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Abstract

Motivation: Structure-based stability prediction upon mutation is crucial for protein engineering and design, and for
understanding genetic diseases or drug resistance events. For this task, we adopted a simple residue-based orienta-
tional potential that considers only three backbone atoms, previously applied in protein modeling. Its application to
stability prediction only requires parametrizing 12 amino acid-dependent weights using cross-validation strategies
on a curated dataset in which we tried to reduce the mutations that belong to protein—protein or protein-ligand inter-
faces, extreme conditions and the alanine over-representation.

Results: Our method, called KORPM, accurately predicts mutational effects on an independent benchmark dataset,
whether the wild-type or mutated structure is used as starting point. Compared with state-of-the-art methods on this
balanced dataset, our approach obtained the lowest root mean square error (RMSE) and the highest correlation be-
tween predicted and experimental AAG measures, as well as better receiver operating characteristics and precision-
recall curves. Our method is almost anti-symmetric by construction, and it performs thus similarly for the direct and
reverse mutations with the corresponding wild-type and mutated structures. Despite the strong limitations of the
available experimental mutation data in terms of size, variability, and heterogeneity, we show competitive results

with a simple sum of energy terms, which is more efficient and less prone to overfitting.
Availability and implementation: https://github.com/chaconlab/korpm.

Contact: pablo@chaconlab.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mutations can affect the stability and function of proteins and even-
tually cause diseases. Moreover, improving the thermostability of
enzymes or antibodies can be crucial for various applications in pro-
tein engineering. To study how amino acid substitutions affect pro-
tein stability, differences in Gibbs (un)folding free energy (AAG)
between the wild-type and mutated protein are routinely estimated
by chemical or thermal denaturation experiments. Recent deep mu-
tational scanning methodologies (Fowler and Fields, 2014; Nisthal
et al., 2019) are promising high-throughput alternatives but protein
stability analysis is typically low throughput. Nevertheless, there is
the order of a few thousand AAG stability measures from only a few
hundred different proteins with available 3D structure that are col-
lected in databases such as ProTherm (Nikam ez al., 2021),
ProtaBank (Wang et al., 2018), ThermoMutDB (Xavier et al., 2021)
and FireProt (Stourac et al., 2020). Despite its availability and un-
doubted importance, these data are limited, unbalanced and noisy.

©The Author(s) 2023. Published by Oxford University Press.

Considerable numerical variations can result from differences in ex-
perimental conditions and methodologies, such as temperature, pH,
concentration, biophysical technique, etc. Mutations to alanine are
notably overrepresented from common alanine scanning experi-
ments. The fraction of stabilizing mutations is quite small (less than
one-third of the data), but might still be overestimated since many
experimental studies seek stabilizing mutations. Taking into account
these limitations with variable success (Caldararu et al., 2020; Fang,
2019; Pucci et al., 2018; Sanavia et al., 2020), physics-based
(Benedix er al., 2009; Bufs et al., 2018; Guerois et al., 2002; Kellogg
et al., 2011; Schymkowitz et al., 2005), knowledge-based (Bastolla,
2014; Benedix et al., 2009; Dehouck ef al., 2009), sequence-based
(Fariselli et al., 2015; Li et al., 2021; Montanucci et al., 2019) and
machine learning (Benevenuta et al., 2021; Laimer et al., 2015; Li
et al., 20205 Pires et al., 2014; Pires et al., 2014; Quan et al., 2016)
computational methods have been developed to predict the effect of
mutations on the protein stability. Given the difficulty of the prob-
lem, these methods reported a 1.0-2.0 kcal/mol deviation between
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the predicted and experimental AAG (Pucci et al., 2018). Although
current methods have not reached optimal maturity (Fang, 2019;
Marabotti et al., 2021; Sanavia et al., 2020), they are useful and
costless complementary tools to experimental research.

