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Abstract

A goal of computational psychiatry is to ground symptoms in more fundamental computational 

mechanisms. Theory suggests that rumination and other symptoms in mood disorders reflect 

dysregulated mental simulation, a process that normally serves to evaluate candidate actions. 

If so, these covert symptoms should have observable consequences: excessively deliberative 

choices, specifically about options related to the content of rumination. In two large general 

population samples, we examined how symptoms of social anxiety disorder (SAD) predict choices 

in a socially framed reinforcement learning task, the Patent Race game. Using a computational 

learning model to assess learning strategy, we found that self-reported social anxiety was indeed 

associated with an increase in deliberative evaluation. The effect was specific to learning from a 

particular (“upward counterfactual”) subset of feedback, broadly matching the biased content of 

rumination in SAD. It was also robust to controlling for other psychiatric symptoms. These results 

ground the symptoms of SAD, such as overthinking and paralysis in social interactions, in well 

characterized neuro-computational mechanisms and offer a rare example of enhanced function in 

disease.
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Introduction

Unique among areas of medicine, psychiatry has no laboratory diagnostic tests. This is 

largely due to a lack of understanding how mental health symptoms arise from dysfunction 

in underlying brain mechanisms. Recent research has attempted to fill this gap by connecting 

these disorders to relatively well characterized neuro-computational systems, notably those 

that support reinforcement learning (RL) (Maia & Frank, 2011; Huys et al., 2012, 2016; 

Montague et al., 2012; Moutoussis et al., 2017). In this respect, a key feature of RL 

in the brain is that it arises from a combination of at least two evaluative mechanisms, 

more deliberative vs. automatic, which have been formalized in terms of model-based 

and model-free learning (Daw et al., 2005). Model-based learning evaluates actions by 

iteratively simulating their consequences using a learned representation, or “model” of the 

task’s contingencies, such as a spatial map. Model-free learning skirts this computation 
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by learning actions’ long run values directly from experience when they are chosen; these 

values permit quick but inflexible decisions and are a potential substrate for habits. A line 

of research describes the biological substrates for these functions, such as representations of 

future spatial trajectories in hippocampus that may support mental simulations of candidate 

routes for model-based evaluation (Johnson & Redish, 2007; Mattar & Daw, 2018) and 

dopaminergic temporal-difference prediction error signals suited for model-free learning 

(Schultz et al., 1997). Although adaptive behavior relies on the ability to flexibly recruit both 

strategies, people also vary greatly in their tendency to do so. Accordingly, by comparing 

RL models to trial-by-trial choices in people learning sequential choice tasks (e.g., two-

step Markov decision processes, MDPs; Daw et al., 2011), the degree to which subjects 

utilize model-based RL has been shown to vary both situationally (e.g., under dual-task 

interference; Otto et al., 2013) and between individuals (e.g., with genotypic variations that 

affect prefrontal dopamine; Doll et al., 2016).

Abnormal imbalance between these mechanisms has also been the focus of persistent 

speculation regarding mental illness. In particular, it has long been suggested that symptoms 

related to compulsion (a dimension that cuts across illnesses including OCD and drug abuse) 

might arise from an imbalance that favors automaticity (Everitt & Robbins, 2005; Gillan 

et al., 2011, 2014, 2016; Reiter et al., 2017). More tentatively, theorists have suggested 

that some aspects of mood disorders (notably, rumination in depression or excessive 

caution and overthinking in anxiety) might relate to a converse imbalance, favoring excess 
deliberation (Huys et al., 2012; Huys et al., 2015; Solway et al., submitted). Indeed, for 

a variety of disorders involving compulsion, both patients’ diagnoses (Voon et al., 2015), 

and self-reported symptoms in a large general-population sample (Gillan et al., 2016), 

are associated with deficient model-based learning in a two-step MDP. There is as yet 

less evidence relating depression or anxiety to increased simulation of action-outcome 

contingencies in value-based learning, though some analyses in the Gillan et al. (2016) 

dataset revealed a small trend of increased model-based evaluation specifically for social 

anxiety, rather than other mood disorders. Social anxiety is also an interesting test case, both 

practically (because clinically significant levels of it are frequent in the population tested 

online; Shapiro et al., 2013) and substantively, because it involves enhanced mentalizing 

and counterfactual thinking (see Norton & Abbott, 2016 for a review), both psychological 

constructs closely related to model-based evaluation.

