
number of clusters. Notably, when using embeddings from PRECAST,
other clustering methods such as SC-MEB, BASS, BayesSpace, and
Louvain achieved comparable clustering performance to PRECAST
(Supplementary Fig. S3a). PRECASTwas also computationally efficient,
exhibiting linear computational complexity with respect to the num-
ber of genes and the total number of spots (Supplementary Fig. S3b). It
only took ~6 h to analyze adatasetwith 2000genes and600,000 spots
for a fixed number of clusters (K = 7; Supplementary Fig. S3b,
left panel).

Application to human dorsolateral prefrontal cortex Vis-
ium data
We applied PRECAST and the other methods to the analysis of four
published datasets obtained via either Visium, ST, or Slide-seqV2
technologies (see “Methods”). By obtaining the estimated aligned
embeddings and cluster labels fromPRECAST,we couldperformmany
downstream analyses using all tissue slides. Here, we showcase the
differential expression (DE) analyses across detected domains, spatial
variation analysis (SVA) adjusting for aligned embeddings as covari-
ates, and trajectory inference/RNA velocity analysis. To examine the
clustering performance with low-resolution data, we performed
deconvolution analysis to infer the cell compositions of the domains
detected by PRECAST.

To quantitatively show that PRECAST outperforms existing data
integration methods, we first analyzed LIBD human DLPFC data gen-
erated using 10x Visium21 that contained 12 tissue slices from three
adult donors, comprising four tissue slices from each donor. In all 12
tissue slices, the median number of spots was 3844, and the median
number of genes per spot was 1716. The original study provided
manual annotations for the tissue layers based on the cytoarchitecture
that allowed us to evaluate the performance of both the data inte-
gration and accuracy of spatial domain detection by taking themanual
annotations as ground truth. For each method, we summarized the
inferred embeddings for biological effects between cell/domain types
using three components from either tSNE or UMAP and visualized the
resulting tSNE/UMAP components with red/green/blue (RGB) colors in
the RGB plot (Fig. 2a, right-top panel, and Supplementary Figs. S4a, b
to S6a, b). The resulting RGB plots from PRECAST showed the laminar
organization of the human cerebral cortex, and PRECAST provided
smoother transitions across neighboring spots and spatial domains
than those from other methods. For each of the other methods, we
further performed clustering analysis to detect spatial domains using
differentmethods with the inferred embeddings (Fig. 2a, right-bottom
panel, and Supplementary Figs. S4c–S6c).We observed that the results
from PRECAST had stronger laminar patterns and the estimated
aligned embeddings carried more information about the domain
labels (Supplementary Fig. S7a).

A unique feature of PRECAST is its ability to estimate slide-specific
embeddings capturing spatial dependence in the neighboring cells/
spots due to various neighboring microenvironments in different
regions. Supplementary Fig. S8 provides RGB plots of the inferred
embeddings for spatial dependence using three components from
either tSNE or UMAP. We observed that spots in the domain of white
matter had similar microenvironments, while spots in layers 1 to 6 had
two distinct microenvironment patterns from left to right, suggesting
potentially distinct functions in the left and right regions of lay-
ers 1 to 6.

PRECAST can offer outstanding data visualization compared with
other methods. We visualized the inferred embeddings for biological
effects between cell/domain types using two components from tSNE
for eachmethod (Fig. 2b and Supplementary Fig. S7b). The tSNE plots
for PRECAST show that spots from different slices were well mixed

Fig. 1 | Schematic overview of PRECAST and simulation results. a PRECAST is a
unified probabilistic factor model that simultaneously estimates aligned embed-
dings and cluster labels with consideration of spatial smoothness in both the
cluster label and low-dimensional embedding spaces. Normalized gene expression
matrices from multiple tissue slides are used as input. b Representative PRECAST
downstream analyses. c In the simulations, we investigated two ways to generate
spatial coordinates and cell/domain labels for count matrices: Potts models (sce-
nario 1) and three cortex tissues from theDLPFCdata (scenario 2).We examined the
impact of scales in batch effects (low, middle, and high) on the data integration
performance using scenarios 1 and 2. We also considered an additional scenario 3,
which was favorable for PASTE. We evaluated performance in terms of data inte-
gration, the estimation of aligned embeddings, the estimation of slide-specific

embeddings due to neighboring microenvironments, and spatial clustering
(n = 11,425 spots over 50 independent replicates), using F1 scores of average sil-
houette coefficients (F1 score), canonical correlation coefficients (CCor), and the
adjusted Rand index (ARI). ARIs displayed for the other methods were evaluated
based on the results of the spatial clustering method SC-MEB. PRECAST out-
performed all other data integration methods in scenarios 1 and 2, and its perfor-
mance was comparable to PASTE in scenario 3. In simulations, only PRECAST
estimated the slide-specific embeddings. We also evaluated the CCor with under-
lying truth in scenarios 1 and 2. In the boxplot, the center line, box lines, and
whiskers represent the median, upper, and lower quartiles, and 1.5 times inter-
quartile range, respectively.
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(Fig. 2b, top panel) while the domain clusters were well segregated
(Fig. 2b, bottom panel), and there were significant improvements in
visualization in comparison to the other methods, including the
method applied with no corrections. Supplementary Fig. S7c shows
that PRECAST achieved the best data integration in terms of F1 scores,
iLISI, and cLISI. To evaluate the clustering accuracy, we used both ARI
and NMI. As shown in Fig. 2c and Supplementary Fig. S7d, PRECAST
achieved the highest ARI and NMI for the separate evaluation and

combined evaluation: the median ARI was 0.434 for PRECAST, 0.382
for Scanorama, and 0.406 for scVI in the separate evaluation; and the
ARI was 0.374 for PRECAST, 0.216 for Scanorama, and 0.301 for scVI in
the combined evaluation. Using embeddings aligned from PRECAST,
we further demonstrated that other clustering methods could achieve
a similar clustering performance to PRECAST (Supplementary Fig. S9).
A heatmap of Pearson’s correlation coefficients among the detected
domains shows the good separation of the estimated aligned
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embeddings across domains (Fig. 2d) and the correlations between
deeper layers were high, e.g., there were high correlations between
layers 5 and 6, while correlations among the separated layers were low.

A key benefit of PRECAST is its ability to estimate aligned
embeddings for biological effects between cell/domain types and
joint labels for all slides. We performed DE analysis for the
combined 12 slices (see “Methods”). In total, we detected 1331 DE
genes with adjusted p-values of less than 0.001 among the
10 spatial domains identified by PRECAST, with 314 genes being
specific to Domain 5, which corresponded to white matter (Sup-
plementary Data 1). Many of these genes were reported to be
enriched in different layers of DLPFC, i.e., PCP4 (Domain 2,
layer 5)19, HOPX (Domain 1, layer 1/3), and ENC1 (Domain 4, layer
2/3)33 (Fig. 2e and Supplementary Figs. S10–S12). Next, we per-
formed trajectory inference using the aligned embeddings and
domain labels estimated by PRECAST (Supplementary Fig. S13).
The pseudotime analysis inferred using the aligned embeddings
from PRECAST was “sample-invariant” compared with that using
embeddings from either PCA or DR-SC34 for a single slide (Sup-
plementary Fig. S14). In total, we identified 858 genes associated
with the estimated pseudotime with adjusted p-values of less than
0.001. Among them, 373 were identified as DE genes in at least
one domain (Fig. 2f and Supplementary Data 2). We further found
that the pseudotime-associated genes identified by PRECAST
were significantly enriched for nervous system development
(Fig. 2g). Among the most enriched of these genes was GFAP,
which encodes glial fibrillary acidic protein and plays an impor-
tant role in human brain development35.

To further show that the estimated embeddings for biological
effects between cell/domain types from PRECAST were well aligned
across tissue slides, we performed SVA analysis with the aligned
embeddings from PRECAST as covariates for each slice to identify
spatially variable genes (SVGs) with nonlaminarpatterns. A detailed list
of the genes identified at a false discovery rate (FDR) of 1% is available
in Supplementary Data 3. Interestingly, many of the identified genes
were related to immune function. For example, ISG15 encodes a
ubiquitin-like molecule induced by type I interferon, and ISG15 defi-
ciency increases antiviral responses in humans36,37. Many studies in the
literature have highlighted the importance of immune-brain interac-
tions to the development of many disorders of the central nervous
system38,39. Further enrichment analysis showed the genes from each
slice to be highly enriched in many common pathways, suggesting the
embeddings for biological effects between cell/domain types were
effectively aligned by PRECAST (Fig. 2h and Supplementary
Figs. S15–S19).