Instead of tackling the problem by merging a large number of en-
ergy terms and/or protein features, we propose here a simpler strat-
egy less prone to overfitting, based on a single knowledge-based
potential that only depends on the relative orientation and position
of the backbone atoms between residue pairs. This side-chain-
independent potential termed KORP, derived from known protein
structures by classical Boltzmann inversion, had been successtully
used in protein modeling (Lopez-Blanco and Chacon, 2019), and in
protein-ligand interactions (Kadukova et al., 2020). Its application
to stability prediction required the parameterization of 12 weights
to balance the contributions of different amino acid types. This par-
ameterization was done by cross-validation experiments where simi-
larities between training and validation sets were removed. To this
end, we built a dataset of AAG mutations clustered by homology,
trying to avoid entries that potentially interact with ligands or be-
long to a protein—protein interface, removing extreme temperature
or pH conditions, minimizing the over-representation of alanine and
destabilizing mutations.

We evaluated the resulting method, called KORPM, on an inde-
pendent benchmark dataset that includes both direct and reverse
mutations, with the corresponding wild-type and mutated structures
(Pucci et al., 2018). Despite its simplicity and speed, KORPM exhib-
ited comparable or better results than state-of-the-art methods.
Furthermore, since our approach is almost anti-symmetric by con-
struction, the results were consistent on both direct and reverse
mutations. We discuss here these promising results for predicting
stability changes upon mutation in the context of the AAG data
limitations.

2 Materials and methods

The success of KORP is rooted in the consideration of the 6D nature
of the residue interactions into a full joint probability distribution
as:
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EXPR" = —RTIn (1)

where P°" is the residue-dependent joint probability of observing a
pair of residues 4, j at a given position and orientation in a non-
redundant subset of Protein Data Bank (PDB) structures, and P is
the reference probability regardless of residue type. The orientation
and position for each interacting pair of residues are described by
two polar angles (6 and ¢), one torsion angle () and the distance
between C, atoms (7;;).

Following the same strategy used to successfully adapt this po-
tential to the evaluation of protein-ligand interactions (Kadukova
et al., 2020), we balance the contributions of each amino acid type
to estimate the impact of a mutation on the unfolding free energy of
the protein (AG = Gunfolded - Gfolded) "Heare we define AG as the
unfolding free energy of the protein, and positive values of AAG cor-
respond thus to stabilizing mutations. We obtain a knowledge-based
estimation of the wild-type AG,,, and the mutant AG,,,, by sum-
ming Equation (1) overall native contacts. The change in stability
due to the mutation is then expressed as the difference between these
two terms:

N N
KORP KORP
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where 7 runs for the residues in contact with the wild-type (wt) or
mutated (mut) residue. The weights aa;, ddmy: and aay: depend on
the amino acid type and are fitted to a balanced dataset of experi-
mental AAG values using cross-validation experiments as detailed
below.

2.1 Data training and validation datasets

We compiled a new curated dataset screening the two largest data-
bases, ThermoMutDB (Xavier et al., 2021) and ProTherm (Nikam
et al., 2021), for non-redundant point mutations with known AAG
that satisfy the following conditions:

* Experimental temperature between 10 and 40°C and pH be-
tween 5 and 9, to avoid extreme conditions. When multiple
experiments were available for the same mutation, we selected
the one closest to standard conditions (pH 7.0, 25°C), or
excluded them if the average difference in AAG exceeds 1.0 kcal/
mol. To remove outliers for avoiding distortions of statistical
analyses we remove experiments with extreme values (AAG <
—7 or AAG > 5.0) kcal/mol.

* Available monomeric structure in the PDB with resolution better
or equal to 2.5 A. The identification of the oligomeric state from
the crystal structure and its correspondence with actual AAG
experiments are far from optimal. Since protein—protein interac-
tions may affect the free energy estimation, we select only mono-
meric structures, according to the PDB Biological Assembly, or
based on literature information when available.

* No known direct interaction with ligands, since protein-ligand
interactions at the mutation site are likely to affect the free en-
ergy change. A mutation is discarded if the distance between any
pair of heavy atoms in the mutated residue and ligand is smaller
than 5 A.

*  We also discard entries with incomplete backbone atoms coordi-
nates and cases outside the two-state folding model.

* Exclude the 684 mutations in the S**™ blind test dataset (Pucci
etal.,2018).