We thus sought to investigate the hypothesis that social anxiety is associated with increased 

deliberation. To better probe their relationship, we turned to another well-studied type of 

learning task with a more social framing: a competitive economic game (Zhu et al., 2012; 

Rapoport & Amaldoss, 2000), the patent race. As with MDPs, choices on this sort of 

task are well-characterized by a subject-specific combination of two strategies, paralleling 

model-free and model-based RL: direct (model-free) learning about which moves are 

successful, vs. deriving moves’ values indirectly based on which moves the opponent prefers 

(equivalent to a model of the opponent; Camerer & Ho, 2000). Moreover, the patterns of 

neuroimaging correlates and individual differences (e.g., with dopaminergic genes) related 

to this dichotomy parallel those reported for MDPs (Zhu et al., 2012; Set et al., 2014).
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The patent race game also enables us to investigate anxiety’s effects not just on overall 

model usage, but also on more granular operations of planning. Recent research aims to 

decompose model-based evaluation into a series of steps, such as simulating individual 

candidate actions or accessing memories for particular events (Cushman & Morris, 2015; 

Mattar & Daw, 2018). Meanwhile, rumination is characterized by a narrow preoccupation 

with particular thoughts. If indeed it constitutes runaway model-based evaluation, these 

content biases should manifest in a specific tendency to update values for certain actions 

rather than others.

In social anxiety, rumination includes an excess of “upward counterfactual” thoughts about 

previous social interactions: that is, “if only” thoughts about how the events could have 

gone better, which fuels anticipatory anxiety of future social interactions (Kocovski et al., 

2005, 2015). Model-based evaluation in the patent-race task can also be expressed in terms 

of counterfactual updating – computing the value of moves not taken, given the opponent’s 

moves (Camerer and Ho, 1999) – and a bias toward upward counterfactuals would predict a 

tendency toward model-based updating for a subset of the six moves available. If such a bias 

is observed in choices, this would speak both to the granular mechanism of planning, and the 

effects of rumination on it.

Accordingly, to examine the relationship between social anxiety and model-based 

deliberation, we conducted two large-scale, online experiments. In each experiment, 500 

subjects completed the Liebowitz Social Anxiety Scale (LSAS) and played 80 rounds of a 

patent race game against a computerized opponent. In the second cohort, we also assessed 

symptoms for a broader range of psychiatric symptoms, allowing us to probe the specificity 

of our findings.

Methods

Participants & Procedures.

Overall, 1000 participants (500 per experiment) were recruited online using Amazon’s 

Mechanical Turk (AMT), of whom 966 (N1 = 489; N2 = 477) provided a complete dataset. 

Participants were paid a base rate in addition to a bonus proportional to their (nominal) 

earnings during the reinforcement-learning task. Subjects were based in the USA (i.e. had 

a US billing address with an associated US credit card, debit card or bank account), 95% 

of their previous tasks were approved, and were 18 years or older. All procedures were 

pre-approved by Princeton University’s Institutional Review Board.

Via their web browser, all participants completed the Liebowitz Social Anxiety Scale 

(LSAS), Liebowitz, 1987), an abbreviated nine-item Ravens’ matrix test to approximate 

IQ (Bilker et al., 2012), and 80 rounds of a patent race game (Zhu et al., 2012). Procedures 

for the two experiments differed only in that subjects in Experiment 2 completed a more 

comprehensive psychopathological assessment (in addition to LSAS) before proceeding 

to the IQ test and patent race game. In particular, Experiment 2 included a battery 

of 209 multiple choice questions which gauged symptom severity across a range of 

disorders and constructs (the same battery used by Gillan et al., 2016; Renault et al, 

2018): alcoholism (Alcohol Use Disorders Identification Test), apathy (Apathy Evaluation 
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Scale), impulsivity (Barratt Impulsiveness Scale 11), eating disorders (Eating Attitudes 

Test), social anxiety (Liebowitz Social Anxiety Scale), obsessive-compulsive disorder 

(OCD) (Obsessive-Compulsive Inventory-Revised [OCI-R]), schizotypy (Short Scales for 

Measuring Schizotypy), depression (Self-Rating Depression Scale), and generalized anxiety 

(State Trait Anxiety Inventory).

