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neurodegenerative diseases (NDs), represented by Alzhei-
mer’s disease (AD) and Parkinson’s disease (PD), involve > 
50 million older adults [2]. They can cause severe dementia, 
paralysis, and other consequences, imposing heavy burdens 
on families and society [3, 4]. At present, the clinical treat-
ment of NDs is still mainly based on symptom management. 
There is a lack of reliable early diagnostic measures and 
disease-modifying therapies [5].

The understanding of pathophysiological mechanisms is 
fundamental to lowering the harmfulness of NDs, and the 
continuous invention of research tools has brought much 
progress. Taking AD as an example, since its pathology was 
first discovered in 1906, AD research has experienced many 
upsurges such as histopathology, biochemistry, and genetics 
[6]. With modern neuroscience methods, we have gained a 
richer and more detailed understanding of AD pathology. 
The medical imaging revolution that began in the 1990s 
also brought a new dawn to the research on NDs. Among 
them, positron emission tomography (PET) and magnetic 
resonance imaging (MRI) have become the core research 
methods of many longitudinal multicenter projects due to 
their non-invasive and multimodal advantages, such as the 
Alzheimer’s Disease Neuroimaging Initiative (http://​adni.​
loni.​usc.​edu), the Parkinson’s Progression Markers Initiative 
(https://​www.​ppmi-​info.​org). Imaging plays a crucial role in 
revealing the dynamic development of a disease and impli-
cating pathological mechanisms. With progress in various 
fields, a new question is how to integrate micro-and macro-
level research to improve diagnosis and treatment.

Specifically, laboratory studies can reveal structural and 
functional changes at the level of cells, tissues, and neu-
ral circuits, but the translation into clinical applications is 
often uncertain. On the other hand, medical imaging can 
reveal the trajectory of macroscopic brain degeneration in 
aging [7] and NDs [8] that is tightly associated with clinical 
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Background

The aging of the world population is continuously pro-
gressing [1]. Among many diseases of the elderly, 
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impairments. Nevertheless, the pathologies behind imaging 
abnormalities are often complex and need careful explana-
tion. By combining macro- and micro-scale research tools, 
translation from basic disease mechanism studies to clinical 
scenarios might be more direct. As nuclear imaging is rela-
tively straightforward and some related reviews have already 
been published [9], we focus on MRI. For this purpose, we 
first briefly describe current theories on the pathogenesis of 
ND and the progress of clinical MRI research, using AD and 
PD as examples. We have no intention of including all the 
disease mechanisms and imaging methods but only provide 
information necessary for related discussions. Further, we 
will mention several possible strategies and directions for 
conducting translational research using MRI.

Basic Pathologies and Neural Circuit Changes 
in NDs

AD pathology is characterized by the presence of amyloid 
plaques, neuritic plaques, and neurofibrillary tangles. The 
"amyloid cascade hypothesis" is the mainstream theory [10] 
regarding the development of pathology in AD; it has been 
suggested that the increase of amyloid-β (Aβ) is key to trig-
gering tau pathology followed by neuronal death. Under the 
action of genes, environmental toxins, aging, and other fac-
tors, Aβ is gradually deposited in the brain and causes tau 
protein deposition through mechanisms that are not yet fully 
understood. Tau protein spreads in the brain through syn-
aptic connections [11, 12], starting from the hippocampus 
and entorhinal cortex and gradually to the posterior cor-
tex. Cognitive impairment is more strongly associated with 
tau-related brain damage than the Aβ burden [13]. On the 
circuitry level, the hippocampal network is most important 
and has been extensively studied [14, 15]. The default mode 
network (DMN) [16], which was first discovered in human 
imaging studies and verified in rodents [17], has been con-
sistently reported to be damaged in AD [18].

Apoptotic cell death of dopamine neurons in the substan-
tia nigra (SN) induced by Lewy body deposition is the core 
pathological mechanism of PD. According to the traditional 
Braak pathological staging [19], Lewy body pathology starts 
from the olfactory bulb, medulla oblongata, and pons. It 
gradually spreads to the midbrain and limbic system, and 
eventually to the cortical gray matter. While abundant evi-
dence suggests that the pathological α-synuclein aggregates 
originates in the peripheral nervous system and spreads ret-
rogradely into the brain, a brain-first pattern is also possible 
[20]. When the loss of SN dopamine neurons reaches as 
high as 30% or more, it leads to an imbalance of nigrostriatal 
circuit function, breaking the balance between direct/indi-
rect motor pathways in the basal ganglia–thalamocortical 
circuit [21], leading to movement disorders. Dysfunction of 

the cerebellar circuit is associated with the tremor [22] and 
freezing of gait [23] in PD.