The initial curated dataset (Supplementary Fig. S1) includes
3824 mutations from 139 protein families (sequence identity
<25%) with an average AAG of —1.0kcal/mol and a standard devi-
ation of 1.6 kcal/mol. In total, 73% are destabilizing (AAG < 0), and
27% are stabilizing (AAG > 0), and more than one-third involve ala-
nine. To have a more balanced dataset, we limited the number of
entries per pairwise amino acid mutation to a maximum of 15 by
removing mainly destabilizing mutations involving alanine. With
this data reduction, we aimed at alleviating the alanine over-
representation while avoiding losing stabilizing mutations and pro-
tein families. The resulting balanced subset (Supplementary Fig. S2)
includes 2371 mutations from 129 protein families, 58% destabiliz-
ing and 42% stabilizing with an average AAG of —0.7 kcal/mol and
a standard deviation of 1.6 kcal/mol. Note that this subset is far
from perfectly balanced, e.g. the most frequent amino acid involved
in mutations is still alanine (~20%), while cysteines, tryptophanes
and prolines remain underrepresented. Moreover, the majority of
the entries belong to a few protein families, i.e. the 10 most popu-
lated protein families include around 60% of the total of the
mutations.

Despite the relatively small number of different proteins avail-
able, low levels of sequence identity between training and test sets
are desirable to avoid overfitting and are mandatory for machine
learning approaches. This problem complicates fair comparison be-
tween methods and can lead to over-optimistic results (Sanavia
et al., 2020). To this end, we cluster the mutations in the balanced
dataset using MMseq (Hauser ez al., 2016) with a sequence identity
cutoff of 25% identity. From this clustering, we randomly generated
training and validation subsets from distinct clusters to perform our
cross-validation experiments as described below.

2.2 Reweighing KORP for stability prediction

The original KORP statistical potential (Lopez-Blanco and Chacon,
2019) was extracted from 250 million contacts observed in a non-
redundant (<90% identity) dataset of crystallographic structures
available in the PDB at the time. KORP was obtained assuming that
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the frequencies follow a Boltzmann distribution, and it was designed
for loop modeling and model quality assessment. As an extra pre-
caution to reduce potential overfitting problems, we repeated here
the same procedure as in the original article but excluded the 149
different proteins included in the initial curated dataset and their
corresponding homologs.

To apply KORP to stability prediction, we use a reweighing
scheme similar to that employed in its adaptation to protein-ligand
affinity prediction (Kadukova et al., 2020) (Equation (2)). In this
case, we fitted the amino acid depend weighting factors to experi-
mental AAG on a training subset of the balanced dataset and eval-
uated its performance with a complementary non-redundant
validation subset (<50% sequence identity). In the training phase,
we minimize mean absolute error (MAE) between predicted and ex-
perimental AAG using the BOBYQA optimization algorithm from
NLopt (Powell, 2009). In practice, we performed 10- and 5-fold
cross-validation, and we repeated each k-fold cross-validation pro-
cess 100 times to reduce the error in the estimate of mean perform-
ance across all protein families. We obtained very similar amino
acid weighting factors with k=5 or 10, with absolute values ranging
~0.7-2.5 and standard deviations ~0.1-0.2 (Supplementary Table
S1). This low relative variance was also reflected in the RMSE and
the Pearson correlation coefficient (PCC) obtained on the validation
sets, i.e. 1.38*0.2kcal/mol and 0.54*0.1, respectively
(Supplementary Table S2).

Interestingly, without losing performance, we were able to re-
duce the number of weighting factors to 12 (Supplementary Tables
S1 and S2) by grouping some amino acids of similar chemical types:
negative (DE), hydrophobic small (VIL), hydrophobic large (FY),
polar uncharged (STNQ) and positive (KH). Since reducing the
number of variables is preferable to limit potential overfitting prob-
lems, we adopted such reduced weights as a reference. Remarkably,
we obtained almost the same weighting factors when mutations in
homologous proteins were allowed in the training and validation
sets, although with slightly over-optimistic RMSE and PCC values
(1.30 = 0.05 kcal/mol and 0.60 = 0.04). For cross-checking, we also
tested the method on the excluded data points, obtaining worse
results, as expected. For example, on the 764 mutations in oligo-
meric structures or in proximity of ligands, the RMSE is as high
as 1.74kcal/mol and the PCC as low as 0.36 (Supplementary
Table S3).

