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Introduction

Accurate and precise perception of self-motion is critical for 
animals’ locomotion and navigation in the three-dimensional 
(3D) world. For example, in environments where landmark 
cues are not salient or do not provide reliable information, 
self-motion cues can be utilized by organisms to maintain 
navigation efficiency through an algorithm of vector calcula-
tion, a process also known as path integration [1, 2].

Self-motion in the environment leads to receiving multi-
ple sensory cues involving vestibular, visual, proprioceptive, 
somatosensory, and auditory motion. For vision, the move-
ment pattern of the visual background on the retina, known 
as optic flow [3], is caused by relative motions between an 
observer and outside scenes, providing a very powerful sig-
nal about self-motion status, such as heading direction. Optic 
flow reflects visual information pooled across the entire 
field, including the periphery, and thus can be exploited to 
simulate physical self-motion. In laboratories, the optic flow 
has been shown to elicit the illusion of self-motion, either 
rotation or translation of the whole body in the environment; 
this illusion is called vection [4]. However, relying only on 
visual cues is not a good strategy. This is because visual cues 
can be difficult to access in some cases, such as in a dark 
environment or inclement weather in which visual cues are 
rare. In addition, visual cues originate from the retina and 
thus are easily confounded by eye movements [5, 6], head 
movements [7], and independent object motion that accom-
panies self-motion [8, 9], all of which generate additional 
motion vectors on the retina that are irrelevant to the true 
direction of self-motion. Thus, nonvisual cues could help in 
these cases. The vestibular system provides such important 
signals. Specifically, in the inner ear, the otolith organs and 
semicircular canals are responsible for the detection of lin-
ear translation and angular rotation of the head, respectively 
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[10–15]. Immediately after bilateral labyrinthectomy, mon-
keys could not perform a heading discrimination task when 
relying only on vestibular input, yet visual performance was 
largely unaffected. In the next several months, the animals’ 
heading discriminability in darkness gradually recovered, 
as reflected by reduced psychophysical thresholds, yet they 
reached a plateau with a magnitude approximately tenfold 
larger than that of the control [16]. These data suggest that 
although the animals could receive some compensatory 
inputs from other sources like somatosensory input, ves-
tibular cues are the major information source for self-motion 
direction judgment when visual cues are inaccessible.

The brain makes full use of these available cues for self-
motion perception by combining information across sensory 
modalities. This is useful for a number of purposes, includ-
ing (1) compensation when one cue is lacking, (2) disam-
biguation when one cue is compromised, and (3) reduction 
of noise. In addition, the brain often faces the more diffi-
cult task of combining information arising from a common 
event and segregating irrelevant cues derived from different 
events. Most of these processes can be described within a 
theoretical framework of the Bayesian inference model [17], 
which has received support from numerous psychophysical 
studies across many sensory domains (for review, see ref. 
[18]). A Bayesian model has also been successfully applied 
to visuo-vestibular integration for self-motion in many 
experiments, supporting the idea that humans, as well as 
nonhuman primates, can integrate the two cue modalities in 
a statistically optimal or near-optimal way.

Neural correlates of visuo-vestibular integration have 
mainly been explored by single-unit recordings in awake, 
behaving macaques, beginning ~20 years ago [19]. Several 
cortical areas have been revealed thus far by different labo-
ratories. One obvious criterion for the inclusion of such 
areas is that their neurons should be modulated by both 
optic flow and vestibular stimuli. A number of areas meet 
this criterion, including the extrastriate visual cortex [19, 
20] (for reviews, see ref. [21, 22]), posterior parietal area 
[23], and frontal cortex [24]. These neurophysiological 
findings provide valuable insight into how neural activity 
is tuned to self-motion stimuli in both the spatial and tem-
poral domains. In this review, we discuss recent progress 
in visuo-vestibular integration for self-motion perception. 
We particularly focus on single-unit activity data collected 
in cortical areas in animal models under linear self-motion 
conditions for a number of reasons: (1) Neurophysiologi-
cal data obtained by recording single-unit activity with 
high spatial and temporal resolution allow us to address 
the issues proposed in the current review. Thus, data from 
imaging studies performed mainly on humans are not used 
and discussed here. (2) Several cortical areas have been 
clearly shown to process optic flow signals, whereas it is 
less clear whether subcortical areas such as the brainstem 

can process optic flow per se. (3) Compared to rotation, 
a much larger dataset has been acquired under transient 
linear motion conditions that mainly activate the vestibular 
otolith system. Specifically, we first summarize behavioral 
results using an experimental paradigm involving multi-
sensory integration. We then summarize neurophysiologi-
cal findings in the brain, discussing how they may mediate 
the behavior. We show that neural evidence from these 
studies may or may not be consistent. Finally, we propose 
our hypothesis, showing how recent findings could make 
sense of a neural circuit that may underlie visuo-vestibular 
integration for multisensory self-motion perception. Our 
hypothesis can aid in the design of future studies to further 
disentangle the functions of cross-modality signals in the 
brain for locomotion and navigation in the world.