Patent Race Game.

Subjects played 80 rounds of an asymmetric patent race task, a competitive, simultaneous 

move game in which a ‘strong’ player with more resources competes with a ‘weak’ player 

with fewer resources (Rapoport and Amaldoss, 2000; Zhu et al., 2012). In each round of the 

game, subjects (who played the “weak” role) were endowed with $4 and chose how much 

to invest (in integer dollars, $0 – $4) to obtain a $10 prize. The computerized opponent was 

endowed $5 and thus held a stronger position. The rules of the game, including each player’s 

endowments and the payoffs conditional on different moves, were common knowledge 

and remained fixed throughout the game. When a player invested strictly more than their 

opponent, they won the $10 prize on that round. (In case of tie, no one received the prize.) 

Regardless of the outcome, players kept the uninvested portion of their endowment.

Subjects were advised that the computerized opponent’s choices on each round were drawn 

from a pool of choices made by previous human participants at that round of the game. 

Thus, although opponents were anonymous and unlikely to be encountered more than once 

in a row, they represented people at the same stage of progression through the task as the 

subject.

Learning models.

Since the distribution of opponents’ moves was unknown to the subjects (and potentially 

nonstationary), the game presents a learning problem: finding which moves are most 

effective. Two leading models for this process in behavioral game theory correspond to 

model-free and model-based RL (though model-free RL is known in this literature simply 

as “reinforcement learning” while model-based RL is referred to as “belief learning”); 

a third model, known as Experience-Weighted Attraction (EWA; Camerer & Ho, 1999) 

characterizes behavior by a weighted combination of these two strategies.

The model-free rule is simple Q-learning – it maintains an expected value for each possible 

move, updated whenever a move is chosen according to the received payoff (Erev & 

Roth 1998). In its original formulation (Brown, 1951; Cheung & Friedman, 1997), belief 

learning turns on learning the opponent’s move distribution (a model about the opponent’s 

preferences or “beliefs”, updated each time their move is observed). With this and the payoff 

matrix, the expected payoffs for each of the players’ responses can be computed. In fact, 

marginalizing the beliefs, the same payoff estimates for the player’s moves can be updated 

in place at each timestep, by updating each of them according to the reward that would 
have been received had the player chosen that move, given the opponent’s move (Camerer 

& Ho, 1999). This approach can be viewed either as an algebraic trick for conveniently 

implementing the predictions of the model-based rule; or as a substantive hypothesis for how 

these computations might actually be implemented in the brain using counterfactual updates 
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in place of the belief model. Similar approaches, which substitute replayed experience for 

a world model, have also been examined for other RL tasks like spatial navigation (Sutton, 

1991; Mattar & Daw, 2018)

In the context of this game, model-free and model-based learning make different predictions 

about how the subjective value of each strategy (i.e., each possible investment amount) is 

updated with experience at each round. Consider a round in which the subject invests $4 and 

the opponent invests $2. Here the subject’s choice to invest $4 results in a total return of $10. 

Model-free learning would update the expected value of investing $4 by moving it closer to 

$10. In belief learning (implemented via counterfactual updating) the subject further updates 

the value of each other move by calculating the return it would have yielded on the previous 

trial given the observed investment made by the opponent. For example, in this case, the 

subject will update the value of investing $2 toward $2 and the value of $3 toward $11, since 

these are the amounts is the amount the subject would have won given that the opponent 

invested $2.

Computational Modeling.

Following previous work (Rapoport and Amaldoss 2000; Amaldoss and Jain, 2002; Zhu 

et al., 2012), we modeled subjects’ learning on this task using Camerer and Ho’s (1999) 

EWA learning model. This constitutes a weighted combination of the two learning strategies 

discussed above, analogous to hybrid model-based/free models previously used for human 

choices in MDPs (Daw et al., 2011). Because of the equivalence between model updating 

and counterfactual updating in this class of tasks, the weighted combination of both 

strategies can be expressed in a single update rule comprising weighted updates from 

experienced and counterfactual rewards.