To demonstrate the robustness of PRECAST, we applied different
methods to select top genes as input. As presented in Supplementary
Fig. S20, when using the top 2000 highly variable genes (HVGs) as
input, we observed similar patterns in results from different data
integration methods. Supplementary Fig. S21 confirms the robustness
of PRECAST by using top genes identified by different methods, such
as SPARK40, SPARK-X41, SpatialDE42, and nnSVG43, as input.

Application to mouse liver ST data
We further applied PRECAST and other methods to analyze eight
sections of wild-type adult, female mouse livers from the caudate and
right liver lobes of three femalemice using ST technology44. In all eight
sections, the median number of spots was 640, and the average
number of genes was 15,302. The original study provided manual
annotations based on marker genes that allows us to evaluate the
performance of both the data integration and accuracy of spatial
domain detection by taking the manual annotations as ground truth.
For each method, we summarized the clustering performance of each
section and combined sections using both ARI and NMI (Fig. 3a, top
panel, and Supplementary Fig. S22a). PRECAST achieved the highest
ARI and NMI in both cases: in each separate section, the median ARI
was0.24 for PRECAST, 0.18 for SeuratV3, and0.02 for scVI; and jointly,
in the combined sections, the value of ARI was 0.23 for PRECAST, 0.18
for Seurat V3, and 0.02 for scVI. We visualized the cluster labels
obtained by PRECAST and other methods as well as the manual
annotations (Supplementary Fig. S23) and found PRECAST performed
best for each individual sample. On the other hand, PRECAST achieved
better data integration than most of the other methods in terms of
F1 score, iLISI, and cLISI (Fig. 3a, bottom panel, and Supplementary
Fig. S22b) with comparable conditional correlations (Supplementary
Fig. S22c). The tSNE plots for PRECAST show that spots from different
sections were well mixed (Fig. 3b and Supplementary Fig. S22d, top
panel), while the domain clusters were well segregated (Fig. 3b and
Supplementary Fig. S22d, bottom panel), and there were significant
improvements in visualization over other methods, including the
method applied with no corrections. We further visualized spatial
dependence due to variations in neighboring microenvironments
using RGB plots of the inferred slide-specific embeddings (Supple-
mentary Fig. S22e, f) and observed various patterns of microenviron-
ments in the different sections. Using embeddings aligned from
PRECAST, we further demonstrated that (spatial) clustering methods
could achieve comparable clustering performance to PRECAST (Sup-
plementary Fig. S24).

As a key feature, PRECAST estimates aligned embeddings for
biological effects between cell/domain types and joint labels for the
combined sections. We performed DE analysis of the combined sec-
tions (see Methods). In total, we detected 367 DE genes with adjusted
p-values of less than 0.001 in all seven spatial domains detected by
PRECAST (SupplementaryData 4).A heatmapof thefindings shows the
good separation of the DE genes across different spatial domains
(Fig. 3c). Many of these genes are markers that define particular cel-
lular regions in liver lobes, i.e., Cyp2e1, Cyp2c37, Oat, and Slc1a2 for
central veins (Domains 1–2)44,45; Cyp2f2, Hal, Sds, and Ctsc for portal
veins (Domains 6-7)44; and Gsn, Vim, and Col3a1 for the mesenchyme
(Domain 5)44. Further enrichment analysis shows that genes specific to
both central veins and portal veins were highly enriched formetabolic
processes, with central veins that were more enriched for fatty acid
metabolism, while portal veins that weremore enriched for amino acid
metabolism (Supplementary Fig. S25). By performing enrichment
analysis for DE genes unique to each of two subtypes in central/portal

Fig. 2 | Analysis of human DLPFC data (n = 47,680 locations over 12 tissue
sections). a Left panel: H&E image andmanual annotation of sample ID151674. Top
panel: UMAP RGB plots of sample ID151674 for PRECAST, Seurat V3, Harmony, and
fastMNN. Bottom panel: Clustering assignment heatmaps for these four methods.
Color scheme used in clustering assignment heatmap for PRECAST is the samewith
(b) and (d). b tSNE plots for these four data integration methods with right-most
column showing the analysis without correction; domains are labeled as in (d).
cBox/violin plot ofARI values for PRECASTandothermethods; SC-MEBwas used in
the other methods for clustering based on their aligned embeddings. In the box-
plot, the center line and box lines denote the median, upper, and lower quartiles,
respectively. d Heatmap of Pearson’s correlation coefficients among detected

domains. L1-L6, Layer 1–Layer 6; WM, white matter; NA, undetermined. e Spatial
expression patterns of DE genes for Domain 1 (HOPX), Domain 2 (PCP4), Domain 4
(ENC1),Domain 5 (CNP),Domain 5 (MBP), andDomain8 (NEFL) for sample ID151674.
f Spatial expression patterns of genes associated with pseudotime: MOBP, GFAP,
MAG, TF,MBP, and COX1, where the arrow represents the direction of the increased
pseudotime. g Bubble plot of −log10(p-values) for GO enrichment analysis of genes
associated with pseudotime. The p-values are based on one-sided hypergeometric
tests without multiple testing adjustment. h Bubble plot of −log10(p-values) for
KEGG enrichment analysis of SVGs while adjusting domain-relevant aligned
embeddings by PRECAST for sample ID151674. The p-values are basedon one-sided
Fisher’s exact tests with the Benjamini-Hochberg FDR corrections.
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veins, we found pathways unique to each subtype of central/portal
veins (Supplementary Fig. S26).

To examine the cell compositions of each spatial domain detected
by PRECAST, we performed cell-type deconvolution analysis of all
mouse liver datasets using scRNA-seq data in the Mouse Cell Atlas
(MCA)46 as the reference panel. To assess the performance in spatial
clustering, we evaluated the associations between the cell type

proportions obtained by cell-type deconvolution and the cluster labels
estimated by PRECAST and other methods. The results displayed in
Fig. 3d suggest that PRECAST retained the largest MacFadden’s
adjusted R2 than the other methods. In addition, cell-type deconvolu-
tion enabled us to spatially map 17 cell types annotated in the MCA
dataset for liver tissue sections (Fig. 3e and Supplementary
Figs. S27–S28). We observed a high proportion of estimated values for
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periportal and pericentral hepatocytes, which is consistent with the
findings in the existing literature44.

Lastly, we performed trajectory inference using aligned embed-
dings and estimated domain labels from PRECAST, to examine the cell
lineages in the detected domains. Figure 3f shows the inferred pseu-
dotimemapped to PRECAST-induced tSNE, which suggests the central
veins differentiated earlier than portal veins, in accordance with find-
ings that showedWnts and R-spondin3 signals were released from the
central veins and transited along the venular wall towards the perive-
nous hepatocytes45. Based on the inferred pseudotime, we identified
differentially expressed genes along the cell pseudotime using
TSCAN47. The heatmapof the expression of the top 20most significant
genes (Fig. 3g) suggested the occurrence of some interesting dynamic
expression patterns over pseudotime.

We further confirmed the robustness of PRECAST by using top
genes identified by different methods as input (Supplementary
Figs. S29 and S30).