Behavioral Model System for Multisensory 
Heading Perception

One important component of self-motion perception is 
heading perception, in which the individual detects the 
instantaneous direction of the head or whole body in space 
during spatial navigation. Accurate and precise heading 
estimates are critical to correctly guide forward motion in 
animals (e.g., to locate prey or escape from predators) and 
humans (e.g., to drive vehicles and play sports such as ski-
ing). In the laboratory, using a motion platform or vehicle 
to provide real vestibular input and a visual display to pro-
vide optic flow (Fig. 1A, B), numerous studies have shown 
that humans can integrate optic flow and vestibular cues 
to improve heading judgments compared to what they can 
derive under either single-cue condition [25–31]. Similar 
results have been found in nonhuman primates when the 
animals were trained to discriminate heading directions by 
making saccades to alternative choice targets to indicate 
perceived heading (e.g., left vs right relative to straight 
forward, Fig. 1C) [32–34]. Interestingly, in both humans 
and monkeys, the amount of behavioral improvement is 
close to that predicted by Bayesian optimal integration 
theory when both visual and vestibular cues are provided 
to the subjects [18, 35]. According to this theory, a maxi-
mum multisensory integration benefit would be achieved 
when the two cues share the same reliability. This is 
indeed what most studies have attempted to achieve. In 
particular, the reliability levels of the two heading cues 
are adjusted to generate roughly equal performance quality 
(e.g., discrimination threshold, σ; see equation 1). In this 
case, the largest cue combination effect is typically seen 
with the discrimination threshold reduced by a factor of 
1/
√

2 . That is, σcombined = σvisual or vestibular/
√

2.
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Using a motion platform virtual reality system, it is con-
venient to manipulate the congruency of the visuo-vestibular 
inputs. In contrast to the above experiments in which spatially 
congruent cues are provided to examine the psychophysical 
threshold, a conflict of heading directions indicated by differ-
ent cues is also purposely introduced together with varying 
reliability of the two cues. Under the condition of conflicting 
cues, such studies examine how heading perception is biased, 
for example, toward the more reliable cue, as reflected by a 
shift in the mean estimate (µ) or the point of subjective equal-
ity (PSE) in the psychometric function (see equation 2). This 
has been found to be the case in such studies [25, 28, 36]. Note, 
however, that in some cases, the measured weight, as reflected 
by the shifted µ or PSE, could be away from the prediction 
based on the model [25, 36, 37]. This may require the inclusion 
of a prior term. Indeed, a model including such a prior favoring 
vestibular input does explain the data much better than a model 
without such a term [25, 36].
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Together, these psychophysical studies demonstrate that 
human and nonhuman primates can integrate optic flow and 
vestibular cues to improve heading estimates in a way that 
is consistent with predictions from Bayesian optimal inte-
gration theory. Among these successful model systems, the 
nonhuman primate system stands out, as illustrated in the 
following sections; it is an ideal model for studying single-
unit-resolution physiology that will provide great insight 
into neural mechanisms underlying the behavior.

Neurophysiology: Spatial Modulations

Passive‑Fixation‑Only TASK

The first step to explore neural correlates underlying multi-
sensory heading perception is to measure basic tuning func-
tions in response to optic flow and vestibular stimuli. Pio-
neering studies were conducted by Duffy and colleagues [19, 
38]. Using a two-dimensional (2D) motion platform that can 
physically translate subjects (e.g., monkeys) in the horizontal 
plane, the researchers systematically investigated single-unit 
activity in the dorsal portion of the medial superior temporal 
sulcus (MSTd) in the dorsal visual pathway. The monkeys 
merely need to maintain fixation while passively experienc-
ing stimuli. The researchers found that in addition to optic 
flow [39–41], approximately one-third of MSTd neurons are 
also modulated by vestibular stimuli even in total darkness. 