As discussed in Benevenuta and Fariselli (2019) and Sanavia
et al. (2020), given the average and standard deviation of the dataset
and considering an experimental RMSE of 1 kcal/mol, the estimated
upper bound of PCC is 0.7. Note that values above these thresholds
most likely indicate potential overfitting problems, and the KORPM
results are safely below them in all the tested scenarios.

2.3 Comparison with other AAG prediction methods

We compare our approach with eight representative AAG predictors
based on different strategies. FoldX(v3.0) (Schymkowitz et al.,
2005) and EvoFF (Huang et al., 2020) are based on force field
potentials, Rosetta Cartesian ddG (CartddG) (Frenz et al., 2020)
uses more sophisticated hybrid physical-empirical potentials,
DDgun3D (Montanucci et al., 2019) integrates structural informa-
tion with sequence and evolutionary features, PopMusic-Sym (Pucci
et al.,2018) is a symmetric enforced version of the empirical original
PopMusic method (Dehouck et al., 2009), and Dynamut2
(Rodrigues et al., 2021), ThermoNet (Li ez al., 2020) and ACDCNN
(Benevenuta et al., 2021) are machine learning approaches. All pre-
dictions were obtained using the same 3D structure, with default
method parameters, and assuming standard conditions. Note that
FoldX, EvoFF and CartddG required an initial minimization to
equilibrate the structures in the corresponding potential. The results
of Dynamut2 and PoPMuSiC-Sym were obtained from their respect-
ive servers. The ThermoNet predictions were taken from Li et al.
(2020) and ACDCNN from Pancotti et al. (2022). The structures
and scripts used are freely available for download (https://github.
com/chaconlab/korpm). CartddG, and to a lesser extent FoldX, pre-
dicted some destabilization cases with extreme AAG values, likely
due to hard collisions. To keep the consistency in the comparison we

reduced this anomalous behavior by assigning a value of —8kcal/
mol for all predicted values lower than this cutoff.

2.4 Test datasets and performance measures

Two separate datasets were used for performance evaluation and
comparison with other stability prediction methods. Firstly, the bal-
anced dataset S*™ (Pucci et al., 2018), including 342 mutations in
15 protein chains, for which the structure of both the wild-type and
mutant protein are available. This dataset includes 342 mutations in
15 protein chains, for which the structure of both the wild-type and
mutant protein are available. In addition to those direct mutations
(reported in the literature), the dataset also includes all reverse
mutations (obtained by anti-symmetry), with a AAG from mutant to
wild-type equal but opposite in sign to the direct mutation, which
we refer to as anti-symmetry. It contains therefore an equal number
of stabilizing and destabilizing mutations. This also permits the
characterization of anti-symmetry between direct-reverse mutations
for all methods (Fang, 2019; Pucci et al., 2018; Sanavia et al.,
2020). Note that a few corrections were made to this ™ dataset,
after checking the literature (see Supplementary Appendix SI).
Secondly, we considered the dataset S669 recently compiled by
Pancotti et al. (2022). However, we found that it includes a signifi-
cant number of incorrect entries, as well as many mutations interfer-
ing with protein—protein or protein-ligand binding (see details in
Supplementary Appendix SII). After the removal or correction of the
questionable cases, the remaining mutations were compiled in data-
set S461, which was used for comparison of the methods. This cura-
ted dataset includes mutations from 44 protein families, 19.1%
destabilizing and 80.8% stabilizing, with an average AAG of —1.15
kcal/mol and a standard deviation of 1.26 kcal/mol. For these tests,
KORPM was trained with a subset of our balanced dataset, exclud-
ing all proteins that present at least 25% sequence identity with any
of the proteins from the test set (either $¥™ or S461).