Cerebrovascular degeneration [24], neuroinflammation 
[25], and glymphatic dysfunction [26, 27] may contribute to 
the development of NDs, before or after disease onset. Dur-
ing aging, intracranial blood vessels often develop sclerosis, 
collagen deposition, stenosis, and other pathologies, which 
lead to the gradual decline of cerebral blood flow (CBF) 
[28]. On the other hand, the blood-brain barrier (BBB) 
becomes weak and its permeability gradually increases, 
causing leakage of blood cells and harmful substances into 
the brain parenchyma [29]. Homeostatic imbalance and 
the invasion of exogenous substances may cause immune 
responses. Misfolded and aggregated proteins in various 
NDs can also trigger neuroinflammation, characterized by a 
reactive morphology of both astrocytes and microglial cells 
[25]. Chronic neuroinflammation can lead to various forms 
of brain damage (such as demyelination and axon dam-
age) and accelerates neurodegeneration [30]. Research on 
the glymphatic system [31] has received extensive interest 
in recent years. Glymphatic dysfunction not only reduces 
the rate of brain metabolic waste removal and accelerates 
the accumulation of pathological proteins but also worsens 
inflammatory responses and further accelerates ND progres-
sion [26, 31].

Pathologies often do not exist in isolation [32]. AD is 
frequently accompanied by vascular pathologies [33]. A 
neuropathological study [34] showed that 79.9% of patients 
diagnosed with AD have cerebrovascular pathologies. In 
patients with dominantly-inherited AD, the burden of white 
matter hyperintensity (WMH), an imaging sign considered 
to be associated with small vessel degeneration, increases 6 
years before the expected symptom onset [35]. In patients 
with PD, one-third of those with cognitive impairment and 
one-half of those with dementia have elevated AD biomark-
ers in the cerebrospinal fluid (CSF) [36]. The presence of 
tau can be as high as 100% in LRRK2 PD [37]. Therefore, 
increasing studies have begun to make simultaneous meas-
urements on common ND pathologies [38], such as Aβ, tau, 
TDP-43, α-synuclein, and vascular damage. In this way, we 
can investigate the interaction of different neuropathologies 
to understand their contribution to disease progression [39].

Brain MRI Methods

As summarized in Fig. 1, many imaging methods have been 
used for investigating brain degeneration and aiding the 
diagnosis of ND. Generally, MRI markers are not disease-
specific, but their spatial patterns are closely associated with 
core pathologies. For example, AD-related brain atrophy is 
prominent in the hippocampus and medial temporal lobe due 
to early tau pathology in these regions, while PD patients 
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only demonstrate significant brain atrophy in late stages of 
the disease. In AD, brain iron deposition is associated with 
amyloid plaques that extensively involve cortical areas. On 
the other hand, iron deposition in PD is due to dopamine 
neuronal death and is most marked in the SN. Choosing 
methods based on the understanding of disease pathologies 
can maximize the efficiency of experimental designs.

Structural Imaging

Structural MRI has long been used for assessing brain atro-
phy in NDs. For example, atrophy in the midbrain and pons 
can differentiate PD from progressive supranuclear palsy 
[40]. Hippocampal atrophy is the core brain imaging marker 
of AD. However, it is not a marker with good specificity 
because many other diseases, such as vascular degenera-
tion, can also lead to hippocampal atrophy [41]. If atrophy 
in the whole brain is simultaneously considered, the diag-
nostic accuracy can be much higher. SPARE-AD, a brain 
atrophy score derived from whole-brain analysis using auto-
mated segmentation methods, separates AD from controls 
with high accuracy [42]. Deep-learning-based methods are 
excellent for recognizing complex image patterns and may 
outperform traditional methods [41]. The increase in field 
strength and imaging resolution has allowed more precise 
quantification of structural abnormalities. On 7T MRI, the 
analysis of hippocampal atrophy can be pushed to the subre-
gional level [43], allowing the detection of more subtle and 
early changes (a background hypothesis is that certain hip-
pocampal subregions are more vulnerable to AD pathology 
and the hippocampus does not degenerate at a uniform rate).