Fig. 1   A virtual reality system for studying visuo-vestibular integra-
tion. A Schematic of the experimental paradigm. The motion plat-
form and visual display provide inertial motion signals and optic flow 
signals, respectively, to simulate locomotion in the environment. The 
black arrow indicates the forward motion of the motion base, and θ 
indicates the deviation of motions from straight ahead. B Transient 
motion has a Gaussian-shaped velocity curve, with a biphasic accel-
eration profile to activate the peripheral vestibular channel. Optic 
flow follows the same profile. Redrawn using data from ref. [23]. C 
Average normalized psychophysical thresholds across behavioral ses-
sions from four monkeys who discriminated heading directions based 
on vestibular alone (Ves), visual alone (Vis), and a combination of 
the two stimuli (Comb). “Pred” indicates the threshold predicted from 

the Bayesian optimal cue integration theory, which is computed based 
on thresholds in either single cue conditions (equation 1). In each trial 
during the heading discrimination task, animals experienced linear 
forward motion based on either type of stimulus with a small devia-
tion (θ) of the leftward or rightward component. The animals were 
typically required to maintain central fixation across the stimulus 
duration (1–2 s). At the end of each trial, the central fixation point 
disappeared, providing a “go” signal. The animals made saccadic eye 
movements to one of the two choice targets presented on each side 
of the visual display to report their experienced heading direction. A 
correct choice would lead to a reward. Redrawn using data with per-
mission from ref. [23, 32].
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Later, Angelaki, DeAngelis, and colleagues developed a 
virtual reality system with a six-degree-of-freedom motion 
platform that can either translate or rotate subjects in 3D 
space, providing a more thorough measurement of neuronal 
tuning functions in sensory cortices [20]. Using this system, 
the researchers discovered that nearly two-thirds of MSTd 
neurons are modulated by both optic flow and vestibular 
stimuli. The larger proportion of bimodal neurons discov-
ered in this study may be due to the larger acceleration stim-
ulus used (~0.1 G) compared to that used in a previous study 
(~0.03 G). Whether using a larger acceleration profile would 
activate even more vestibular-modulated neurons is cur-
rently unknown due to the mechanical limitations of these 
motion platforms. To confirm that the responses recorded 
under vestibular conditions are truly “vestibular” in origin, 
the researchers conducted a number of control experiments, 
such as a total darkness condition to rule out the possibility 
of retinal slip due to residual light. Importantly, damaging 
the peripheral vestibular organs diminishes the vestibular 
responses in the MSTd, providing solid evidence supporting 
a vestibular-origin hypothesis [16, 42].

A number of key properties have thus been revealed. 
First, in the traditional visual area of the MSTd, a large pro-
portion of neurons (~2/3) also exhibit significant vestibular 
responses, while the majority (~95%) of the neurons are 
modulated by optic flow. Thus, the MSTd is a multisensory 
area per se. Second, preferred linear translation directions 
for both modalities are widely distributed in 3D space, yet 
there is a bias toward leftward and rightward motion in the 
horizontal plane. Computational modeling suggests that this 
property is ideal for discrimination of heading directions 
that deviate from straight ahead [43], making the MSTd a 
suitable neural basis for heading estimation. Third, the pre-
ferred heading directions for bimodal MSTd neurons tend to 
be either congruent or opposite. Neurons with intermediate 
differences in preferred direction between the two modali-
ties are few, suggesting that the two main subpopulations 
of neurons execute distinct functions. Intuitively, congru-
ent neurons are activated by consistent visuo-vestibular 
stimuli and should be activated especially during natural 
locomotion or navigation. For example, a leftward heading 
results in rightward motion of optic flow projected on the 
retina that indicates leftward physical self-motion, exactly 
matching the vestibular signals. This is indeed the case: 
congruent neurons tend to show stronger tuning to bimodal 
stimuli than to stimuli of either single modality. In contrast, 
opposite neurons show reduced activity under bimodal 
stimuli, which should not be able to account for cue inte-
gration. This rationale is confirmed by computational mod-
eling with a selective readout mechanism in which higher 
weight is assigned to congruent neurons than to opposite 
neurons [44]. However, what is the purpose of opposite 
neurons, especially considering their large population? A 

number of recent studies propose that congruent and oppo-
site neurons could be used for integration and segregation 
of cues, respectively, according to whether they arise from a 
common source or different sources [45, 46]. For example, 
independently-moving objects are frequently encountered 
during locomotion or navigation. If they are moving in direc-
tions that are inconsistent with self-motion, opposite cells 
are presumably activated. Thus, joint coding by opposite 
neurons and congruent neurons could be used to judge the 
true direction of self-motion by parsing out external object 
motion [47, 48] or judge object motion by removing the 
self-motion signals [49].

In addition to the MSTd, similar experimental paradigms 
have been used to screen other cortical areas. Some of the 
areas show similar properties in that they show both ves-
tibular and optic flow signals, thus serving as potential can-
didates for multisensory heading perception. These areas 
include the ventral intraparietal area (VIP) [34, 50–55], the 
visual posterior Sylvian area (VPS) [56], the smooth pursuit 
area of the frontal eye field (FEFsem) [57], the posterior 
superior temporal polysensory area [58], area 7a [59], and 
the cerebellar nodulus and uvula [60]. Among these, the 
MSTd, VIP, and FEFsem show fairly strong heading modu-
lations in response to both modalities, and, interestingly, the 
pattern of coexistence of congruent and opposite cells is 
similar across areas. The VPS also shows robust vestibular 
and optic flow signals, yet, surprisingly, most of its bimodal 
cells are opposite neurons (for review, see ref. [22]).