The performances were evaluated using common measures
employed in the field, including the PCC the mean absolute error be-
tween predicted and the experimental AAG (RMSE), as well as stat-
istical measures of the performance of a binary classification test:
sensitivity (TPR), specificity (TNR), precision/recall (PPV), accuracy
(ACC) and Matthew’s correlation coefficient (MCC). In addition to
single value measures, the receiver operating characteristic (ROC) or
precision-recall (PRC) plots, and their area under the curve. PRC is
more illustrative of the classifier performance with unbalanced data-
sets (Saito and Rehmsmeier, 2015). We also adopt an effective and
very practical measure described in Frenz er al. (2020), based on a
three-state classification of errors. They classify mutations as desta-
bilizing if AAG < —1 kcal/mol, stabilizing if the AAG >1 kcal/mol,
and neutral if it falls between these values. Experimental and pre-
dicted mutations are assigned a value of 0 for destabilizing, 1 for
neutral and 2 for stabilizing. No difference between these assigna-
tions indicates a qualitatively correct prediction, a difference of 1
indicates the prediction was moderately incorrect, (e.g. the mutation
is destabilizing but predicted as neutral) and 2 indicates a completely
incorrect prediction. Finally, the correlation coefficient between dir-
ect and reverse predictions in the $™ dataset gives an estimation of
the methods’ anti-symmetric bias.

3 Results

The prediction scores obtained on the balanced S%™ dataset are
summarized in Table 1. On the complete dataset including both dir-
ect and reverse mutations, KORPM obtained an excellent correl-
ation coefficient of 0.69 between predicted and experimental AAG
(Table 1, Supplementary Fig. S3), with an RMSE of 1.33 kcal/mol. It
only took 3.5s to predict all the 684 mutations included in the
benchmark on a single core of an I7-6770HQ processor. In the sub-
set of direct mutations (Supplementary Table S4), which is more rep-
resentative of many real-case applications, the RMSE is slightly
better, with a value of 1.29kcal/mol. The somewhat lower PCC
value of 0.57 is mainly explained by the smaller range of AAG val-
ues (e.g. few direct mutations are highly stabilizing, with AAG >
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Table 1. Results on independent S°¥™ dataset

Methods RMSE MAE PCC Sc Oft Of2 Sen Spe PPV NPV ACC MCC AUCROC AUCPRe ,Svm 5

KORPM 133 095 0.69 659 337 04 077 079 079 078 0.78 0.56 0.86 0.86 088 —0.15
Cartddg 344 263 063 523 411 6.6 0.58 088 0.83 0.68 073 048 0.81 0.82 041 -3.12
FoldX 1.86 129 0.54 60.1 345 54 055 0.78 071 0.63 066 0.33 0.74 0.75 027 -125
EvoFF 1.56 112  0.54 61.7 349 34 061 070 0.67 0.64 0.66 0.31 0.74 0.75 0.58 —0.36
PopMusic-S  1.58  1.15  0.52 56.6 424 10 067 071 070 0.68 069 0.38 0.76 0.74  0.77 —0.06
Dynamut2 1.88 137 0.38 544 382 7.4 021 0.88 064 0.53 053 0.13 0.62 0.62 011 -1.56
DDGun3D 1.43  1.04 0.63 61.8 37.5 0.7 0.68 0.69 0.69 0.69 069 0.37 0.75 0.76 099 —0.04
ThermoNet  1.53  1.09 0.55 582 409 0.9 065 0.70 0.69 0.67 068 0.35 0.75 0.74 096 —0.01
ACDCNN 138 1.01  0.69 61.5 385 0.0 070 0.79 070 0.70 0.70 0.40 0.80 0.80  0.98 —0.05

RMSE, root mean square error; MAE, mean absolute error; PCC, Pearson cross-correlation coefficient; percentages of correct predictions (Sc, same class as ex-

periment), moderately incorrect (Of1, off by one class) or wrong (Of2, off by two classes) according to a three-state classification (destabilizing if AAG < —1keal/

mol, stabilizing if AAG > 1kcal/mol, otherwise neutral); Sen, sensitivity; Spe, specificity; PPV, positive predictive value; NPV, negative predictive value; ACC, ac-
curacy; MCC, Matthews correlation coefficient; AUCROC, area under ROC curve; AUCTRC, area under PRC curve; 7™, absolute value of the correlation of be-

tween direct and reverse mutations; d, average sum of direct and reverse mutations. Best results in bold.

2 kecal/mol). Overall, these values, which are very similar to those
obtained in the cross-validation experiments (Supplementary Table
S2), confirm the predictive power of KORPM on this particular
dataset.