Different weighting methods can enhance the visuali-
zation of various brain structures and lesions. For general 

purposes such as atrophy assessment, segmentation, and 
registration, T1-weighted imaging with gray\white matter 
contrast enhancement is recommended. T2-weighted and 
fluid-attenuated inversion recovery (FLAIR) sequences can 
demonstrate vascular-related changes, such as WMH and 
dilation of perivascular spaces (PVSs) commonly seen in 
older adults. Susceptibility weighted imaging (SWI) can 
display venopathy [44] and microbleeds, and quantify iron 
deposition. In AD, iron loading is a prominent feature of 
activated microglia [45], although how macrophages accu-
mulate, store, and utilize intracellular iron is still not com-
pletely understood. In PD, the loss of nigrosome-1 can be 
visualized on SWI. Appearing as swallowtails or loops, they 
are valuable markers for PD diagnosis [46, 47].

As brain damage progresses very slowly in NDs, it can 
take an exceptionally long time for macroscopic changes to 
occur, and imaging at finer resolution is desired. Restrained 
by physical rules, the current limit of in vivo human brain 
imaging is only at the sub-millimeter level. To further under-
stand microscopic changes at the tissue level, the apparent 
properties of brain tissues within each voxel can be used 
to infer its composition, which is the basic idea of "Micro-
structural Imaging" [48]. The typical approach assumes the 
properties (the most common is water molecule diffusion) of 
several types of cells and components, sets a mathematical 
model, and collects data to solve it. Then, disease-related 
changes at microscopic levels can be inferred. Usually, these 
models need to be first evaluated on animal brains or ex vivo 
brains to confirm that the derived parameters well reflect 
the tissue properties. Despite the fact that that model fit-
ting is never perfect, some parameters have demonstrated 
very robust associations with clinical manifestations and 
can be used as valuable biomarkers for ND studies, such as 

Fig. 1   Common imaging abnormalities on MR images of AD and 
PD patients. In AD, brain damage is consistently found in the hip-
pocampus and DMN, with frequent vascular degeneration. In PD 
patients, imaging abnormalities are more related to the dysfunction of 
the substantia nigra and BG-THA-Cort circuit. Markers in bold have 

been extensively tested and have successfully demonstrated clinical 
value. dPVS: dilated perivascular space; WMH, white matter hyper-
intensity; DMN, default mode network; CBF, cerebral blood flow; 
BG, basal ganglia; THA, thalamus; Cort, cortex; N1, nigrosome-1; 
FW, free water; NM, neuromelanin.
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diffusion tensor imaging (DTI) [49], neurite orientation dis-
persion density imaging [50]), and free water imaging [51].

Functional Imaging

Intuitively, neuronal functions might have already altered 
before the death of neurons. Therefore, functional imaging 
is believed to be more sensitive to early brain changes than 
structural imaging. Blood-oxygen-level dependent (BOLD) 
imaging is the most widely used functional imaging method. 
Traditional task-related functional magnetic resonance imag-
ing (fMRI) has good specificity. It can reveal changes in 
brain activation patterns when patients engage in different 
tasks, providing information for understanding the degenera-
tion and remodeling of the neural circuits underlying clinical 
impairments. For example, episodic memory tasks have been 
used in early AD patients to assess their hippocampal func-
tions [52]. Sensorimotor [53] and executive tasks [54] have 
been extensively used in PD to demonstrate changes related 
to dopamine deficiency. Interestingly, functional imaging 
can be combined with electromyography to reveal brain 
oscillations associated with resting tremors [55].

Because task-related fMRI requires a high degree of 
patient cooperation, it is usually difficult to carry out in 
severe disease conditions and routine clinical practice. The 
resting-state fMRI does not require patients to perform spe-
cific tasks; it detects brain abnormality by measuring fluctu-
ations in the local BOLD signal [56] or associations between 
different brain regions [57]. The premise that resting-state 
fMRI can detect disease-related abnormalities is that rest-
ing-state activity is associated with the inherent "trait" of 
disease damage. Alteration of resting-state brain activity in 
the DMN has been consistently reported in AD patients as 
well as persons with mild cognitive impairment (MCI) car-
rying AD pathology [58, 59]. Although the phenomenon is 
reliable, clinical diagnosis based on resting-state fMRI is 
difficult due to individual differences in brain recruitment 
and changes in psychophysical conditions. Since the com-
pletion of brain function usually requires the collaborative 
work of multiple regions, the efficiency of large-scale brain 
networks is crucial. Functional network analysis based on 
graph theory is suitable for analyzing complex brain net-
works by revealing higher-order network properties [60, 61].