A number of cortical areas show responses to only one 
modality; thus, they are not considered multisensory areas. 
The middle temporal area (MT) and visual area V6 are tuned 
exclusively to optic flow and are not significantly modulated 
by vestibular input [61, 62]. Thus, MT and V6 can be classi-
fied as traditional visual areas. In contrast, the parieto-insu-
lar vestibular cortex (PIVC) is tuned exclusively to vestibular 
stimuli; global optic flow has no clear modulatory effect 
on it [63]. Similarly, the posterior cingulate cortex (PCC) 
also contains robust vestibular signals, while its optic flow 
signals are much weaker [64], although studies based on 
imaging do reveal significant optic flow signals in this region 
(for review, see ref. [65]). Therefore, the PIVC and PCC can 
be classified as vestibular-dominant areas.

Heading Discrimination Task

While basic tuning functions measured in passive-fixation-
only experiments identify potential candidates for visuo-
vestibular integration, experiments with discrimination 
tasks provide more insight into their roles in multisen-
sory heading perception. Using the same motion platform 
system, Gu et al. trained monkeys to perform a heading 
discrimination task in which heading directions are varied 
in fine steps around the reference of straight forward [16]. 
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The animals must correctly judge whether their experi-
enced heading direction, based on vestibular input, optic 
flow, or a combination of the two, is leftward or rightward 
by making saccadic reports to one of the two choice targets 
that are presented on either side of the visual display. In 
the two-alternative forced-choice (2-AFC) paradigm, only 
correct answers lead to reward [32]. After training, the 
animals could typically discriminate heading that devi-
ated from straight ahead by as little as a few degrees based 
on either single cue. Importantly, when presented with 
bimodal stimuli, the animals could integrate the two cues 
to improve discriminability, and the quantity of improve-
ment was close to the amount predicted by the optimal 
integration theory [32, 34, 36].

Neuronal activity is measured under identical stimulus 
conditions simultaneously when the animals perform the 
discrimination task. Thus, by receiver operating charac-
teristic (ROC) analysis, neural signals can be decoded in 
such a way that they can be directly compared with the 
behavior [66]. Briefly, an ideal observer discriminates 
each pair of heading directions based on firing distribu-
tions from a single neuron using the ROC algorithm. A full 
psychometric function is constructed based on all pairs of 
heading stimuli to quantify the decoder’s discriminabil-
ity, which can be compared to the animal’s performance. 
Importantly, covariation of neuronal activity and the ani-
mals’ perceptual judgment on a trial-by-trial basis can be 
measured to imply possible functional links of the neurons 
in the task [67]. Recordings in the MSTd do reveal that 
many neurons are modulated by headings varying within a 
small range (~±10°) from straight ahead, and this modula-
tion can be further strengthened by congruent optic flow 
and vestibular stimuli [32]. ROC analysis suggests that 
some individual neurons rival the sensitivity of behavioral 
performance, yet many others do not. Population analy-
sis assigning a higher weight to congruent visuo-vestib-
ular cells can reproduce the combination effects seen in 
behavioral data [44]. Interestingly, congruent cells, but 
not opposite cells, exhibit significant trial-to-trial covari-
ation with the animal’s heading judgment [16, 32]. Note, 
however, that only spatially-congruent visual and vestibu-
lar cues are provided in these studies. Thus, under condi-
tions when vision motion is inconsistent with self-motion 
[46, 68], opposite neurons are presumably activated, and 
whether they would exhibit trial-to-trial covariation with 
the behavior remains an interesting question in need of 
further study. In any case, all these results appear to sup-
port the hypothesis that polysensory areas such as the 
MSTd are the neural basis of visuo-vestibular integration 
for heading perception. Similar results have been revealed 
in other areas such as the VIP [34]. However, as we discuss 
below, newly-emerging evidence has begun to challenge 
this idea.