In particular, at round t, a player updates their estimate of the value V, for each move K 
according to:

V k(t + 1) =
ϕN(t)V k(t) + θR k, Aopp(t)

N(t + 1)

where

θ = δ, if Asub(t) ≠ k

θ = 1, if Asub(t) = k

with free parameters ϕ and δ In these expressions, Asub and Aopp denote the moves chosen by 

the subject and the opponent (i.e., $0 – $4 and $0 – $5), and R is the payoff matrix giving 

the subject’s reward as a function of both moves. At each step, the subject also updates an 

experience counter N, with free parameter ρ:
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N(t + 1) = ρN(t) + 1

Choices were taken as softmax in V k(t), i.e.

P Asub(t) = k ∝ exp βV k(t)

with free inverse temperature parameter β.

We take N(1) = 1 and introduce free parameters for the initial values V k(1) (for k = 0 − 4), 

capturing any a priori preferences for the actions.

Although the notation is unusual, readers familiar with standard RL models will recognize 

that for ρ = 0 (hence, N(t) = 1 for all t), δ = 0, and a learning rate of (1 − ϕ) the value update 

reduces to a standard delta rule in the chosen option and received reward, but with the R 

(and hence all V k) rescaled by 1/(1 − ϕ) This scaling can be canceled by inversely scaling 

β by the same factor, making the model equivalent to a standard model-free Q-learning 

update. For ρ > 0, N accumulates and drives a sort of learning rate decay. For simplicity, and 

following previous work (Set et al., 2014) we took the two decay parameters as equal, i.e. 

ρ = ϕ.

Our main interest is the parameter δ in the original model, which controls the relative weight 

of counterfactual updating (δ = 0, fully model-free; δ = 1, fully model-based), and δ+ in the 

variant model, which isolates the part of the effect due to upwards counterfactual updating. 

In total, the model contained 8 free parameters.

To account for the distinction between “upward” and “downward” counterfactual, we 

considered an additional variant of the EWA model in which, δ the degree of counterfactual 

updating, is valence-dependent. This parameterization splits the free parameter δ into δ+

and δ− which control upwards- and downwards- counterfactual learning, respectively. The 

reward received on a given round, R Asub(t), Aopp(t) , serves as the reference point. Actions 

(investments) that would have resulted in more reward than what was won in reality (based 

on opponents’ investment on that round), are updated in proportion to δi
+ whereas actions 

that would have resulted in less reward are weighted instead by δi
−. Accordingly, the update 

rule for values is the same as before, but with

θ = δ+, if Asub(t) ≠ k and & R k, Aopp(t) > R Asub(t), Aopp(t)

θ = δ−, if Asub(t) ≠ k and & R k, Aopp(t) < R Asub(t), Aopp(t)
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θ = 1, if Asub(t) = k

Note that we recover the original model when δ+ = δ−. In total, the valence-dependent model 

contains 9 free parameters.

We estimated the free parameters of each model per subject using an EM optimization 

algorithm (Huys et al., 2011) implemented in the Julia language (Bezanson et al., 2012). 

This procedure maximizes the joint likelihood of each individual’s sequence of choices, 

where each individual’s parameter estimates are random effects drawn from group-level 

Gaussian parameter distributions, whose means and variances are also estimated. We first 

used values derived separately for each experiment in to ensure that our major patterns of 

results held within Experiments 1 and 2 independently (SI Figure 7, SI Tables 3 & 4), and 

then pooled the data across Experiments 1 and 2.

We used a set of multiple linear regressions, one for each parameter, to test whether LSAS 

scores or symptom factor scores (see below) predicted each of the free parameters from 

the EWA models. These models included an additional covariate to control for Ravens’ 

matrices scores, using the score predicted for the full 60-item set based on the 9 problems 

given (Bilker et al., 2012). All predictors were standardized (z-scored) for interpretability 

of coefficients. Auxiliary analyses also considered age as a predictor, but this had no 

appreciable effects on the results. To test whether the effects were different between 

parameters δ+ and δ−, we repeated the regression using a linear mixed-effects model to 

capture the repeated-measure structure.

To assess the relative fit of the elaborated vs. standard variant of the EWA model while 

correcting for overfitting due to both group- and subject-level parameters, we computed 

integrated Bayesian information criterion (iBIC) scores (Huys et al., 2012). This was defined 

as the marginal likelihood of the data given either model, aggregated across subjects, 

marginalizing per-subject parameters with the Laplace approximation, and penalizing for 

the group-level parameters using BIC (Huys et all, 2012).

Factor Analysis.