Due to the rapidly-changing human brain activity and 
the inherently low signal-to-noise ratio (SNR) of the BOLD 
signal, fMRI is often criticized for its low reproducibility. 
BOLD imaging on 7T MR scanners can achieve a higher 
SNR and sub-millimeter resolution with customized coils. 
In recent years, various new noise-reduction methods and 
multiple comparison correction methods have improved the 
reliability of fMRI research. In ND research, there is another 
crucial interference factor in fMRI—neurovascular coupling. 
Lower blood perfusion and hemodynamic alterations may 

also change global or regional BOLD signals and mix with 
signals elicited by neural activity. How to distinguish neu-
ronal from vascular-related alterations has been discussed 
in some recent reviews and is worthy of further research 
[62]. Brain atrophy, prominent in the elderly, can exaggerate 
signal overlap in adjacent cortical gyri. Imaging at higher 
resolution and the application of surface-based processing 
methods may alleviate this problem [59].

Vascular and Perfusion Imaging

Aging-related changes in cardiac output, vessel wall pulsatil-
ity, and parenchymal resistance can lead to chronic hypop-
erfusion and accelerate neurodegeneration [63]. General 
vascular morphometry and plaques can be well displayed 
with time-of-flight angiography and black-blood vessel wall 
images. Although narrowing and occlusion of large vessels 
are not major pathologies of NDs, they can lead to vascu-
lar dementia or vascular parkinsonism and need to be con-
sidered in clinical practice. Small vessel disease (SVD) is 
more common in the elderly and dramatically increases with 
age. Because arterioles and capillaries are too small to be 
seen on MR images, some indirect imaging signs have been 
widely used to reflect SVD severity [64], including WMH 
of presumed vascular origin, lacunae, microbleeds, recent 
small subcortical infarct, dilated perivascular space (PVS), 
and superficial siderosis. WMH and cortical microbleeds are 
quite common in AD patients [65, 66] due to the deposition 
of Aβ in vessel walls.

The measurement of BBB integrity mainly includes 
methods based on contrast agents [67] or water diffusion 
[68]. They assume different water compartments (vascular 
and brain tissue) in the brain and calculate the exchange rate 
across the barriers. Increased BBB leakage at the hippocam-
pus has been consistently found in AD [69] and vascular 
cognitive impairment [70] using dynamic contrast-enhanced 
(DCE) imaging methods. Because BBB damage in aging 
and NDs is only mild-to-moderate, it is vital to select the 
appropriate scanning parameters and mathematical mod-
els for accurate measurement [71]. Due to its invasiveness 
and concerns of Gadolinium deposition in the brain, DCE-
MRI is rarely used in large-scale studies. New BBB imag-
ing methods [68, 72] that use labelled water as the tracking 
agent may be more applicable in community and preclinical 
cohorts. Nevertheless, BBB alterations measured by water 
exchange are different from traditional methods. Because 
water molecules are small, the loss of tight junctions is not 
necessary for increased permeability. Assessing BBB per-
meability to substances with different molecular sizes may 
better reveal disease pathologies [73].

The arterial spin-labelling method can measure blood 
perfusion in different brain regions without injecting a 
contrast agent and thus has been widely used in clinical 
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investigations [74, 75]. Notably, aging-related alterations in 
the vessel wall and brain stiffness can lead to slow blood 
flow, which may potentially bias blood perfusion measure-
ment. By setting different post-labelling delays and fitting 
a mathematical model, the arterial arrival time can be cal-
culated, reflecting hemodynamic alterations [76]. Interest-
ingly, hemodynamic changes also influence CSF hydrokinet-
ics associated with brain waste clearance (see below) and 
further neurodegeneration. Previous studies have shown 
that AD patients may have significantly reduced CBF in the 
hippocampus and precuneus [77], while PD patients have 
increased blood flow in the basal ganglia and decreased 
blood flow in some cortical regions [78].

Glymphatic Imaging

Although animal studies have consistently found an asso-
ciation between glymphatic dysfunction and ND, validation 
in humans is rare. Glymphatic clearance can be directly 
assessed by intrathecal or intravenous injection of Gado-
linium contrast agent [79]. After the injection, image acqui-
sition is repeated several times at delays of hours or seconds 
depending on the purpose. Signal enhancement at differ-
ent brain sites and cervical lymph nodes are then recorded 
to reflect the arrival of the contrast agent and the rate of 
glymphatic clearance [80]. This method is easy to use in 
animals [81] or human subjects [80], making it a useful tool 
for translational research. A recent study investigated glym-
phatic dysfunction in 375 PD patients using this method and 
found reduced flow through the meningeal lymphatic ves-
sels along the superior sagittal sinus and sigmoid sinus [31]. 
The foundation of glymphatic clearance is CSF\interstitial 
fluid motion and exchange, to which MRI is sensitive [82]. 
Phase‑contrast MRI can detect bulk flow at the midbrain 
aqueduct and foramen magnum [83], where fluid motion is 
relatively rapid. Diffusion imaging can reflect slow water 
molecule motion in the perivascular space [84] and brain 
parenchymal [85]. Under disease conditions, pathological 
proteins and cell debris may deposit in PVS and cause com-
pensatory PVS dilation. The dilated PVS can be seen on 
T2-weighted images and has been widely used as a marker 
of glymphatic dysfunction. High-resolution imaging and 
artificial intelligence (AI)-based segmentation methods can 
better quantify dilated PVS volume and reveal its association 
with clinical factors [86]. Many new glymphatic imaging 
techniques are still being developed and have been intro-
duced in some recent reviews [87, 88].