New Insight from the Perspective of Temporal 
Dynamics

Temporal Dynamics in Sensory Cortices

In the brain, visual motion signals are mainly coded in terms 
of velocity by individual neurons [20, 69–72], which is the 
main reason that a constant velocity profile is often used in 
visual motion studies. In the vestibular system, however, 
the brain encodes much more complicated temporal dynam-
ics. Although the peripheral otolith organs predominantly 
encode acceleration of the head, the acceleration signals 
are integrated to different extents when propagating from 
the peripheral to the central nervous system, generating a 
range of temporal dynamics from acceleration-dominant to 
velocity-dominant profiles, including intermediate patterns 
[22, 73]. For example, the temporal dynamics of neurons 
in a number of cortical areas are categorized as “single-
peaked” or “double-peaked” according to the number of dis-
tinct peaks in the peristimulus time histogram [20, 54–57, 
63]. In these studies, a transient, varied velocity profile (e.g., 
Gaussian), corresponding to biphasic acceleration, is typi-
cally provided for the physical motion condition to activate 
the vestibular peripheral organs. The same motion profile 
is also used under the visual motion condition to simulate 
the patterns on the retina during self-motion in the environ-
ment. Thus, “single-peaked” and “double-peaked” cells are 
thought to be velocity-dominant and acceleration-dominant 
cells, respectively. Across areas, there are trends toward a 
gradual increase in the proportion of velocity-dominant cells 
and a gradual decrease in the proportion of acceleration-
dominant cells from the PIVC to the VPS, FEFsem, VIP, 
and MSTd, which implies possible information flow [54]. 
Furthermore, Laurens and colleagues developed a 3D spa-
tiotemporal model to fit data across spatial directions and 
time simultaneously, revealing representations of many 
temporal variables, including velocity, acceleration, and 
jerk (the derivative of acceleration), in sensory cortices [73]. 
Recently, Liu and colleagues used a similar method and also 
discovered that many temporal components of vestibular 
signals are represented in the PCC [64]. All these studies 
demonstrate that vestibular temporal dynamics are widely 
distributed in the brain. Interestingly, it is notable that 
although the majority of sensory cortices contain a balanced 
mix of acceleration and velocity vestibular signals, MSTd 
neurons mainly have a velocity-like component, which is 
also true of its counterpart in the visual pathway [20, 32]. 
Thus, vestibular and visual motion responses reach a peak 
at approximately the same time in the MSTd (Fig. 2A, B), 
which could facilitate cue integration. This fact appears to 
support the concept that the MSTd may be an ideal neural 
basis for visuo-vestibular integration for heading estimates.
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Temporal Dynamics in Decision‑related Areas

However, recent studies in higher-level areas, such as the 
posterior parietal cortex, reveal a different picture. Using the 
same heading discrimination task with an identical experi-
mental setup to the one used in the above MSTd study, a 
recent study investigated vestibular and visual signals in 
the lateral intraparietal area (LIP) [23]. In macaques, the 
LIP is associated with oculomotor decision-making. Unlike 
sensory areas (such as the MT) in which neural activity 
typically follows the stimulus profile, the LIP is thought to 
accumulate momentary evidence, reflected by a ramping of 
activity over time. In 2-AFC tasks, ramping can be either 
up or down, depending on whether the animal’s upcoming 
choice is toward the response field of the recorded neuron 

or in the opposite direction [67, 74, 75] (for review, see ref. 
[76]). Consistent with previous findings, Hou and colleagues 
found that optic flow-evoked responses in the LIP of mon-
keys gradually increase or decrease in a manner that predicts 
the monkey’s upcoming choice [23]. The choice-dependent 
divergence of neural activity is proportional to the value 
of velocity. That is, the choice-dependent divergence signal 
ramps fastest around the peak time of the Gaussian velocity 
profile, which is also consistent with the idea that the visual 
system mainly encodes velocity (Fig. 2C).

Similar to optic flow, LIP activity also ramps in the ves-
tibular condition, yet, surprisingly, it is aligned with accel-
eration instead of velocity (Fig. 2C). This finding is unex-
pected if the LIP accumulates vestibular evidence from the 
upstream MSTd. To verify that LIP gathers information on 

Fig. 2   Temporal dynamics of vestibular and visual responses across 
cortical areas. A Schematic of the MSTd in the extrastriate visual cor-
tex, LIP in the parietal cortex, and FEF in the frontal cortex. B–D 
Time course of population average responses to leftward and right-
ward heading directions quantified by Δ firing rates (ΔPSTH) in the 
three areas. Experimental conditions were almost identical in these 
studies, yet the location of choice targets was a bit different across 
studies. In the MSTd, choice targets were always aligned in the hor-
izontal meridian [32]. In the LIP [23] and FEF [24], choice targets 
were placed at locations matching the response field of the recorded 