Application to mouse olfactory bulb Slide-seqV2 data
In Visium Spatial Gene Expression, barcoded beads (55μm diameter)
with a center-to-center distance of 100μmare used to capturemRNA11.
The Slide-seq technique was developed to perform for high-resolution
SRT using 10-μm-diameter barcoded beads9,10, and Slide-seqV2 further
improved the detection sensitivity. To show the scalability of PRE-
CAST, we analyzed a mouse OB dataset generated using Slide-seqV2
technology22. In this dataset, spatial transcriptomic information was
obtained from a total of 20 OB sections distributed evenly along the
anterior-posterior axis. We removed four slides due to the quality of
the sections from the end of the mouse OB region, and analyzed 16
containing 21,571 genes, on average, fromover a total of 693,863 spots
using PRECAST and other methods. After quality control (QC), we
obtained data of a lower resolution (~4000 spots) by collapsing nearby
spots in each slide (see “Methods”), and the resulting resolution was
similar to that of Visium (average of 10 cells per spot). To further
examine the structure of the mouse OB, we relied on the structural
annotations in the Allen Brain Atlas48 (Fig. 4a). With near-single-cell
resolution, the identified aligned embeddings and cluster labels both
showed more fine-scale cell-type distribution patterns in the mouse
OB49. In comparison, when we lowered the resolution, PRECAST esti-
mated the aligned embeddings and cluster labels with smoother spa-
tial patterns at the expense of less detailed local spatial information
(Fig. 4b and Supplementary Figs. S31–S34). Moreover, the resulting
RGB plots from PRECAST showed the laminar organization of the
mouse OB, and PRECAST provided smoother transitions across
neighboring spots and spatial domains than the other methods (Sup-
plementary Figs. S31a, b to S34a, b). We next visualized the inferred
aligned embeddings for biological effects between cell/domain types
using two components from tSNE from each method (Fig. 4c and
Supplementary Fig. S35) and showed that, using PRECAST, the spatial
spots were mixed well across the 16 slides, while the cell/domain
clusterswerewell segregated, suggesting PRECASTwasmore effective
at spatial data integration. We further visualized the inferred slide-
specific embeddings for spatial dependence due to variations in the

microenvironment using RGB plots (Supplementary Fig. S36) and
observed a few microenvironmental patterns in the inner layers (e.g.,
the granule cell layer, GCL), middle layers (e.g., the glomerular layer,
GL), and outer layers (e.g., the olfactory nerve layer, ONL).

At reduced resolution, PRECAST detected 12 spatial domains with
laminar organization, including the rostral migratory stream (RMS,
Domain 1), GCL (Domain 2), GCL/inner plexiform layer (GCL/IPL,
Domain 3), mitral cell layer (MCL, Domain 4), outer plexiform layer
(OPL, Domain 5), GL (Domains 6 and 7), and ONL (Domains 8), with
Domains 9–12 belonging to low-quality regions or experiment arti-
facts. To characterize the transcriptomic properties of the spatial
domains identified by PRECAST, we performed DE analysis of the
combined 16 tissue slides (see “Methods”). In total, we detected 4131
DE genes with adjusted p-values of less than 0.001 in all 12 spatial
domains detected by PRECAST (Supplementary Data 5), including
representative genes that define particular cellular layers in themouse
OB, e.g., Sox2ot and Sox11 (RMS)50,51. The heatmap of the findings
shows the good separation of the DE genes across different spatial
domains (Supplementary Fig. S37), andwe found that genes specific to
Domain 1 (RMS) were enriched for myelin sheath and structural con-
stituents of myelin sheath (Supplementary Fig. S38). Compared with
the reduced-resolution data, when near-single-cell level resolutionwas
used, PRECAST identified 24 cell clusters, including fine-scale cell-type
clusters. To better visualize each detected cell cluster, we plotted a
heatmap of each cluster assignment for all 16 slides (Supplementary
Figs. S39–S40). A heatmap of DE genes across different cell clusters
showed Clusters 1–3 were subtypes of granule cells, and Clusters 4-6
belonged to cells in MCL and GL (Supplementary Fig. S41).

To examine the cell compositions in each spatial domaindetected
by PRECAST at the reduced resolution, we performed cell-type
deconvolution analysis of all 16 tissue slides using scRNA-seq data
from adult mouse OB as the reference panel52. As shown in Fig. 4d and
Supplementary Fig. S42a, Domain 1 (RMS) was enriched for immature
neurons. Immature neurons reportedly migrate to the OB through
RMS53. Unsurprisingly, we found that Domains 2–3 (GCL) were domi-
natedby twoprimary subtypes of granule cell, with a larger proportion
of immature neurons in Domain 2 (inner) and an enrichment of mitral
and tufted cells in Domain 4 (MCL). Domain 8 (ONL) was primarily
enriched in olfactory sensory neurons (OSNs); OSNs express odorant
receptors in the olfactory epithelium54. We additionally quantified the
associationbetween the inferred cell type proportions and the domain
labels estimated by PRECAST and the other methods using MacFad-
den’s adjusted R2 (Fig. 4e, top panel), and PRECAST achieved the
highest R2. Then, we manually annotated each spot with the cell type
present at the highest proportion55 and quantitatively evaluated the
clustering performance of PRECAST and other methods. As shown in
Fig. 4e (bottom panel) and Supplementary Fig. S42b, c, PRECAST
achieved the highest ARI and NMI values assessed separately for each
slide or jointly for the combined slides. Further analyses showed that
PRECAST achieved better data integration, with the highest iLISI and
the lowest cLISI (Supplementary Fig. S42d), and maintained compar-
able conditional Pearson’s correlations with the other methods (Sup-
plementary Fig. S42e).

Fig. 3 | Analysis of mouse liver ST data (n = 4865 locations over 8 tissue sec-
tions). a Top panel: Box/violin plot of ARI values of each sample for PRECAST and
the other methods (left); bar plot of ARI value of combined samples for PRECAST
and other methods (right). Bottom panel: Box/violin plots of cLISI and iLISI values
for PRECAST and other methods. Color scheme of each method is the same as in
(d). In the boxplot, the center line and box lines denote the median, upper, and
lower quartiles, respectively. b tSNE plots for four data integration methods, with
the right-most column showing analysis without correction. Color scheme of each
domain is the same as in (c) and (g). cHeatmapof differentially expressed genes for
each domain identified by PRECAST. CV-1, central veins 1; CV-2, central veins 2;
Endo, endothelial cells; Hep, hepcidin-related cells; Mes, mesenchymal-related

cells; PV-1, portal veins 1; PV-2, portal veins 2. d Bar plot of McFadden’s adjusted R2

values for PRECAST and other methods. McFadden’s adjusted R2 measures the
association between the cluster label obtained by each method and the cell pro-
portion obtained by RCTD cell-type deconvolution, and a larger value indicates a
stronger association. e Visualization of the cell type proportions mapped to spatial
coordinates for six cell types of the first three samples. f Visualization of the
combined trajectory inferred by PRECAST in tSNE plot of all samples. Domains 1-2
and Domains 6-7 representing central veins and portal veins, respectively, are cir-
cled. g Heatmap for genes with expression change in the Slingshot pseudotime
inferred by PRECAST.
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We performed trajectory inference to examine the cell lineages
among the detected domains using aligned embeddings and estimated
domain labels from PRECAST. In general, the estimated trajectory
showed an “inside-out” sequence, consistent with the general under-
standing that OB neurons migrate from the subventricular zone along
the RMS to theOB, beforemigrating radially out of the RMS in an inside-
out sequence56 (Fig. 4f and Supplementary Fig. S43a). Further DE ana-
lysis identified genes along the pseudotime (Supplementary Fig. S44b).

Application to hepatocellular carcinoma Visium data
To study the dynamics of tumorigenesis in tumors and tumor-adjacent
tissues,we further analyzed four slides of in-houseHCCdata generated
using the 10x Visium platform, with two slides from tumors (HCC1 and
HCC2) and two from tumor-adjacent tissues (HCC3 andHCC4) froman
HCC patient. The median number of spots was 2748, and the median
number of genes per spot was 3635. Figure 5a shows a histology image
(top panel) with manual annotations for tumor/normal epithelium
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(TNE) and stroma provided by a pathologist (bottom panel). Con-
sistent with the DLPFC data, the RGB plots generated by PRECAST
clearly segregated the tissue slices into multiple spatial domains
(Fig. 5b, top panel), with neighboring spots and spots in the same
domain across multiple slides more closely sharing similar RGB colors
than those generated by other methods (Supplementary Fig. S44a, b).
Similarly, the PRECAST spatial heatmaps of clustering assignment for
the four tissue slides resembled the corresponding RGB plots and
presented more spatial patterns across the tissue slides than those
from the other methods (Fig. 5b, bottom panel; Supplementary
Fig. S44c). We further visualized the inferred embeddings for biolo-
gical effects between cell/domain types using two components from
tSNE for each method (Fig. 5c and Supplementary Fig. S45a), in which
the tSNE plots for PRECAST showed that spots from different slices
weremixedwell (Fig. 5c, toppanel)while the domain clusterswerewell
segregated (Fig. 5c, bottom panel), with significant improvements in
visualization. A heatmap of Pearson’s correlation coefficients among
the detected domains shows the good separation of estimated
embeddings across domains (Supplementary Fig. S45b), in which
correlations between regions in TNE were high, and correlations
between regions for TNE and stroma were low. We further visualized
the spatial dependencedue tomicroenvironment variations usingRGB
plots of the inferred slide-specific embeddings (Supplementary
Fig. S46a) and observed variations in microenvironmental patterns
between Domains 1 and 3, and between Domains 4 and 5.