Binary classification performance metrics such as sensitivity, spe-
cificity, PPV, NPV and ACC reported values higher than 0.77 on the
complete dataset (Table 1). A more informative indication of the
good performances across a wide range of specificity is given by the
ROC plot, and the corresponding area under the curve, which is
equal to 0.86 (Fig. 1, cyan line). This figure includes two sets of
results for KORPM: one where all the mutations of $¥™ were
excluded from the training set (dashed line), and another with the
stricter criterion of excluding from the training set all proteins pre-
senting at least 25% sequence with any of the S*™ proteins (blue
line). The resulting curves are practically identical, which confirms
the absence of significant overfitting with distinct protein families.
The high fraction of true positives (i.e. correctly predicted stabilizing
mutations) among positive predictions depicted in PRC plot con-
firms the goodness of the approach (Supplementary Fig. S5A).

If we analyze classification errors in three groups, KORPM iden-
tified correctly destabilizing, stabilizing or neutral in 65.9% of the
cases, mismatched destabilizing or stabilizing with neutral in
33.7%, and confused destabilizing and stabilizing in only 0.4%.

Our potential is almost anti-symmetric by construction, i.e. the
predicted AAG from wild-type to mutant and for the reverse substi-
tution have similar magnitude but opposite sign. This is confirmed
by a high correlation of 0.88 between the predicted effect of the dir-
ect and the reverse mutation on the S*¥™ dataset (Fig. 2). The devia-
tions from anti-symmetry are due to structural differences between
the wild-type and the mutant protein, which modify the relative ori-
entations of the mutated residue and its neighbors. Overall, these
differences are relatively small, with deviations that are generally
<1kcal/mol.

A detailed investigation of the most prominent outliers, with the
largest prediction errors, is interesting as it allows us to identify the
limitations of the approach. Flexible regions and the occurrence of
conformational changes are obvious sources of imprecision since the
free energy is evaluated from a static structure. For example, the mu-
tation Y35G in bovine pancreatic trypsin inhibitor is responsible for
a large conformational change from the wild-type (PDB ID: 5PTI) to
the mutant (PDB ID: 8PTI) protein (Supplementary Fig. S4).
KORPM correctly predicted the sign of the direct mutation but
underestimated its magnitude (—3 versus —35 kcal/mol). For the re-
verse mutation G335Y, the prediction was even worse (—0.4 versus
5 kcal/mol) and corresponds to the data point with the largest error
in prediction, and with the largest deviation from anti-symmetry
(Fig 2). Large prediction errors are also observed for the two muta-
tions F45A and N43G, which are located also in the flexible loop
(Supplementary Fig. S4). On the other hand, the effect on the stabil-
ity of mutations that occur in binding sites may easily be misjudged

1.00+

0.754

KORPM
CartesianAAG
ACDCNN
FoldX
Dynamut2
DDGun3D

Sensitivity (TP rate)

ThermoNet

PopMusicS
EvoFF

0.50 0.75
1-Specificity (FP rate)
Fig. 1. ROC curves obtained by the all the methods on the of the ™ dataset.

Dashed line corresponds to KORPM results trained excluding all the mutations of
S$¥™ but including homolog proteins

Reverse AAG (Kcal/mol)

-3 -2 -1 0 1
Direct AAG (Kcal/mol)

Fig. 2. AAG sum of the KORPM predictions for the direct and reverse mutations of
the $¥™ dataset. The ideal relationship AAG gireer + AAG eyerse = 0 is shown as solid
line and dashed lines correspond to a variation of *1 kcal/mol

by methods that do not explicitly model protein-ligand interactions.
For example, the signal transduction protein Chemotaxis Y
(PDB ID: 1CEY) has a strongly charged binding site of Mg>* formed
by a single Lys and three Asp acids at positions 12, 13 and 57. The
suppression of any of them reduces the repellent interaction of the
catalytic cleft and stabilizes (2.5-3.0kcal/mol) the otherwise
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unstable apo-protein (Sola et al., 2000). Our method fails and pre-
dicts a marginal destabilization (from —0.3 to 0.1 kcal/mol). Other
sources of error include the fact that protonation states are not
included in our potential, and the limited ability to properly detect
the formation or destruction of disulfide bridges upon mutation. For
example, the V66K mutation in Staphylococcal nuclease (PDB ID:
1EYO0) is correctly predicted as destabilizing but with a large error of
5 kcal/mol. This lysine is unusually deprotonated and fully incorpo-
rated into the hydrophobic core. The mutation I3C in the lysozyme
from bacteriophage T4 (PDB ID: 2LZM) corresponds to an engi-
neered disulfide bridge Cys3-Cys97, and our predictions were
wrong by more than 3.5 kcal/mol in both directions.