Other Imaging Methods

MRI can also detect brain alterations at the molecular level. 
Based on the principle that different molecules have dif-
ferent resonant frequencies, MR spectroscopy (MRS) can 

detect various products of brain metabolism, such as lactate, 
N-acetylaspartate, glutamine/glutamate. With new imaging 
sequences, whole-brain MRS could be applied in clinical 
imaging research, demonstrating distinct spatial patterns of 
brain metabolites in NDs [89, 90]. Chemical exchange satu-
ration transfer (CEST) imaging can enable the indirect detec-
tion of metabolites with exchangeable protons located on 
proteins. A few attempts have been made to detect proteins 
associated with different pathological processes in NDs. 
For example, a significantly lower amide-weighted signal 
(3.5 ppm) is associated with Aβ deposition in AD mice 
[91], and lower CEST signals at 1 and 2 ppm are associ-
ated with markers of neuroinflammation [92]. Furthermore, 
ultra-small superparamagnetic iron oxide nanoparticles can 
be designed to detect specific substances, such as Aβ1–42 
peptides in animal models [93], but translation into human 
subjects may be a long road.

Multimodal, Longitudinal Imaging

As discussed above, the development of human NDs is usu-
ally driven by various pathologies with complex interactions. 
In this regard, multimodal imaging and longitudinal obser-
vations are necessary [94]. By analyzing brain alterations 
from multiple aspects, a whole picture can be put together 
for inferring underlying pathologies and making clinical 
decisions. For example, by using quantitative susceptibil-
ity imaging to investigate SN degeneration and resting-state 
fMRI to investigate brain network changes, a link between 
the primary pathology and downstream mechanisms can be 
built up [95]. Aging-related WMH lesions, fiber tract dam-
age, and cortical activity can be simultaneously displayed, 
allowing the understanding of coherent brain structural-
functional impairment [96] (Fig. 2). By combining PET with 
structural MRI, information about pathological molecules 
and macrostructural changes can be incorporated to under-
stand how AD pathology causes brain atrophy, microbleeds, 
and clinical impairments [97, 98]. Based on longitudinal 
data, causality between different pathologies and brain dam-
age can be inferred. However, in clinical research, patients 
usually cannot hold their heads still during a long scan time. 
The scan parameters must be optimized to best match the 
study purpose and patient compliance.

MRI in Translational Research

Benefiting from its in vivo feature, MRI can be a pow-
erful tool in translational research. With proper valida-
tion and interpretation, imaging features can bridge the 
gap between micro-and macro-level research, or between 
animal research and clinical application (Fig. 3). On 3T 
clinical scanners, 0.5–1 mm imaging resolution can be 
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achieved for structural imaging and 2–4 mm for functional 
imaging. Most MRI methods can be easily implemented 
in clinical settings, but some are difficult. The success rate 
of task-fMRI may be low in patients, and molecular imag-
ing methods need extensive preclinical tests before human 
imaging. Here, we discuss several translational imaging 
research paradigms for NDs (Fig. 4).

Imaging‑Histology Comparison

While structural imaging is very robust for measuring volu-
metric and morphometric changes, the restriction of imaging 
resolution limits the detection of small lesions. For example, 
microbleeds detected by MRI are ~ten times larger at post-
mortem examination [99]. When one microinfarct is seen on 
MRI, the actual number of such lesions can be substantially 
higher [100]. Using ultra-high field MRI and optimized 
scanning parameters could improve detection efficiency. The 
number of microbleeds [101], microinfarcts [102], dilated 
PVS [103], and other structures are significantly higher on 
7T images than at 3T. Imaging-histology comparison can 
reveal quantitative differences that can be used when infer-
ring the severity of underlying pathologies in clinical prac-
tice. The interpretation of signal changes, common in clini-
cal investigations, may be complex depending on different 
clinical scenarios. WMH can be induced by increased water 
content, demyelination, inflammation, or protein deposition 
[104]. Imaging-histology comparisons in different diseases 
may show distinct driving factors. By comparing MRI with 
histological images, the effect of fiber tracts and iron deposi-
tion on MR susceptibility can be quantified to guide clinical 
applications [105].