To characterize the transcriptomic properties of the spatial
domains identified by PRECAST, we performed DE analysis of the
combined four tissue slides (see Methods). In total, we detected 2093
DE genes with adjusted p-values of less than 0.001 in all nine spatial
domains detected by PRECAST, with 539 genes being specific to
Domains 1–5, which corresponded to TNE regions (Supplementary
Data 6). A heatmap and ridge plots of the findings showed the good
separation of the DE genes across different spatial domains (Supple-
mentary Figs. S46b, S47–S48). In TNE regions (Domains 1–5), we fur-
ther found that genes specific to Domains 1 and 5were highly enriched
in pathways of chemical carcinogenesis DNA adducts and chemical
carcinogenesis receptor activation. Genes specific to Domain 4 were
enriched in signaling pathways of RAF1 mutants and signaling by RAS
mutants, and genes specific toDomains 2 and 3werehighly enriched in
complement and coagulation cascade pathways (Supplementary
Fig. S49). Genes specific to Domains 6–9 were enriched in the angio-
genesis pathway, and we found 40 out of 427, 34 out of 606, 25 out of
281, and 18 out of 240 angiogenesis signature genes, respectively, in
Domains 6–9, from multiple studies57–60. Interestingly, Domains 1–3
wereonly present in the tumor tissues (HCC1 andHCC2),Domain 5was
only present in the tumor-adjacent tissues (HCC3 and HCC4), while
Domain 4 was shared across the tumor and tumor-adjacent tissues.

To identify SVGs other than those that were merely relevant to
domain differences, we performed SVA analysis with the embeddings
estimated by PRECAST as covariates for each slice. A detailed list of
genes identified at an FDR of 1% is available in Supplementary Data 7.
By performing functional enrichment analysis of these SVGs, we
detected SVGs adjusted for domain-relevant covariates to be highly
enriched in many common pathways in the four HCC slices, e.g.,

cytoplasmic translation, and cytosolic ribosome (Supplementary
Figs. S50–S51).

Next, to examine the cell compositions of each spatial domain
detected by PRECAST, we performed cell-type deconvolution analysis
of all four HCC slides using scRNA-seq data as the reference panel (see
Methods). The scRNA-seq reference panel consisted of malignant and
tumor microenvironment cells, including cancer-associated fibro-
blasts (CAFs), tumor-associated macrophages (TAMs), tumor-
associated endothelial cells (TECs), cells of an unknown entity but
expressing hepatic progenitor cell markers (HPC-like), and immune
cells61. As shown in Fig. 5d, e and Supplementary Fig. S52a, the pro-
portions of malignant cells were substantially higher in Domains 1–5,
while HPC-like cells were seen at higher proportions in Domain 7. In
Domain 6, we observed an increased proportion of TAMs and immune
cells and genes specific to this domain included TGFB1 and MMP2,
which have been used for the classification of TAMs62,63.

The estimated aligned embeddings and cluster labels can also be
used inRNAvelocity analysis to investigate thedirected transcriptional
dynamics of tumorigenesis when spliced and unspliced mRNA are
available (see “Methods”). Interestingly, two cell lineages were identi-
fied, with one that originated in Domain 2 (TNE) and spread to
Domains 4 and 5 (TNE), followed by Domains 6, 7, and 9 (stroma), and
the other that originated in Domains 1 and 3 (TNE) and spread to
Domain 8 (stroma). The TNE regions inDomain 2 residing inHCC1may
play a key role in tumorigenesis with Domain 4 (TNE) shared among
the four slides and Domain 5 (TNE) in the tumor-adjacent tissues
(Fig. 5f and Supplementary Fig. S52b). To infer cell states in the iden-
tified TNE, we further performed RNA velocity analysis using the spots
identified in Domains 1–5. An expression heatmap of the top genes
associated with cell states with induction close to 0 and repression
close to 1 is shown in Fig. 5g (see “Methods”). The TNEs in Domains 1
and 2 tended to be transcriptionally active, while TNEs in Domains 4
and 5 tended tobe repressed and showno transcription. The top genes
associated with cell states included SPINK1, RPL30, and IL32, which
highlights the importance of genes associated with cell states in
HCC64–66.

Discussion
PRECAST takes, as input, matrices of normalized expression levels and
the physical location of each spot across multiple tissue slides. The
output of PRECAST comprises all aligned embeddings for cellular
biological effect, slide-specific embeddings that capture spatial
dependence in neighboring cells/spots, and estimated cluster labels. In
contrast to other existing methods of data integration, PRECAST is a
unified and principled probabilistic model that simultaneously esti-
mates embeddings for cellular biological effects, performs spatial
clustering, and more importantly, aligns the estimated embeddings
across multiple tissue sections. Thus, we recommend applying PRE-
CAST first before a comprehensive data analysis pipeline is deployed.
By applying PRECAST, the aligned embeddings and estimated cluster
labels can be used for many types of downstream analyses, such as
visualization, trajectory analysis, and SVA and DE analysis for com-
bined tissue slices. In more detail, we developed a module to further
remove batch effects across multiple tissue slides based on

Fig. 4 | Analysis of mouse olfactory bulb data (n = 594,890 locations over 16
tissue sections). a Structure of themouse olfactory bulb annotated using the Allen
Brain Atlas. b Clustering assignment heatmaps for 16 tissue slides by PRECAST,
where the first row shows samples 1–6, the second row samples 7–12, and the last
row samples 13–16 (RMS, rostral migratory stream; GCL, granule cell layer; IPL,
inner plexiform layer; MCL, mitral cell layer; OPL, outer plexiform layer; GL, glo-
merular layer; ONL, olfactory nerve layer). Color scheme for domains detected in
PRECAST is as in (c) and (d), and the order of domain labels in (b) is the same as in
(c), (d), and (e). c tSNE plots for four data integration methods with the right-most

column showing analysis without correction. d Percentage of different cell types in
each domain detected by PRECAST with scaling. e MacFadden’s adjusted R2

between the inferred cell type proportions and the estimated domain labels by
PRECAST and other methods (top panel); boxplot of ARI values of 16 samples for
PRECAST andothermethods, where each spot is annotated using the cell type, with
the highest proportion from the spatial deconvolution (bottom panel). In the
boxplot, the center and box lines denote the median, upper, and lower quartiles,
respectively. (f) Visualization of the trajectory inferred by PRECAST in spatial
heatmap for samples 1–8.
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Fig. 5 | Analysis of data for four human HCC sections. a Top panel: H& E images
from four tissue slides. Bottom panel: Manual annotation by a pathologist of four
tissue slides. b Top panel: UMAP RGB plots of PRECAST for four tissue slides.
Bottom panel: Clustering assignment heatmaps for four tissue sections by PRE-
CAST. Color scheme for clustering assignment heatmap in PRECAST is the same as
in (c), (f), and (g).c tSNEplots for four data integrationmethodswith the right-most

column showing analysis without correction; domains are labeled as in (e) and (f).
TNE, tumor/normal epithelium. d Spatial heatmap of deconvoluted cell propor-
tions in malignant cells, immune cells, and HPC-like cells. e Percentage of different
cell types in each domain detected by PRECAST, with scaling to the summation of
all cell types across all domains equal to 100%. f PC plot of estimated RNA velocity.
g Heatmap of genes with expression change in latent time.
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housekeeping genes,making expression data comparable for different
cell/domain clusters. Thismodule is also applicable to the examination
of expressional differences caused by multiple conditions when such
information on tissue slides is obtainable.