In summary, despite the expected limitations in handling flexibil-
ity, ligand binding, protonation states or SS-bonds, the good overall
results confirm the ability and robustness of our approach for the es-
timation of protein stability.

3.1 Comparison with other prediction methods

The comparison between stability prediction methods is difficult be-
cause of the different training/testing and validation subsets adopted
and the inherent experimental uncertainties. Here, we used the $¥™
dataset for comparison with multiple state-of-the-art methods, even
though some of those methods may have included mutations from
this dataset in their training process, while we rigorously excluded
them. Exceptions are DDGun3D which is an untrained method, and
ThermoNet and PoPMusicS which also employed S¥™ as a blind test.

Table 1 shows the comparison with nine AAG predictors on this
particular balanced benchmark including both direct and reverse
mutations. KORPM obtains the lowest RMSE and MAE, and the
highest PCC values. For classification purposes, the ROC and PRC
plots and their corresponding area under the curves provide a
model-wide evaluation independent of arbitrary threshold definition
(Saito and Rehmsmeier, 2015) and demonstrate that our approach
has better results at all practical ranges (Fig. 1). At high specificity/
low recall, the CartddG protocol also shows good prediction results
both in curves and numerically. Overall, CartddG has better specifi-
city, sensitivity and PPV than KORPM. However, CartddG has the
poorest RMSE value of all compared predictors, since it tends to
predict extreme AAG values for some destabilizing mutations, likely
because of hard collisions (even though we tried to reduce this
anomalous behavior by capping the predicted values at —8kcal/
mol). If we analyze the three state classification errors devised by
CartddG’s authors, the percentage of mutations correctly predicted
was ~66% for KORPM, ~60-62% for energy-based methods and
~52% for CartddG while the percentages of totally wrong predic-
tions (destabilizing predicted as stabilizing, or vice versa) is <1% for
ACDCNN, KORPM, PopMusicS, DDgun3D and ThermoNet and
>5% for CarddgG, Dynamut2 and FoldX.

On the subset of direct mutations, which are more representative
of many typical applications of such predictors, Dynamut2 had the
lowest RMSE, with KORPM a close second (Supplementary Table
S4). Four methods (Cartddg, FoldX, Dynamut2 and ACDCNN)
yield PCC values larger than 0.6, while KORPM obtains 0.58. In
terms of classification performances, the PPV is particularly import-
ant in various real-case applications, since it corresponds to the frac-
tion of mutations that are actually stabilizing among those predicted
as stabilizing. All methods yield a lower PPV on the set of direct
mutations than on the full set including reverse mutations, but in
both cases, KORPM presents very good PPV values (0.62 and 0.82,
respectively), second only to Cartddg (0.70 and 0.88, respectively).
The ROC/PRC curves (Supplementary Fig. S5B) also indicate that
KORPM remains among the top performers in the subset of direct
mutations.

If we compare the predictions on direct versus reverse mutations
(Table 1, Supplementary Fig. S6), ACDCNN, DDGun3D and
ThermoNet achieve almost perfect anti-symmetry with correlation
values 7™ very close to 1 and with average o values close to zero
(where 0 = AAG eyerse + AAGgireer). With KORPM and PopmusicS,
the correlation between direct and reverse mutations is also very
high (0.88 and 0.71, respectively), with small § (—0.15 and —0.06,
respectively). These methods achieve generally comparable

prediction performances on either direct or reverse mutations, al-
though typically with larger specificity on direct mutants, and larger
sensitivity on reverse mutants (Supplementary Tables S4 and SS5).
On the contrary, the predictions of EvoFF2, CartddG, FoldX and
Dynamut2 are significantly better on the direct than on the reverse
mutant subsets. This anti-symmetric bias is evidenced by a low cor-
relation between direct and reverse predictions (XY™ =0.58, 0.41,
0.27 and 0.11, respectively). The case of Dynamut2 is particularly
striking, as this predictor yields the lowest RMSE on direct muta-
tions (Supplementary Table S4, Supplementary Fig. S5B), but per-
forms extremely poorly on reverse mutations (Supplementary Table
S5, Supplementary Fig. S5C). Such an extreme disparity of results
might also be due to overfitting, if many of the direct mutations (but
not the reverse mutations) were included in training sets of the ma-
chine learning methods included in this meta predictor.