For Experiment 2, we used the factors identified by Gillan et al. (2016) to reduce 

responses on the 209 items from the nine psychiatric symptom scales to scores on three 

dimensions that capture much of the intersubject variance. These were labeled by Gillan 

et al. (2016), as ‘Anxious-Depression’, ‘Compulsive Behavior and Intrusive Thought’ and 

‘Social Withdrawal’ based on the items with the strongest loadings for each factor (SI Figure 

6). We verified that the factor analysis procedure described by Gillan et al. (2016), when 

applied to our data, produced substantially the same factor structure (correlations between 

factor loadings: Factor 1: R = .94, p <1e-96; Factor 2: R = .91, p <1e-79; Factor 3: R = .91, 

p <1e-80). Because Gillan’s study analyzed the same battery of questionnaires using a much 

larger sample (N=1,413) we used the factor loadings estimated in that study to construct 

factor scores for each subject.
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Results

In line with recommendations for studies conducted using Amazon’s Mechanical Turk 

(AMT), a priori exclusion criteria were applied to ensure data quality (Crump et al., 2013). 

Of the 966 participants who completed the task, we eliminated participants who shirked 

either the Ravens matrix test (N1=36; N2= 49) or the patent race task (N1=41; N2=97) (77 

& 146 were removed from experiment 1 and experiment 2 respectively, where the larger 

number in the second study is likely due to the longer session). Specifically, we removed 

from consideration subjects who got 0 or 1 items correct on Raven’s matrices or who chose 

the same move on more than 95% of trials (i.e. >76/80 rounds) in the patent race (Zhu et al., 

2012). The remaining analyses concern the data of 743 participants (N1=412; N2=331).

Consistent with previous reports for the AMT population (Shapiro et al., 2013), LSAS 

scores were high (M=50; SD=30, out of 140), with the average participant (and 72% of all 

participants) above a standard threshold (30) for mild clinically significant effects (Figure 2). 

On average, subjects answered 5.4 (SD=1.8) of the nine Ravens’ matrix problems correctly, 

which corresponds to a predicted mean of 45 (SD=8.4) correct on the full 60-question set 

(using the weighted prediction from Bilker et al., 2012) (Figure 2). LSAS and IQs scores 

were distributed similarly across subjects in Experiments 1 and 2 (SI Figures 2 & 3).

Behavior in the patent race game was consistent with patterns of investment behavior 

observed in previous studies featuring the same task as were estimated values for the EWA 

parameters (Zhu et al., 2012) (SI Table 8). Our main hypothesis was that higher self-reported 

LSAS scores would be associated with larger fit values of the parameter δ, corresponding to 

increased reliance on model-based, counterfactual updating. Indeed, the two variables were 

positively related (SI Figure 7, SI Tables 3 & 4) i.e., higher self-reported social anxiety 

predicted greater use of counterfactual updating in the patent race task in each experiment 

(t412 = 2.59, p = 0.01; t331 = 2.507, p = 0.01). We also found that the parameters did not 

differ between the two experiments, and that the positive influence of δ on social anxiety 

thus reached an even higher degree of significance (t740 = 3.63, p = 0.0003) when the data 

were pooled across experiments for visualization. (Table 1). For convenience we pool the 

datasets for the analyses below, but we report all analyses broken down by experiment in 

the supplemental material. The relationship between social anxiety and δ was selective; no 

significant correlations were observed between LSAS and the other parameters (Figure 3). 

These results also control for any effects of the Ravens matrix IQ score, which is included 

as an additional explanatory variable. As illustrated in Figure 3, intelligence was related to 

the model parameters, but with a very different pattern than LSAS. In particular, every 1 SD 

increase in IQ predicted a 7% increase in inverse temperature β (p<.001), consistent with the 

intuition that higher intelligence leads to improvement in generic task performance.

Next, we used an elaborated variant of the EWA model to investigate the hypothesis that 

the effects of social anxiety would be specifically driven by counterfactual updating about 

subset of options. This model subdivides the parameter δ into two, δ+ and δ−, which 

govern counterfactual updating separately for options that would have been better, or 

respectively worse, than the one taken. We first verified that the elaborated model fit choices 

better than the original one, accounting for overfitting from the additional free parameters. 
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Indeed, the iBIC score for the extended variant was lower (indicating a better fit) than 

that of the standard EWA model for the merged dataset (iBICδ = 57511, iBICδ±
= 56225) 

as well as for each individual experiment (iBIC1
δ = 30656, iBIC1

δ±
= 30126; iBIC2

δ = 26409, 

iBIC2
δ±

= 26159).