In some imaging methods that need extensive math-
ematical modelling (such as diffusion imaging and BBB 
imaging), the derived imaging parameters are more dif-
ficult to interpret. Although DTI has been successfully 

Fig. 2   Using multimodal imaging to study disease evolution and 
structural-functional coherent changes. A The severity of AD 
increases from top to bottom, stratified by AD biomarkers. The green 
structure represents the cingulum-angular bundle (CAB) tracts. The 
red segments of the CAB indicate a significant group difference from 
normal controls. The colorful structures above the green structure 
represent the hippocampal (HP) subfields. The lavender area in the 

posterior region represents the precuneus volume. In summary, the 
degeneration of HP subfields, CAB, and precuneus are aggravated 
with higher disease stages [94]. B WMH can lead to a slower pro-
cessing speed in the elderly. By combining information from different 
modalities, a coherent damaging pattern is seen in the occipital lobe, 
supporting the WMH–Tract–Function–Behavior link [96].

Fig. 3   The information that MR imaging techniques provide on dif-
ferent scales and their potential for clinical applications. Task-fMRI 
may be difficult to implement on patients due to impaired motor or 
cognitive functions. Molecular imaging may have safety issues and 
needs extensive pre-clinical studies. MRA, MR angiography; SWI, 
susceptibility-weighted imaging; ASL, arterial spin labelling; MRS, 
MR spectroscopy; CEST, chemical exchange saturation transfer.
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applied in demonstrating fiber tract changes in various 
brain diseases, the association between diffusion param-
eters and specific disease pathologies (such as demyelina-
tion and axon damage) is not specific [106]. Furthermore, 
problems such as fiber crossing [107] and water contami-
nation [108] can lead to substantiate biases. In novel meth-
ods aimed at solving these problems, the complexity of the 
diffusion models increases, and thus simulation and vali-
dation of these advanced models are vital. Imaging-his-
tology comparison can provide effective validation [109].

Although the correspondence between MR imaging 
features and true pathologies is not always simple and 
straightforward, clarifying their associations can be of 
tremendous help for understanding disease mechanisms 
and improving clinical practice. Due to the complexity of 
diseases, many unique imaging abnormalities are consist-
ently discovered without knowing the specific pathologies 
[110, 111]. For example, inferior frontal sulcal hyperinten-
sity observed on FLAIR images is supposed to be associ-
ated with glymphatic dysfunction [110], because the infe-
rior frontal sulci are just superior to the cribriform plate 
where some CSF drains to the nasal lymphatics, but the 
actual pathology remains unknown. Furthermore, lesion 
patterns and spatial features can provide key information 
for inferring pathology [112]. The topological connection 
between microbleeds and venules observed on 7T suggest 
a contribution of disrupted BBB in venules to microbleeds 
[112]. The fact that incident lacunae are preferentially 
localized to the edge of WMH indicates hypoperfusion 
around WMH lesions [113].

Dynamic Imaging in Animal Models

Through dynamic imaging, association and causalities 
among different disease pathologies and macroscopic brain 
changes can be better demonstrated. For example, the asso-
ciation between β-amyloid deposition and decreased CBF 
can be shown by longitudinal PET\MR imaging in amyloid 
precursor protein transgenic mouse models [114]. This is of 
value for revealing early brain degeneration, which is diffi-
cult to understand in patients due to late diagnosis. Studies 
using MRI to visualize the pathophysiology in animal mod-
els of amyloidosis have been well summarized in a recent 
review [115]. In vivo imaging is vital for studying certain 
pathophysiological processes that are best studied in living 
animals, such as brain activation or glymphatic function. 
Because waste clearance is a dynamic process and depends 
on fluid flow and exchange driven by physiological processes 
such as respiration and cardiac pulsatility, it needs in vivo 
observations. Even the structure of the PVS (the major route 
for waste clearance) may shrink and cannot be accurately 
measured in post-mortem studies due to fixation methods 
[116]. By injecting a contrast agent into the ventricles and 
carrying out continuous MRI scans, researchers can ana-
lyze the enhancement in various brain regions at different 
time points, so the path and speed of waste clearance can 
be inferred [80]. Using this method, researchers have dem-
onstrated the influences of hypertension [117] and diabetes 
[81] on glymphatic clearance, and the association between 
waste clearance and AD pathology [118]. Importantly, 
this method can also be implemented in human subjects. 
After intrathecal or intravenous injection of contrast agent, 

Fig. 4   Possible applications 
of MRI in translational ND 
research.
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the effects of aging [79], sleep deprivation [119] and NDs 
[31] on waste clearance have been investigated with great 
interest.