PRECAST simultaneously performs dimension reduction and
spatial clustering while using simple projections to align embeddings,
and uniquely estimating embeddings that capture spatial dependence
of neighboring cells/spots due to variedmicroenvironments. Recently,
Liu et al.34 showed that, compared with methods that perform
dimension reduction and spatial clustering sequentially18–20, joint
methods can estimate embeddings for cellular biological effects more
efficiently while accounting for the uncertainty in obtaining low-
dimensional features from sequential analysis. A similar strategy has
been described in previous self-supervised learning literature67,68.
PRECAST also takes advantage of CAR to account for the local
microenvironments of neighboring spots, and an intrinsic CAR com-
ponent has been used to promote spatial smoothness in the observed
expressions of SRT data69. We showed that, by projecting non-cellular
biological effects onto cellular biological space, different sample slides
exhibit a constant shift in the centroid of each cell/domain type. With
the assistanceof jointmodeling, we can use a subclass ofCAR, intrinsic
CAR, to simultaneously account for both smoothness in neighboring
embeddings and shift across batches due to non-cellular biological
effects such as complex batch effects.

With the advent of high-throughput technologies for SRT, data
integration is particularly relevant for analyzing SRT datasets from
multiple tissue slides. Analysis of a single section with current state-of-
the-art techniques, e.g., 10x Visium and Slide-seqV2, only covers a tiny
area of the region of interest, and it takes a few or dozens of slides to
cover the whole tissue/organ. In this case, biological variations
between cell/domain types are often confounded by factors related to
data generation processes.Methods in data integration, which serve as
the first step before downstream analyses, not only align the embed-
dings but also estimate the shared cell/domain clusters across
samples23–26. Most existing methods of data integration were designed
to analyze scRNA-seq data without considering additional spatial
information in the SRT data.

We examined the SRT data generated by three major platforms,
10xVisium, ST, andSlide-seqV2,withdifferent spatial resolutions.With
10x Visium, mRNA is captured in 55-μm-diameter spots, while Slide-
seqV2 achieves a higher resolution with 10μm-diameter spots. As
common sense implies, with low-resolution datasets, PRECAST
recovers aligned embeddings for cellular biological effects and cluster
labels with smoother spatial patterns while losing the detailed local
spatial information. Whereas, at near-single-cell resolution, the iden-
tified aligned embeddings and cluster labels showmore fine-scale cell-
type distribution patterns. Using four datasets, we demonstrated that
PRECAST can successfully perform data integration with aligned
embeddings across tissue sections, such that spots across different
tissue sections are well mixed while cell/domain clusters are well
segregated, improve clutering performance, and detect varied
microenvironments in tissues. When applied to an HCC dataset, PRE-
CAST identified five spatial domains belonging to TNE cells that were
consistent with both manual annotations and spatial deconvolution.
We further performed RNA velocity analysis to show the potential
velocity of spots in different regions, shedding light on the tumor-
igenesis in the context of the tissues. To demonstrate the scalability of
PRECAST, we analyzed a Slide-seqV2 dataset of 16 slides equally dis-
tributed along the anterior-posterior axis of a mouse OB.

PRECAST provides opportunities for new exciting research
routes. Firstly,whenSRTdatasets of single-cell resolution are available,
its use can be extended to the integration of multimodal single-cell
data. For example, integrating single-cell ATAC-seq will allow users to
examine cell-type-specific regulatory mechanisms in the spatial con-
text of tissues. Secondly, it would be interesting to integrate single-

cell-resolution SRT datasets with CITE-seq data, thus integrating spa-
tial transcriptomics with immunophenotyping, in which surface pro-
teins are detected by antibody-derived tags. This would enable the
exploration of surface proteins not measured in SRT datasets.

Methods
PRECAST model
Here, we present a basic overview of PRECAST, and further details are
available in the Supplementary Notes. PRECAST is a data integration
method for SRT data from multiple tissue slides. The proposed
method involves simultaneous dimension reduction and spatial clus-
tering built on a hierarchicalmodel with two layers, as shown in Fig. 1a.
The first layer, the dimension-reduction step, relates gene expression
to the shared latent embeddings, while the second layer, the spatial-
clustering step, relates the shared latent embeddings and spatial
coordinates to the cluster labels. In the dimension-reduction step, an
intrinsic CAR model captures the spatial dependence induced by
neighboring microenvironments in the low-dimensional embedding
space, while in the spatial-clustering step, a Potts model promotes
spatial smoothness in the cluster label space. Using simple projections
of the batch effects and/or biological effects of slides onto the space of
biological effects between cell/domain types, PRECAST aligns cell/
domain clusters across multiple tissue slides with the shared dis-
tributions of embeddings of each cell/domain and detects their cell/
domain labels. With M SRT datasets, we observe an nr × p normalized

expression matrix Xr = ðxr1, � � � ,xri, � � � ,xrnr
ÞT for each sample

r(=1,⋯,M), where xri = ðxri1, � � � ,xripÞ
T
is a p-dimensional normalized

expression vector for each spot sri 2 R2 of sample r on square or
hexagonal lattices, among others; while the cluster label of spot sri,
yri∈ {1,⋯,K}, and q-dimensional shared embeddings, zri’s, are unavail-
able.Without lossof generality, we assume that, for each sample r,xri is
centered, and PRECAST models the centered normalized expression
vector xriwith its latent low-dimensional feature, zri, and class label, yri,
as

xri =Wðzri + vriÞ+ εri,εri ∼Nð0,Λr Þ, ð1Þ

zri∣yri = k ∼Nðμk ,ΣkÞ, ð2Þ

where Λr = diag(λr1,⋯,λrp) is a diagonal matrix for residual variance,
W 2 Rp×q is a loading matrix that transforms the p-dimensional
expression vector into q-dimensional embeddings shared across M
datasets,μk 2 Rq× 1 and Σk 2 Rq×q are themean vector and covariance
matrix for the kth cluster, respectively, and vri is a q-dimensional slide-
specific latent vector that captures the spatial dependence among
neighboring spots and aligns embeddings across datasets. Equation (1)
is related to the high-dimensional expression vector (xri) in p genes
with a low-dimensional feature (zri) via a probabilistic PCA model70

with consideration of spatial dependence while Eq. (2) is a Gaussian
mixturemodel (GMM)71 for this latent feature among all spots acrossM
datasets. To promote spatial smoothness in the space of cluster labels,
we assume each latent class label, yri, is interconnected with the class
labels of its neighborhoods via a discrete hidden Markov random field
(HMRF). In detail, we use the following Potts model72 for the latent
labels,

PðyrÞ=CrðβrÞ�1 exp � 1
2

X
i

X
i02Nri

βrð1� δðyri,yri0 ÞÞ
8<
:

9=
;, ð3Þ

where Cr(βr) is a normalization constant that does not have a closed
form, Nri is the neighborhood of spot sri in sample r, and βr is the
sample-specific smoothing parameter that captures the label similarity
among the neighboring spots. However, we assume a continuous
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multivariate HMRF for the vector, vri, which captures spatial
dependence in the embedding space. In detail, we assume an intrinsic
CAR model73 for vri

vri∣v½nr �ni ∼Nðμvri
,m�1

ri ΨrÞ, ð4Þ

where subscript ½nr �ni denotes all spots but sri in sample r, mri is the
number of neighbors of spot i in sample r, μvri

=m�1
ri

P
i02Nri

vri0 is the
conditional mean relevant to the neighbors of that spot sri, andΨr is a
q × q conditional covariance matrix for the elements of vri. Con-
ventionally, the joint distribution of the intrinsic CAR model is non-
identifiable, as themean of the joint distribution of intrinsic CAR is not
zero. As shown in the next section, non-cellular biological effects, e.g.,
batch effects, from each slide can be projected onto the cellular
biological space, which can be corrected by the non-zero-mean
property of intrinsic CAR.