neurons since these areas are more influenced by the preparation and 
execution of the saccadic response. Thus, different from the MSTd, 
the time-course of neuronal activity in the LIP and FEF typically 
reflects mixed signals of sensory, sensory accumulation, sensory-
motor transformation (choice), and motor execution. Solid and dashed 
gray curves represent the acceleration and velocity profiles of the 
motion stimulus, respectively. Redrawn using data with permission 
from ref. [23, 24, 32]. MSTd, medial superior temporal sulcus; LIP, 
lateral intraparietal area; FEF, frontal eye field.
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vestibular acceleration and visual speed per se, the motion 
profile was modified and compared. In particular, the band-
width of the Gaussian velocity profile was varied such that 
the velocity peak time was unchanged, while the accelera-
tion peak time was shifted. The vestibular ramping activ-
ity in the LIP was found to shift accordingly, while visual 
ramping activity remained the same in the temporal domain. 
Therefore, inconsistent with input from the MSTd, the LIP 
selectively collects vestibular acceleration and visual speed 
information for heading estimation (Fig. 2B, C). Since the 
acceleration component occurs earlier than the speed, this 
implies that an animal may make faster decisions about 
heading directions based on vestibular acceleration under 
the vestibular condition than based on visual speed under 
the visual condition. Previous studies, however, used a fixed-
duration task that does not allow verification of this hypoth-
esis. In a recent human psychophysical experiment examin-
ing reaction time, researchers discovered that subjects tend 
to make decisions about heading with a reaction time close 
to the acceleration peak time under the vestibular condition 
and close to the speed peak time under the visual condition 
[77]. This behavioral result thus appears to be consistent 
with findings in the macaque LIP rather than the MSTd.

How does the brain collect and integrate visuo-vestib-
ular signals for heading estimation? Based on the neuro-
physiological findings in the MSTd and LIP, two alternative 
models can be proposed. Similar to the two spatial models 
(congruent and opposite cells) described in the previous 
sections, we define two alternative models in the temporal 
domain. In the temporal–congruent model that is based on 
findings in the MSTd, the brain integrates vestibular and 
visual speed information to estimate heading. In contrast, 
in the temporal–incongruent model based on findings in the 
LIP, the brain integrates vestibular acceleration and visual 
speed information. In the latter model, because accelera-
tion mathematically peaks earlier than velocity, this implies 
that vestibular activity would rise earlier than visual activity. 
This is indeed the case in the LIP, where visual responses lag 
behind vestibular responses by nearly 400 ms [23].

Manipulation of Temporal Offset Between 
Visuo‑vestibular Inputs

To test which model (temporal–congruent vs tempo-
ral–incongruent) is applied by the brain to perform the 
heading discrimination task, a recent study by Zheng and 
colleagues manipulated the temporal synchrony of the visual 
and vestibular inputs while measuring the animals’ behav-
ioral performance using behavioral paradigms similar to 
those described in the above section [6]. Specifically, visual 
input was adjusted to lead vestibular cues with a number of 
different offsets at steps of 250 ms. The researchers found 
that, compared with zero-offset conditions that have been 

conducted in previous experiments [25, 28, 32, 34, 36], the 
animals performed heading discrimination tasks better when 
visual cues led vestibular cues by 250–500 ms. Other offsets 
did not work. For example, if the visual signals led by 750 
ms or lagged by 250 ms, performance was reduced. Thus, 
the offset must be in the specific range of 250–500 ms to 
increase the benefit of cue integration (Fig. 3A).

Why does a visual-leading offset of 250–500 ms help 
enlarge the visuo-vestibular integration effect for heading 
estimation? To explore its neural correlates, the research-
ers recorded single-unit activity in the LIP, as well as the 
saccadic area of the FEF (FEFsac), while the animals per-
formed the heading discrimination task with different tem-
poral offset conditions [24]. It has been shown previously 
that FEFsac in the frontal cortex is analogous to the LIP in 
the parietal cortex in many ways with respect to their roles in 
oculomotor decision-making tasks [78–81]. Zheng and col-
leagues found that FEFsac exhibited properties very similar 
to the LIP with respect to the accumulation of evidence from 
optic flow and vestibular input [24]. That is, visual and ves-
tibular ramping activities in the two areas are proportional 
to velocity (speed) and acceleration, respectively, leading to 
delayed visual responses that lag vestibular by several hun-
dreds of milliseconds under zero-offset conditions (Figs 2D, 
3B). Under temporally manipulated conditions where visual 
input was artificially adjusted to occur 250–500 ms earlier, 
visual and vestibular signals in the FEFsac and LIP were 
aligned more synchronously than under zero-offset condi-
tions (Fig. 3B). To address how these neuronal properties 
may mediate behavior, the researchers computed population 
Fisher information to assess the upper bound of heading 
capacity based on all the recorded neurons [43]. Heading 
information under the nonzero-offset conditions (Fig. 3B, 
left and middle panels) was significantly higher around the 
vestibular peak time than under the zero-offset condition 
(Fig. 3B, right panel). In some cases, the enhanced heading 
information (Comb in Fig. 3B) could be even higher than a 
straight sum prediction (Ves+Vis in Fig. 3B) based on the 
two single cues, suggesting that some nonlinear gain effect 
might exist in the FEF or LIP. Thus, reading out informa-
tion around the vestibular peak time could generate a behav-
ioral pattern across different bimodal conditions, as seen 
experimentally. In contrast, the MSTd model with tempo-
rally-matched visual and vestibular response profiles under 
zero-offset conditions would predict reduced cue combina-
tion enhancement under nonzero-offset conditions, which is 
unlikely to account for the observed behavior.