If increased deliberation in social anxiety is driven by rumination about the events in the 

task, then the behavioral effects should reflect the biases of that rumination. In particular, 

post-event processing in people with high social anxiety involves a predominance of 

upward counterfactual thoughts (‘if only’ thoughts about how the situation could have gone 

better; Kocovski, Endler, Rector, & Flett, 2005; Brozovich et al., 2008). This suggests the 

link between social anxiety and δ is mediated by a more specific relationship between 

social anxiety and δ+ (upwards counterfactual updating). Indeed, social anxiety predicted a 

robust increase in upwards counterfactual updating, indexed by δ+ (p<0.0001), but had no 

significant relationship with δ− (Figure 4, Supplementary Table 6). Again, this result was 

significant in each experiment considered separately (SI Figure 7, SI Tables 3 & 4); and 

again, the pattern of correlations with IQ was different and less selective. We also verified 

that the association between social anxiety and δ+ was significantly greater than that for δ−; 

it was (p<.05 exp1, p<.022 exp2, , p<.0014, combined data).

Finally, we examined whether our results were specific to social anxiety by controlling 

for additional psychopathological symptoms. In general, there are complex patterns of 

comorbidity among different mental illnesses, and the effects we observed might in 

principle be subserved by other factors. Notably, rumination is common in other mood 

disorders, including depression and generalized anxiety. Moreover, a number of studies have 

linked deficits in goal-directed choice to compulsivity. We used participants’ responses 

to a larger battery of self-report symptom questionnaires in Experiment 2 to examine 

how counterfactual reasoning in the patent race task related to symptoms of psychiatric 

conditions other than social anxiety. We summarized these using the transdiagnostic 

dimensions identified by Gillan et al. (2016) using factor analysis on the same battery 

studied here.

Using this method, we computed scores for each subject along three dimensions: ‘Anxious-

Depression’, ‘Compulsive Behavior and Intrusive Thought’ and ‘Social Withdrawal’ (the 

last corresponding largely to LSAS; see SI Figures 5 & 6 for factor loadings). Even 

controlling for these other factors, upwards counterfactual learning predicted social anxiety 

(now captured by the ‘Social Withdrawal’ factor; Figure 5). The other psychiatric factors did 

not correlate significantly with any model parameters in this task. Again, the relationship 

between ‘Social Withdrawal’ and counterfactual updating was significantly greater for 

upwards counterfactual updating δ+ vs. downwards counterfactual updating δ− None of the 

estimated coefficients for the other terms reached significance (p>.1).
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Discussion

We investigated the relationship between social anxiety and model-based “belief learning” 

in two large-scale behavioral experiments. By fitting the parameters of the EWA model to 

subjects’ choices in a patent race task, we derived indices reflecting the extent to which each 

participant’s behavior reflected valuation of actions via direct, model-free reinforcement vs. 

model-based learning of the opponent’s move distribution via counterfactual updating. In 

line with our hypothesis, self-report social anxiety (LSAS) predicted a significant increase 

in model usage, as indexed by the EWA parameter δ This effect was driven principally 

by increased upwards counterfactual reasoning, and robust to the inclusion of additional 

dimensions of psychiatric symptoms.

These results support the hypothesis that heightened self-reported social anxiety is 

accompanied by enhanced model-based learning. This finding complements previous reports 

(albeit using a different, single-player RL task) that symptoms of compulsive disorders are 

associated with the opposite imbalance: declines in model-based learning (Voon et al., 2015; 

Gillan et al., 2016). Results of this sort are tantalizing in part because they point the way 

toward grounding the symptoms of mental illness – here, overthinking and paralysis in 

social situations – in the dysfunction of well characterized, more basic neuro-computational 

mechanisms of evaluation and learning. Such a mechanistic understanding of these illnesses 

– known in medicine as an etiology – is currently wholly lacking, a state of affairs that 

hampers both diagnosis and treatment, and ultimately contributes to poor patient outcomes.