Projections of non-cellular biological effects
For each tissue slide, we assume the normalized expressions in each
sample r canbe decomposed into additional parts with respect to non-
cellular biological effects as follows:

xri =Wðzri + νriÞ+Wrζ ri + εri, ð5Þ

where νri is a q-dimensional vector that captures the spatial depen-
dence among neighboring spots; Wr 2 Rp× ~q is a loading matrix for a
factor related to non-cellular biological effects; and ζri, independent of
(zri, νri), is the corresponding ~q-dimensional vector. Assuming cell
biological space (W) and non-cellular biological space (Wr) are non-
orthogonal, we can project Wrs onto the column spaces of W, i.e.,bWr =WðWTWÞ�1

W
T
Wr , and then rewrite the normalized expressions

as the following

xri ≈Wðzri + νri + eWT

Wrζ riÞ+ εri,

where eW=WðWTWÞ�1
. We denote vri = νri + eWT

Wrζ ri,
μ0
vri

= Eðνri∣ν½nr �=iÞ, m�1
ri Ψ

0
r = varðνri∣ν½nr �=iÞ, then the conditional mean

and variance in the intrinsic CAR component can be written as

Eðvri∣v½nr �=iÞ=μ
0
vri

+ eWT

WrEðζ riÞ � μvri
,

varðvri∣v½nr �=iÞ=m
�1
ri Ψ

0
r + eWT

Wrvarðζ riÞW
T

r
eW � m�1

ri Ψr ,

where we assume varðζ riÞ=m�1
ri Ψ

00
r . Then, the projected approximated

model can be written as

xri ≈Wðzri +vriÞ+ εri,r = 1, 2, � � � ,M, ð6Þ

where zri∣yri = k ~N(μk,Σk), and vri∣v½nr �=i ∼Nðμvri
,m�1

ri ΨrÞ.

Recovery of comparable gene expression matrices
Once the estimated cluster labels are obtained by PRECAST, we can
remove unwanted variations using a set of housekeeping genes as
negative control genes that are not affected by other biological
effects74. In this study, we used a set of mouse/human housekeeping
genes from the Housekeeping and Reference Transcript Atlas75. First,
we obtained vectors, ~xri = ð~xri1, � � � ,~xriLÞ, of the expression of L
housekeeping genes by matching the set of housekeeping genes and
genes passing QC for each dataset. By performing PCA, we obtained
the top 10 PCs, bhri, as covariates to adjust for unwanted variation. One
of the outputs of PRECAST, the posterior probability of yri (brri 2 RK ),
can be used as the design matrix to explain biological variation
between cell/domain types. Finally, we used a linear model for the

normalized gene expression vector

xri =αbrri + γbhri + εri, ð7Þ

where α is a p-by-Kdimensional matrix for biological effects between
cell/domain types and γ is a p-by-10dimensional matrix of regression
coefficients associated with the unwanted factors. After obtaining the
parameter estimates in Eqn. (7), users can remove batch effects from
the original normalized gene expression using

bxri =xri � bγbhri:

This strategy can also be applied to samples from multiple biolo-
gical conditions when such information is available. This can be
achieved by adding additional covariates for biological conditions in
Eq. (7).

Differential expression analysis and enrichment analysis
After removing unwanted variation of gene expression matrices for
multiple slides, we performed DE analyses and enrichment analysis on
all four datasets. In detail, we used the FindAllMarkers function in
the R package Seurat with default settings to detect the differentially
expressed genes for each domain detected by PRECAST. The DE ana-
lysis was considered to identify domain-specific DE genes with adjus-
ted p-values of less than 0.001 and a log-fold change of greater than
0.25. After obtaining a set of genes specific to each domain, we per-
formed gene set enrichment analysis (GSEA) on a set of detected DE
genes using g:Profiler with the g:SCS multiple testing correction
method and applying a significance threshold of 0.0576.

Conditional SVG analysis
After obtaining aligned embeddings and domain labels for DLPFC and
HCC Visium data using PRECAST, we detected the SVGs by adjusting
the estimated aligned embeddings as covariates to investigate the role
of SVGs beyond differences between cell/domain types. In detail, we
used the function spark.vc in the R package SPARK to identify SVGs
adjusted for cell/domain-relevant covariates for each sample. Finally,
an FDR of 1% was adopted to identify the significant SVGs.

Trajectory inference/RNA velocity analysis
To further investigate the development and differentiation of these
identified spatial domains/cells by PRECAST, we used the aligned
embeddings and domain clusters estimated by PRECAST to perform
trajectory inference, or RNA velocity analysis if splicing and unsplicing
information was available. For the DLPFC Visium data, mouse liver ST
data and mouse OB Slide-seqV2 data, we conducted trajectory infer-
ence for the combined spots in all multiple tissue sections using
Slingshot77. We inputted the aligned embeddings and domain clusters
estimated by PRECAST into the function slingshot in the R package
slingshot for implementation. Because the splicing and unsplicing
information was available for the HCC Visium dataset, we ran RNA
velocity analysis using the scvelo.tl.velocity function in the
Python module scvelo based on the splicing and unsplicing matrices,
then the domain clusters estimated by PRECASTwere used to visualize
the inferred RNA velocity and latent time.

Cell-type deconvolution analysis
We performed deconvolution analysis using Robust Cell Type
Decomposition (RCTD)55, a supervised learning method used to
decompose each spatial transcriptomics pixel into a mixture of indi-
vidual cell types while accounting for platform effects. We leveraged
the results of deconvolution analysis for better biological interpreta-
tion of the real data analysis.

For mouse liver ST data, we used scRNA-seq data on liver tissue
sections from an adult mouse from the MCA46. By removing cell types
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with cell numbers of less than 18, the reference data retained 4640
cells belonging to 17 cell types: B cells with high Jchain expression
(n = 43), erythroid cells with high Hbb-bs expression (n = 555), peri-
portal hepatocytes (n = 26), hepatocytes with high Fabp1 expression
(n = 149), Kupffer cells (n = 1046), erythroid cells with high Hbb-bt
expression (n = 62), endothelial cells (n = 1196), granulocytes (n = 194),
NK cells (n = 114), macrophages (n = 191), dendritic cells (n = 422), B
cells with high Fcmr expression (n = 97), T cells (n = 219), plasmacytoid
dendritic cells (n = 90), hepatocytes with high Spp1 expression
(n = 99), pericentral hepatocytes (n = 119), and hepatic stellate
cells (n = 18).

For the mouse OB Slide-seqV2 data, we used 10X Genomics
Chromium scRNA-seq data collected from the wild-type OB52. The
reference data included 17,453 cells belonging to 40 cell types: three
astrocyte types (Astro1: n = 1087; Astro2: n = 129; and Astro3: n = 599),
two endothelial types (EC1: n = 897 and EC2: n = 445), two mesenchy-
mal types (Mes1: n = 200 andMes2: n = 65), threemicroglials (MicroG1:
n = 255; MicroG2: n = 766; andMicroG3: n = 294), monocytes (n = 238),
two murals (Mural1: n = 43 and Mural2: n = 272), myelinating-
oligodendrocyte cells (n = 294), macrophages (n = 197), five olfactory
ensheathing cell types (OEC1: n = 812; OEC2: n = 664; OEC3: n = 1073;
OEC4: n = 1083; and OEC5: n = 281), oligodendrocyte progenitor cells
(OPC: n = 137), red blood cells (RBCs: n = 103), and 18 neural subtypes
(OSNs: n = 467; PGC-1: n = 437; PGC-2: n = 146; PGC-3: n = 106; GC-1:
n = 540; GC-2: n = 1245; GC-3: n = 96; GC-4: n = 80; GC-5: n = 516; GC-6:
n = 89; GC-7: 293; Immature: n = 1150; Transition: n = 733; Astrocyte-
Like: n = 1078; M/TC-1: n = 24; M/TC-2: n = 44; M/TC-3: n = 411; and EPL-
IN: n = 64). For more details of the cell types, please refer to Tepe
et al.52.