Neural Circuit Study and Brain Stimulation

MRI is useful for studying neural circuitry. Large fiber bun-
dles can be tracked and visualized with good reliability, 
especially using advanced models [120]. Thin fiber tracts 
connecting smaller brain structures can also be analyzed 
with higher imaging resolution and probabilistic tractog-
raphy methods [121]. Coordination among different corti-
cal regions and subcortical nuclei can be investigated using 
functional connectivity analysis based on fMRI. Although 
not as precise as electrophysiological recordings, since these 
methods can be used in both animals and humans, they can 
facilitate comparison and translation across species [122]. 
With an ultra-high magnetic field and fast imaging acquisi-
tion methods, the temporal resolution can be pushed down to 
100 ms [123] with full brain coverage, and the spatial resolu-
tion can achieve a sub-millimeter level [124]. Unfortunately, 
these limits cannot be reached at the same time. Choices for 
spatial and temporal resolution must be made to best match 
research goals.

These advantages can aid translational research on devel-
oping new strategies for deep brain stimulation (DBS). As 
a useful treatment method for late-stage PD, the optimiza-
tion of DBS targets and stimulating frequencies have first 
been performed on rodents [125] and large animals [126]. 
The modulating effect is well demonstrated by using fMRI 
to monitor the brain activation elicited. With this knowl-
edge, structural and functional imaging are performed before 
DBS surgery to predict the treatment effect [127, 128] and 
guide electrode placement [129]. In recent years, non-inva-
sive brain stimulation has shown good efficacy in treating 
NDs. Repetitive transcranial magnetic stimulation (rTMS) 
of the dorsolateral prefrontal cortex can improve cognition 
both in MCI and AD [130]. Stimulation of the motor cortex 
can improve motor functions in PD. Circuit mapping using 
structural and functional MR can provide a precise target for 
rTMS and enhance its therapeutic efficacy [131, 132]. New 
brain stimulation techniques such as transcranial focused 
ultrasound can target much deeper brain regions [133], and 
the activation-stimulation research paradigms have tremen-
dous potential for ND treatment.

MRI in Drug Trials

In drug development, medical imaging can be helpful dur-
ing participant selection and the evaluation of effectiveness. 
Due to the long disease course and irreversible neuronal 
damage, clinical trials on NDs usually need to be performed 
in early-stage patients to best demonstrate their protective 

effect. Confirming disease risks by evaluating amyloid depo-
sition and neurodegeneration during patient enrollment can 
reduce the required sample sizes of AD clinical trials by 45% 
to 60% [134]. At the same time, the effect of drug treatment 
and neurodegeneration during a short research period might 
be too mild to be demonstrated by clinical assessments, and 
confounded by subjective evaluation biases and the patients’ 
psychophysical conditions. Therefore, many clinical trials 
have adopted objective imaging parameters as secondary 
outcomes [135]. In studies on small vessel degeneration, 
WMH and diffusion imaging parameters [135] have already 
become essential assessment tools in clinical trials [136, 
137]. By applying these markers, the sample size required 
for a 3-year clinical trial on SVD was dramatically reduced 
[138] compared to measuring cognitive functions (124 ver-
sus 6135 subjects). In PD, SN free water measurements have 
achieved an effect size similar to nuclear imaging methods 
in reflecting longitudinal SN degeneration [139], and has 
been used to assess whether specific drugs have a protective 
effect [140]. Using neuroimaging markers, the cost of large-
scale clinical trials may be significantly reduced. MRI can 
help monitor and control adverse effects in clinical trials. 
Amyloid-related imaging abnormalities (ARIA), including 
ARIA-E (with effusion or edema) and ARIA-H (hemosi-
derin deposits), have been found in patients taking drugs 
aimed at removing amyloid plaques from the brain [141]. 
Evaluating the severity of SVD at baseline could also help 
to control ARIA.