Causality Consideration

In the above sections, all the physiological results are 
based on a correlation metric. For example, although 



132	 Neurosci. Bull. January, 2023, 39(1):125–137

1 3

robust optic flow and vestibular signals are present in many 
areas such as MSTd, it is unclear whether these signals are 
truly decoded by downstream areas for task performance. 
Even if trial-to-trial choice correlations are observed, it 
is debated whether these signals are truly driven by sen-
sory input (bottom-up) or only by feedback from higher-
level areas (top-down). Thus, in addition to these correla-
tion metric measurements, experiments involving causal 
manipulation provide additional and useful insight in terms 
of clarifying the neural basis for behavior. Two alternative, 
complementary methods are typically used by researchers 
to manipulate neuronal activity in a certain region: inacti-
vation and activation. In primate neurophysiology, inacti-
vation often involves lesions or reversible inactivation by 

drugs such as muscimol, while activation often involves 
electrical microstimulation. Specifically, lesion or musci-
mol inactivation experiments eliminate or suppress neural 
activity and examine the necessity of the target region for 
a particular process, which can be reflected by changes 
in the psychophysical threshold or the overall correct 
response rate of the animal’s task performance [82]. In 
contrast, electrical microstimulation activates a clustered 
population of neurons, introducing an artificial signal into 
the decision circuit to bias the animal’s perception, which 
can be reflected by a shift in the PSE in the psychometric 
functions [83]. Thus, microstimulation examines the suf-
ficiency of target neurons or areas for perception. Note, 
however, that the two techniques have both advantages and 

Fig. 3   Manipulating temporal offset for visuo-vestibular input. A 
Average psychophysical thresholds for two animals in the two uni-
modal and five bimodal stimuli conditions with different temporal 
offsets (ΔT; −750, −500, −250, 0, and 250 ms) between vestibular 
and visual inputs in the heading discrimination task that is described 
in the previous section (e.g., Fig.  1C). B From left to right: time 

course of population Fisher information in the FEF under different 
temporal offset conditions. Ves+Vis represents predictions from a 
straight sum algorithm based on the two single cue inputs. Comb rep-
resents the measured information under bimodal stimuli conditions. 
Redrawn using data with permission from ref. [24].
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limitations; therefore, it is better to combine the results 
from the two methods to obtain a more complete picture.

Gu and colleagues used muscimol inactivation and elec-
trical microstimulation to artificially perturb MSTd activ-
ity while monkeys performed a visuo-vestibular heading 
discrimination task [84]. Researchers found that muscimol 
injection into bilateral MSTd dramatically reduced the ani-
mals’ discrimination ability by several times based on optic 
flow, demonstrating that visual signals in this area are criti-
cal for heading perception. However, inactivation effects, 
while statistically significant, were fairly weak under ves-
tibular conditions, as reflected by an increase in the psycho-
physical threshold by an average of 10%. Microstimulation 
in the MSTd produced similar results. While microstimula-
tion significantly biased the PSE under visual conditions 
(also see ref. [85, 86]), there was no effect in the vestibular 
condition.

Similar experiments have been conducted by extending 
the same method to other areas. In particular, Chen and col-
leagues applied muscimol to inactivate a number of areas, 
including the PIVC, VIP, and MSTd [87]. While researchers 
found the same result in the MSTd as in the previous study, 
they found something interesting in the other two areas. 
First, injecting muscimol bilaterally into the PIVC strongly 
worsened the animals’ heading performance under vestibular 
conditions, a result that is in sharp contrast to the effect in 
the MSTd [87]. Thus, unlike the vestibular signals in the 
extrastriate visual cortex (MSTd), vestibular signals in the 
vestibular cortex (PIVC) are critical for heading estimation 
based on vestibular cues. Second, inactivation of the VIP 
did not generate any significant effects in either visual or 
vestibular conditions. This is surprising because the VIP 
contains robust visual and vestibular signals. More surpris-
ingly, VIP activity has been shown to be tightly correlated 
with the animal’s perceptual choice on a trial-by-trial basis 
[34, 86]. Therefore, visual and vestibular signals in the VIP 
may not be critical, at least in the context described in the 
above studies.