For the HCC Visium data, we leveraged a droplet-based scRNA
dataset collected from HCC and intra-hepatic cholangiocarcinoma
patients to serve as the reference data for deconvolution61. After fil-
tering out 92 cells of unclassified cell type, the reference data con-
tained 5023 cells belonging to seven cell types: B cells (n = 598), CAFs
(n = 724), HPC-like cells (n = 254), malignant cells (702), T cells
(n = 1429), TAMs (n = 437), and TECs (n = 879). After acquiring the
deconvolution results from the above-mentioned reference, we com-
bined the proportions of B cells, T cells, and TECs into a single set and
referred to this as the immune cell proportion.

Comparisons of methods
We conducted comprehensive simulation and real data analyses to
compare PRECAST with existing methods of data integration and
clustering.

We applied the following single-cell integration methods to
benchmark the data integration performance of PRECAST: (1) Seurat
V326; (2) Harmony23 implemented in the R package harmony; (3)
fastMNN24 implemented in the R package batchelor; (4) Scanorama25

implemented in the Python module scanorama. (5) scGen28; (6) scVI27

implemented in the Python module scvi; (7) MEFISTO29 implemented
in the Python module mofax; and (8) PASTE30 implemented in the
Python module paste. In the real data analyses, PRECAST and all other
methods used the same list of selected genes from the preprocessing
steps as input. The first six methods were designed for scRNA-seq
integration, while MEFISTO can be used for scRNA-seq and SRT data
integration, and PASTE is designed for integrating SRT data from
multiple adjacent tissue slices into a single slice (see Supplementary
Materials).

To evaluate clustering performance, we considered the following
fourmethods using the extracted aligned embeddings as input: (1) SC-
MEB implemented in the R package SC.MEB20, (2) Louvain imple-
mented in the R package igraph78, (3) BayesSpace implemented in the
R package BayesSpace79, and (4) BASS implemented in the R package
BASS80. SC-MEB and BayesSpace were recently developed to perform
spatial clustering based on a discrete Markov random field20,79, and

Louvain is a conventional non-spatial clustering algorithm based on
community detection in large networks78, while BASS was a newly
developed clustering method for multiple SRT data based on the
aligned embeddings fromHarmony. In the implementation, we set the
default values for them in the respective packages (see Supplementary
Materials).

Evaluation metrics
We evaluated the methods’ performances in data integration, obtain-
ing embeddings for cellular biological effects, and spatial clustering
using the following metrics.

Local inverse Simpson’s index. To assess performance in batch-effect
removal, we used the cell-type/integration local inverse Simpson’s
index (LISI), cLISI, and iLISI23 to quantify the performance in merging
the shared cell populations among tissue slides andmixing spots from
M tissue slides. cLISI assigns a diversity score to each spot that repre-
sents the effective number of cell types in the neighborhoods of that
spot. For M datasets with a total of K cell types, accurate integration
should maintain a cLISI value close to 1, reflecting the purity of the
unique cell types in the neighborhood of each spot, as defined by the
aligned embeddings. Erroneous embedding includes neighborhoods
with a cLISI of more than 1, while the worst cases have cLISI close to K,
suggesting that neighbors have K different types of cells. iLISI has a
similar formand implication as cLISI but is based on a sample index set
rather than clusters of cell types. Thus, a larger iLISI value means the
different samples have more sufficient mixing.

Silhouette coefficient. To simultaneously evaluate the separation of
each cell/domain cluster and mixing of multiple datasets, we calcu-
lated the average silhouette coefficient of the SRT datasets using two
different groupings: (1) grouping using known cell types as the cell/
domain-type silhouette coefficient (silhcluster) and (2) grouping using
different datasets as the batch silhouette coefficient (silhbatch). In the
data integration, a larger value of silhcluster indicates better preserva-
tion of the biological signals between cell/domain types, while a
smaller value of silhbatch suggests better mixing of datasets. These two
metrics can be summarized using the F1 score as follows81:

F1 score =
2ð1� silh0

batchÞsilh0
cluster

silh0
cluster + ð1� silh0

batchÞ
2 ½0,1�, ð8Þ

where silh0
batch =

1+ silhbatch
2 and silh0

cluster =
1 + silhcluster

2 . A larger F1 score
suggests better data integration that preserves the biological varia-
tions between cell/domain types while removing other non-cellular
biological variations across multiple tissues.

Canonical correlation coefficients and/or conditional correlation.
For dimension reduction, we applied twomeasurements to assess the
performance of true latent feature recovery in the simulation studies.
The first was the mean canonical correlation between the estimated
features and the true one, defined as

CCor =
1
q

Xq
l = 1

ζ lðzi, ẑiÞ, ð9Þ

where ζl is the l-th canonical correlation coefficient. The second mea-
sure was themean conditional correlation between gene expression xi
and cell type label yi given the estimated latent features ẑi, defined as

ConCor =
1
p

Xp
j = 1

corrðyi, residijÞ, ð10Þ

where residi is the residual of xij regressing on ẑi, and corr(yi, residij) is
the Pearson correlation coefficient between yi and residij.
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Adjusted Rand index and/or normalized mutual information. To
evaluate performance in spatial clustering, we used ARI82 and NMI83.
ARI is the corrected version of the Rand index (RI)84 and is used avoid
some of the drawbacks of RI82. ARI measures the similarity between
two different partitions and ranges from −1 to 1. A larger value of ARI
means a higher degree of similarity between twopartitions. ARI takes a
value of 1 when the two partitions are equal up to a permutation.
Whereas NMI is a variant of the mutual information (MI) that nor-
malizes the value of MI to within the range of 0 and 1. When the two
partitions are equal up to a permutation, NMI takes a value of 1.

Simulations
Scenario 1. Rawgene expression count datawith different scales of batch
effects: domain labels and spatial coordinates from Potts models. For
this scenario, we generated the raw gene expression count data for
three samples, aswell as the spatial coordinates based onPottsmodels
with four neighborhoods. All quantities, such as the labels yris and
latent features νris, of spots were randomly simulated from the gen-
erativemodel (5).We generated the class label yri for each r = 1, 2, 3 and
i = 1,⋯ , nr, with nr∈ {65 × 65, 60 × 60, 60 × 60}, corresponding to rec-
tangular lattices from a K-state (K = 7) Potts model with the smoothing
parameter βr =0.8 + 0.2(r − 1), using the function sampler.mrf from
the R package GiRaF. Then, we generated latent features νris from the
CAR model with the same Nri as defined in the Potts model and cov-
ariance matrix Ψ0

r = ðσr,ijÞ, with σr,ij= r(0.2r)∣i−j∣, using the function
rmatrixnorm in Rpackage LaplacesDemon.We set different values for
the smoothing parameter βr and covariance matrices Ψ0

r across r, to
mimic the heterogeneity of three samples. The domain labels yris and
latent features νris were fixed once they were obtained.

Following this, we generated domain-relevant latent features zri in
the model (5) from the conditional Gaussian distribution, such that
zri∣yri = k ~ (μk, Σk), where zri∈Rqwith q = 10. Structures forμk and Σk are
shown in Supplementary Data 8. Next, we generatedeW= ðewij , i≤p, j ≤qÞ with each ewij ∼i:i:d:Nð0,1Þ, performed QR decom-
position on eW such that eW= eQeR, and assignedW= eQ, which is a column
orthogonal matrix. Then, we generated a batch-loading matrix Wr by
generating �Wr = �W+ �Er with �W= ð�wij , i≤p=2000, j ≤qrÞ, qr =2,
�wij ∼i:i:d:Nð0, 1Þ, �Er = ð�erij , i≤p, j ≤ qrÞ, and �erij ∼Nð0, �σ2

r Þ with �σ1 = 0:5,
�σ2 = 0:8, �σ3 = 1. In a similar manner to the generation of W, we per-
formed orthogonalization of �Wr to generateWr. Next, we generated ζri
in the model (5) by ζ ri = ðζ ri1, � � � , ζ riqr Þ

T

such ζ rik ∼i:i:d:Nð0,b2
scaleσ

2
r Þ with

σ1 = 1, σ2 = 2 and σ3 = 0.5, where bscale controlled the scales of batch
effects. Here, we considered three scales of batch effects, corre-
sponding to low, middle and high, by taking the value of 1, 2, or 3 for
bscale, respectively.