Brain Phenotype Studies

Brain degeneration and NDs are associated with countless 
demographic, genetic, environmental, and lifestyle factors 
that are impossible to simulate in experimental conditions. 
Large-scale population studies using the non-invasive, non-
radiative MRI methods provide opportunities for revealing 
weak associations and promoting the discovery of new theo-
ries. For example, the UK Biobank project plans to collect 
multimodal brain images, as well as phenotypic and genetic 
information of 100,000 people. This provides a foundation 
for understanding how some basic features of the human 
brain are affected by various risk factors. Genetic-Brain 
imaging association studies in over 8000 subjects revealed 
21 genes [142] important for iron metabolism, axon growth, 
and brain plasticity. A study focused on aging found hetero-
geneous brain degeneration patterns showing distinct func-
tional and structural brain changes, which were associated 
with different genetics, lifestyle, cognition, physical meas-
ures, and diseases [143]. Similarly, the association between 
brain degeneration and genetic variations has been explored 
in specific disease cohorts [144, 145]. Further research into 
the genetic and biochemical mechanisms behind these super-
ficial associations may provide new knowledge regarding 
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brain degeneration and disease treatment. In another way, 
the effect of modulating the related pathways can be eas-
ily assessed on animals as they are originally derived from 
imaging studies.

Investigating brain phenotypes based on large imaging 
datasets is vital for understanding disease heterogeneity 
[146, 147] and choosing therapeutic strategies [148]. For 
example, PD patients may exhibit tremor-dominant or rigid-
ity-dominant motor symptoms, with or without cognitive 
impairment. Such heterogeneity cannot be fully explained 
by overall pathology burdens but is ascribed to individual 
variations in brain organization, regional vulnerability to 
disease pathology, and diversity of pathology. Brain imag-
ing is powerful for revealing different phenotypes of brain 
degeneration. Based on brain atrophy patterns, two PD bio-
types have been discovered that have distinct clinical symp-
toms and disease progression rates [149]. Regional radiom-
ics similarity networks derived from structural images have 
been used to screen MCI subjects with a higher probability 
of dementia progression [150]. Furthermore, the structural 
connections of white matter reflect differences in individual 
brain organization or functional network properties [151, 
152]. Compared to subtyping based on clinical features, 
imaging phenotypes are more objective and stable, but they 
still need extensive external validation [153]. It is better to 
consider both disease-specific and subtype-specific features 
to avoid non-related trivial clustering results when dealing 
with heterogeneity. For example, a depression-related or 
cognition-related brain pattern may not be specific to PD 
patients and could not add additional clinical value.

Future Directions

MRI techniques are still undergoing rapid development. 
7T MR scanners with clinical modes have been installed in 
many universities and hospitals, and several 11.7T scanners 
are being tested at some research centers. Recently, a 5T 
imaging system has been announced, which could be more 
versatile in clinical imaging research. In high-resolution 
imaging, the impact of head movement is more serious, and 
the use of prospective head movement correction methods 
can help achieve more accurate in vivo structural imaging 
[154]. With increased spatial and temporal resolution, MRI 
can be used to visualize smaller brain structures, helping 
detect more covert disease-related brain changes and con-
nect with fundamental research at the tissue and circuit 
levels. Due to limited accessibility, clinical research using 
ultra-high-field MR scanners has been mainly performed in 
small samples. Large cohort studies and clinical applica-
tions would be much easier with more facilities installed at 
clinical sites.

AI may play a crucial role in this new era. With the 
help of deep-learning-based reconstruction algorithms, 
the scanning time of multimodal imaging can be signifi-
cantly reduced [155]. Imaging at higher spatial and temporal 
resolution, the amount of information to be processed has 
also increased exponentially. AI-based detection and seg-
mentation algorithms can be very good at identifying brain 
lesions and providing quantitative measures [156–158], and 
they also have great potential in diagnosis and prognosis. 
However, due to limited imaging modalities, most previous 
studies were focused on using T1 structural images to build 
classification models. Future studies should consider incor-
porating other imaging features, such as brain susceptibility 
in PD and SVD features in AD. Notably, with more complex 
models, cross-validation in large and multicenter datasets 
is necessary to validate their generalizability [153]. Data 
harmonization based on specifically-designed phantoms or 
post-processing methods is expected to remove inter-vendor 
variability and improve data consistency [159].

Due to the difficulty in early diagnosis, disease evolution 
and brain degeneration in the early stages of NDs remain 
largely unknown. Constructing prodromal cohorts at high 
risk for specific NDs and performing longitudinal imaging 
observations are necessary for revealing the trajectories 
of brain degeneration and discovering diagnostic markers 
[160]. Multi-scale translational research on animal mod-
els could help clarify the association between macro- and 
micro-level changes and describe the causal interactions 
among ND pathologies, brain phenotypes, and functional 
impairments in different stages of disease. With new imag-
ing techniques and clinical imaging discoveries continuously 
validated, MRI will be more powerful for translational ND 
research in the future.
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