In summary, the results from causal manipulation experi-
ments suggest that in the context of a fine heading discrimi-
nation task, vestibular signals in the PIVC, but not in the 
dorsal visual pathway (such as the MSTd and VIP), are criti-
cal for perceptual judgment. In contrast, motion signals in 
the dorsal visual pathway, including the MT [85, 86] and 
MSTd, are critical for heading judgment.

Perspectives

Regarding the stage at which multisensory information con-
verges, a few possibilities exist [88]. In the late-integration 
model, signals of different modalities are propagated to 
the parietal and frontal cortices along each sensory chan-
nel. Sensory evidence is accumulated and integrated across 

modalities for decision-making. Candidates for these areas 
include the LIP and FEFsac in which researchers have dis-
covered mixed signals of sensory, sensory accumulation, 
sensory-motor transformation (choice), and motor execution. 
In the early-integration model, different modality signals are 
first gathered and integrated at earlier stages (such as the 
MSTd) before they are further propagated to parietal and 
frontal cortices for decision-making. Which model is true 
for multisensory heading perception? As we have discussed 
in this review, we propose that despite earlier studies sug-
gesting that the MSTd contains robust vestibular and optic 
flow signals, the two signals may not be integrated here for 
heading perception, based on new evidence from temporal- 
and causal-manipulation experiments. Instead, these new 
pieces of evidence support the idea that multisensory head-
ing perception is likely to follow the late-integration model. 
In particular, vestibular information may be propagated 
through the PIVC, which is a vestibular-dominant area with 
many acceleration components [63]. Optic flow signals are 
fairly weak in this area [63, 87], although responses evoked 
by large-field optokinetic stimuli have been recorded for 
the majority of neurons [89]. In contrast, optic flow signals 
are mainly transmitted through the classical dorsal visual 
pathway, including the MT and MSTd. The two heading 
signals in each sensory pathway finally converge at high-
level decision-related areas, including the frontal and pos-
terior parietal decision lobes, for evidence accumulation and 
integration (Fig. 4, left panel). In conclusion, we propose 
that multisensory heading perception may occur through a 
late-integration mechanism rather than an early-integration 
mechanism.

If visuo-vestibular heading perception is based on the 
late-integration model by which only optic flow and not 
vestibular information in the MSTd is applied for direction 
judgment, an obvious question arises: for what purpose are 
the vestibular signals in the MSTd used? With respect to 
velocity-dominant vestibular signals in this area [20, 32, 73], 
we speculate here that these signals may be temporally inte-
grated to estimate the displacement of the head in the envi-
ronment. For example, during locomotion, the brain needs 
to update displacement to maintain high-quality tracking 
of visual targets that move in the field. In navigation, the 
velocity signal could also be used to estimate the distance 
traveled. In these cases, vestibular signals, originating from 
the periphery and encoding acceleration, are temporally inte-
grated twice to estimate displacement or distance [91, 92]. 
It has been shown that optic flow signals are also useful for 
distance estimation [91–93]. However, distance estimates 
based on either cue are limited, especially in the sense that 
they accumulate errors over time [94]. Thus, the coexistence 
of visuo-vestibular signals with temporally-matched kinet-
ics in the MSTd may be ideal to fulfill these functions. In 
this sense, unlike heading perception, which is proposed to 
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be mediated by the late-integration model, head or whole-
body displacement perception may be mediated by the early-
integration model.

In summary, the neural mechanisms underlying visuo-
vestibular integration for self-motion perception have been 
investigated for many years. Much attention has been paid 
to spatial-modulation properties, which provide valuable 
insight into our understanding of how the brain integrates 
multisensory information to strengthen the perception. 
Recent studies, however, from the perspective of tempo-
ral properties, have yielded new findings that drive us to 
revise our conventional thoughts. The fact that vestibu-
lar temporal dynamics include different components in 
the brain suggests that they execute different functions. 
For example, in this review, based on recent findings, we 
propose that vestibular acceleration signals are used for 
heading estimation, while velocity signals are used for 

computing displacement or distance traveled. The reli-
ance of the brain on different components for different 
functions could be due to adaptation to the environment. 
Through long-term evolution, the brain may have devel-
oped a strategy to sense instantaneous self-motion direc-
tion as rapidly as possible by using the quick acceleration 
signal, for example, when the animal is pursuing prey or 
escaping from predators. In any case, future studies should 
be conducted to understand the functional implications of 
different vestibular temporal components, including veloc-
ity, acceleration, and jerk, as well as their interactions with 
signals in other sensory modalities, including vision, pro-
prioception, and audition.
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