Next, we generated a high-dimensional normalized expression
matrix using xri = τr +W(zri + νri) +Wrζri + εri, τrj ~N(0, 4), εri ~N(0,Λr),
where τrj is the j-th element of τr, Λr = diag(λrj), j = 1,…,p,
λ1j = 2(1 + 1.5∣z1j∣) with z1j ∼i:i:d:Nð0, 3Þ; λ2j = 2(1 + z2j) with z2j ∼i:i:d:U½0, 1�;
and λ3j = 2(1 + 2z3j) with z3j ∼i:i:d:U½0,1�. Finally, we generated raw gene
expressions ~xri = ð~xri1, � � � , ~xripÞ

T

using ~xrij ∼ PoissonðexpðxrijÞÞ. The
term εri makes the distribution of ~xrij over-dispersed, which better
imitates the properties of count expression. In this scenario, for each
sample r, we only observed the raw expression ~xrij of gene j and spot i
and spatial coordinates sri for spot i.

Scenario 2. Raw gene expression count data with different scales
of batch effects: domain labels and spatial coordinates from DLPFC
data. To validate the generalizability of PRECAST, we also generated
data based on three DLFPC datasets (ID: 151507, 151669, and 151673)
from three donors (Visium platform). The domain labels yris for spots
were obtained from annotations made by Maynard et al.21, together
with the spatial coordinates. To generate the latent features νris,
PRECAST was used to fit the three datasets, and we used the esti-
mated features ν̂ris as input. The cluster labels yris and latent features
νris were fixed once they were obtained. The other quantities were

generated in the same way as in scenario 1, but with a different μk
(Supplementary Data 8).

Scenario 3. Raw gene expression data: count matrix, domain labels
and spatial coordinates from DLPFC data. To make PASTE comparable
to the other methods, we obtained raw gene expression data, domain
labels and spatial coordinates from all three tissue slides (ID: 151673,
151674, and 151675) from the last donor. The domain labels were
obtained from Maynard et al.21. As the true shared embeddings were
unknown, we did not evaluate the canonical correlations. To generate
the count matrix, we randomly added a pseudocount for each raw
count from a binomial distribution with size three and probability
parameter 0.3, similar to Zeira et al.30. Finally, we obtained the count
matrix and spatial coordinates as input for the compared methods.

Gene selection for integrative analysis
By performing QC, we filtered out genes with zero expression in
multiple spots, and spots with zero expression of many genes (see
“Data resources”). In our analyses, we used SPARK40 to select top SVGs
for human DLPFC Visium data, mouse liver ST data and HCC Visium
data. However, we used SPARK-X41 to select SVGs for mouse olfactory
bulb Slide-seqV2 data, since SPARK cannot handle datasets with a large
number of spots. In total, we selected the top 2000 SVGs for each
sample using SPARK or SPARK-X. Next, we prioritized genes based on
the number of times they were selected as SVGs in all samples and
chose the top 2000 genes as input for PRECAST and the other com-
pared analytical methods.

We used human DLPFC Visium data and mouse liver ST data,
which had manual annotations, to confirm that spatially-aware gene
selection methods did not represent a crucial part of PRECAST. Here,
we selected the top 2000highly variable genes (HVGs) for each sample
using FindVariableFeatures with default settings in the Seurat R pack-
age. In addition, to examine the impact of different SVG selection
methods to choose SVGs on the performance of PRECAST, we applied
fourmethods to select the top2000SVGs for each sample of these two
datasets. These methods included SPARK, SPARK-X, SpatialDE42, and
nnSVG43.

Data resources
Human dorsolateral prefrontal cortex Visium data. We downloaded
spatial transcriptomic data for human DLPFC obtained on the 10x
Visium platform from https://doi.org/10.5281/zenodo.4730634. These
data were collected from 12 human postmortemDLPFC tissue sections
from three independent neurotypical adult donors, and the raw
expression countmatrix contained 33,538 genes for each sample, with
a total of 47,681 spatial locations. Before conducting the analysis, we
first performed QC on each sample to filter out genes with non-zero
expression levels for fewer than 20 spots and the spots with non-zero
expression levels for less than 20 genes. The filtering step led to sets of
14,535 genes on average in a total of 47,680 spatial locations. The
annotated spatial domains in all 12 samples based on the cytoarchi-
tecture in the original study21 were layer 1 (n = 5321), layer 2 (n = 2858),
layer 3 (n = 17,587), layer 4 (n = 3547), layer 5 (n = 7300), layer 6
(n = 6201), white matter (n = 4514), and undetermined spots (n = 352).
In the analysis, we treated these manual annotations as the ground
truth to evaluate the clustering and data integration performance of
the different methods.

Mouse liver ST data. We downloaded eight sets ofmouse liver ST data
from https://zenodo.org/record/4399655. The eight datasets con-
tained 15,302 genes, on average, measured over 4865 spatial spots in
total. In the QC steps, we first filtered out genes with non-zero
expression levels in fewer than 20 spots and spots with non-zero
expression levels for fewer than 20 genes. The filtering step led to a set
of 9221 genes, on average, from a total of 4865 locations. The anno-
tated spatial domains in all eight samples, based on marker genes in
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the original study44 were portal veins (n = 1223), central veins (n = 720),
haemoglobin (n = 464), immune-related domain (n = 163),
mesenchymal-related domain (n = 110), and undetermined spots
(n = 2183), which were used to evaluate the clustering and data inte-
gration performances of the different methods in the analyses.

Mouse olfactory bulb Slide-seqV2data. We obtained the data for 20
mouse OB Slide-seqV2 sections in Replicate 2 from CNBI accession
number GSE169021 https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE169021. We used the first 16 slides because of the low
quality of the last four slides. The data contained 21,571 genes, on
average, over all 693,863 spatial locations across 16 sections, which
were equally distributed along the anterior-posterior axis of the same
mouse. In the QC steps, we first filtered out genes with non-zero
expression levels in fewer than 20 spots and spots with non-zero
expression levels for fewer than 20 genes. The filtering step led to a
set of 14,307 genes, on average, for a total of 594,890 locations. To
evaluate the impact of spatial resolution, we further collapsed nearby
spots in each tissue slide using square grids of size 70 × 70. Then, the
same QC steps were performed to obtain normalized expression for
the analysis. To examine the structure of the mouse OB, we relied on
the structural annotation in the Allen Brain Atlas48 and used the
results of downstream analyses to determine the specific
regions of OB.

Humanhepatocellular carcinomaVisiumdata. Thesedatawere from
two tissue sections each from tumor and tumor-adjacent regions of an
HCC patient, and contained 36,601 genes from over 9813 spatial
locations. In the QC steps, we first filtered out genes with non-zero
expression levels in fewer than 20 spots and spots with non-zero
expression levels for fewer than 20 genes. The filtering step led to a set
of 14,851 genes on average from a total of 9813 locations. In this data,
manual annotations for the TNE and stroma regions were provided by
a pathologist using the Visium companion H&E images. We further
performed spatial deconvolution to examine the spatial distribution of
malignant cells using RCTD55.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this study are publicly available. These include the
12 human dorsolateral prefrontal cortex Visium datasets (https://doi.
org/10.5281/zenodo.4730634), eight mouse liver ST datasets (https://
zenodo.org/record/4399655), 16 mouse OB Slide-seqV2 datasets
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE169021)
and four human hepatocellular carcinoma Visium datasets (Raw
FASTQ data are available at https://www.ncbi.nlm.nih.gov/sra?
linkname=bioproject_sra_all&from_uid=858545, and H&E images are
available at https://doi.org/10.6084/m9.figshare.21280569.v1 and
https://doi.org/10.6084/m9.figshare.21061990.v1). The structural
annotation of mouse olfactory bulb is available at Allen Brain Atlas
(https://atlas.brain-map.org/). All other relevant data supporting the
key findings of this study are available within the article and its Sup-
plementary Information files or from the corresponding author upon
reasonable request. Source data are provided with this paper.

Code availability
The PRECASTmethods were implemented in an open-source, publicly
available R package85 that is available at https://cran.r-project.org/
package=PRECAST and https://github.com/feiyoung/PRECAST. Code
for reproducing the analysis can be found at https://github.com/
feiyoung/PRECAST_Analysis.
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