The present study raises the question whether social anxiety is special in this respect, 

relative to other depressive or anxious disorders. Some evidence that it might be comes 

from our finding, in Experiment 2, of no similar associations of task behavior with a 

factor comprising other depression and anxiety symptoms. Of course, we chose a socially 

framed RL task in order to highlight any effect of social anxiety specifically. The details 

of the task might well matter: The association of social anxiety with model-basedness 

was stronger and clearer here than the analogous trend in Gillan et al.’s (2016)’s study 

of a single-player Markov decision task. Conversely, in the current task we found no 

evidence that compulsivity is associated with reduced model-based learning, in contrast to 

Gillan’s setting. The negative finding regarding compulsion is surprising given that OCD 

in particular has been associated with reduced model-based or goal-directed learning across 

a range of other tasks, beyond two-step Markov decision tasks (Gillan et al., 2011, 2014); 

presumably something about how decision making is operationalized in the current task 

accounts for the difference. (Other than the social framing, differences from the two-step 

task include that the task is nonsequential and differences in the parameterization of the 

model, such that the parameter δ here isolates the strength of model-based updating, whereas 

the analogous parameter most strongly affected in two-step tasks, βMB, also incorporates an 

element of choice consistency, like β in the current model.) A related question is why, apart 

from the social framing, is the effect seen specifically with respect to social anxiety rather 

than the dimension capturing depressive and other more general anxious symptoms. Social 

anxiety may indeed be distinct from other mood disorders insofar as overthinking in social 

contexts is in some sense, goal-directed and task-focused, as opposed to worry and repetitive 
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thought in other disorders which may be more idle and distracting (M. Paulus & M. Stein, 

personal communication; Watkins, 2008). Social anxiety is also enriched in the sampled 

population (giving us relatively better power to observe its effects), and simpler and more 

homogenous as a disorder compared to more complex syndromes like depression. Future 

work comparing multiple tasks within the same cohort, and manipulating task framing while 

holding task structure fixed, will be required to fully address these issues.

A broader question is what is the mechanism by which the brain accomplishes “model-

based” evaluation – and how is it affected by social anxiety. Our result is consistent 

with longstanding suggestions that mood disorders might be associated with abnormal 

or excessive deliberative (model-based) processing, such as uncontrolled forward search 

for action valuation (Huys et al., 2015; Huys et al., 2012; Solway et al., submitted). 

For instance, theoretical work on value-based computation in depression has analogized 

rumination to mental simulation, for computing the value of potential actions given their 

anticipated consequences, though there has so far been limited evidence connecting these 

hypothesized computations to actual choices (Huys et al., 2012).

That rumination is, by definition, selective – narrowly focused on specific classes of 

thoughts or events – highlights an important feature of evaluation in general and our data 

in particular. Much earlier research has viewed “model-based” learning as all-or-nothing, 

exhaustive recomputation of action values over a tree of future states (Daw et al., 2005) 

and characterized individual differences in the overall tendency to deploy it (Gillan et al., 

2016). But recently, more realistic process-level accounts are emerging that emphasize the 

selective, strategic contemplation of individual actions or events (Morris & Cushman, 2015; 

Keramati et al., 2016; Mattar & Daw, 2018). Further, these mechanisms are not limited to 

online deliberation about decisions presently faced, but also extend to situations like offline 

planning and anticipatory updating of action values when an outcome is received (Wimmer 

& Shohamy, 2012; Shohamy & Daw, 2015; Momennejad et al., 2017; Mattar & Daw, 2018).

Suggestively, the EWA model we use is also framed in these terms: Rather than computing 

action values based on explicit beliefs about the opponent’s move preferences, it achieves 

the same effect by “counterfactual” updating of moves that could have been chosen, in light 

of the opponent’s response (Camerer & Ho, 1999). Our finding that social anxiety’s effects 

on choice were specifically mediated by upwards counterfactual updating speaks directly for 

this type of computation. Of course, just as δ is only one component of learning, δ+ and 

δ− capture only one dimension of upward and downward comparisons, so our results do 

not rule out a broader mechanism of valence-dependent computation. Although we do not 

assess rumination directly (and this is an important direction for future work), this tendency 

to overweight negative counterfactual prediction errors relative to positive counterfactual 

prediction errors echoes the general regularities of ruminative content in social anxiety 

(Kocovski et al., 2005). There is also evidence that people, overall, tend to entertain positive 

counterfactuals more than negative ones (Kahneman & Miller, 1986; McCloy & Byrne, 

2000; Loomes & Sudgen, 1982); It has been argued such a preference is often adaptive for 

learning (Icard, Cushman, & Knobe, 2018; Mattar & Daw, 2018; Caplin, Dean, & Leahy, 

2017). This is also reflected in our data in that baseline δ+ is greater than δ−; though we 
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also see that over and above that social anxiety is associated with a further increase in 

upward counterfactuals, potentially reflecting excessive upward counterfactual rumination 

that accompanies it. Our initial finding points toward the promise of a better understanding 

of the microstructure of planning – what events are contemplated, when and why – for 

understanding and perhaps beginning to address many psychiatric phenomena, including not 

just compulsivity and rumination but also craving, obsession, and hallucination.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Schematic of Patent Race Game. Prior to each round, a fixation screen appeared for 

a random duration between 4–8 s. A.) Subjects were then presented with information 

regarding their endowment ($4), the endowment of the opponent ($5), and the potential prize 

($10). B.) The arrow keys allowed subjects to select how much to invest (indicated by the 

number of white boxes) and the space bar was then used to submit the selected investment 

amount. C.) The opponent’s choice was revealed 2–6 s later. If the subject’s investment was 

strictly more than those of the opponent, the subject won the prize; In either case, the subject 

kept the portion of the endowment not invested.
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Figure 2: 
Distributions of self-report social anxiety and IQ scores for Experiments 1 and 2 (N= 743). 

Social Anxiety scores are based on Liebowitz Social Anxiety Scale (LSAS), (left) and IQ 

scores are based on subjects’ responses on the 9- item abbreviated version of the Raven’s 

Standard Progressive Matrices (RSPM) (right).
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Figure 3: 
Percent change in EWA parameters as a function of social anxiety (LSAS) and IQ 

(Abbreviated 9-item Raven’s Matrices) for subjects from Experiments 1 and 2 (N=743). 

Here β represents the inverse temperature, ϕ controls the learning rate, and δ dictates the rate 

of counterfactual updating. The y-axes indicate the percent change in the parameter for each 

change of 1 standard deviation (SD) in the predictor. Error bars indicate 1 standard error.
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Figure 4: 
Percent change in valenced EWA parameters as a function of social anxiety (LSAS) and 

IQ (Abbreviated 9-item Raven’s Matrices) for subjects from Experiments 1 and 2 (N=743). 

Here β represents the inverse temperature, ϕ controls the learning rate, and δ, which dictates 

the rate of counterfactual updating, is split into δ+ and δ− which control upwards- and 

downwards- counterfactual learning, respectively. The y-axes indicate the percent change 

in the parameter for each change of 1 standard deviation (SD) in the predictor. Error bars 

indicate 1 standard error.
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Figure 5: 
Percent change in EWA parameters as a function of psychiatric symptom dimensions and 

IQ (Abbreviated 9-item Raven’s Matrices) for Experiment 2 subjects (N = 331). Here 

β represents the inverse temperature, ϕ controls the learning rate, and δ, which dictates 

the rate of counterfactual updating, is split into δ+ and δ− which control upwards- and 

downwards- counterfactual learning, respectively. The y-axes indicate the percent change 

in the parameter for each change of 1 standard deviation (SD) in the predictor. Error bars 

indicate 1 standard error.
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Table 1:

Multivariate linear regressions of social anxiety (LSAS) and IQ (Ravens Matrices Scores) on estimated EWA 

parameters. Here β represents the inverse temperature, φ controls the learning rate, and δ dictates the rate of 

counterfactual updating.

DV IV Est. (SE) t-value Pr>|t|

β

Intercept 1.182 (0.020) 59.8 <0.001***

Social Anxiety −0.024 (0.020) −1.21 0.228

IQ 0.084 (0.020) 4.26 <0.001***

φ

Intercept 0.836 (0.006) 132 <0.001***

Social Anxiety −0.003 (0.006) −0.420 0.675

IQ −0.010 (0.006) −1.61 0.107

δ Intercept 0.217 (0.008) 26.9 <0.001***

Social Anxiety 0.029 (0.008) 3.61 <0.001***

IQ 0.011 (0.008) 1.42 0.156
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