Another comparative assessment was performed using the S461
dataset, obtained by curating the S669 recently compiled by
Pancotti et al. (2022) (see Section 2). The PRC and ROC curves
(Supplementary Fig. S7) show top performance for CartddG, closely
followed by KORPM and PoPMusicS. Concerning the quality of the
AAG predictions (Supplementary Table S7), DDgun3D obtains the
best correlation (PCC=0.63, RMSE=1.11kcal/mol) and
PopMusicS the lowest RMSE (PCC=0.61, RMSE=1.02).
ACDCNN also ranks among the top predictors (PCC=0.61,
RMSE =1.07), followed by KORPM (PCC=0.57, RMSE=1.21).
As already observed in the S*™ dataset, CartddG presents a very
large error in the predictions (RMSE = 3.59). Overall, these results
are rather similar to those obtained on the direct mutations of $*™
with the notable exception of FoldX, which performed significantly
worse on S461 (PCC=0.30, RMSE=1.91). As before, the largest
outliers for KORPM correspond to a disulfide bond (0.08 versus
—Skcal/mol, PDB ID 1ITM, mutation C3T) and a salt bridge
(—0.18 versus —4.00, PDB ID 2MS5S, mutation D303A).

4 Discussion

Here, we successfully address the challenge of predicting stability
changes upon mutation with a simple sum of pairwise energy terms
that depend on the interacting amino acids and their relative pos-
ition and orientation of three backbone atoms per residue in the na-
tive structure. To reduce overfitting, we did not add additional
features to our potential, as it is common for several other methods,
and we fitted only 12 amino acid-dependent weights using cross-
validation procedures. The relatively low variance of those fitted
parameters indicates that the method is robust to variations in the
training set. We obtained similar performances whether allowing
mutations in homologous proteins to be split between the training
and validation sets or not, which further suggested the absence of
significant overfitting. As a blind test set for comparison with the
state-of-the-art methods, we adopted the $*¥™ dataset, excluding all
of its mutations from the training and cross-validation test. Even
though some methods may have incorporated many of such muta-
tions into their training datasets (except for ThermoNet and
PoPMusicS which also used $™ as a blind test set and DDgun3D
which is untrained), KORPM achieved the lowest RMSE and high-
est PCC between predicted and experimental AAG, as well as super-
ior ROC and PRC curves. In the S461 dataset, our method remains
consistently close to optimal with respect to the various performance
measures: top ROC curves at 0.19 distance with respect to the best
PopMusicS RMSE.

Except for the generally small structural differences between the
wild-type and the mutant structures, our approach is almost anti-
symmetric by construction, and it performs thus similarly for the
direct and reverse mutations. Interestingly, the DDGun3D and
ThermoNet methods are almost perfectly anti-symmetric even when
there is a large conformational change between the wild-type and
the mutant structure. Both methods have good results, which is quite
notable since DDGun3D is untrained, and ThermoNet also removed
all the $*™ mutations from the training set. ACDCNN has top
results on reverse mutations while maintaining good results on dir-
ect cases including the S461 dataset. In contrast, methods like
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Cartddg, FoldX and Dynamut2 perform very well on direct muta-
tions, which may be more relevant for some types of real-case appli-
cations, but generally worse on reverse mutations, as has been
previously noted (Fang, 2019; Pucci et al., 2018; Sanavia et al.,
2020). Dynamut2 is a meta-predictor that includes several machine
learning-based algorithms with known overfitting problems (Fang,
2019) that may contribute to the drastic differences in performances
between direct and reverse mutations. CartddG and FoldX appear
sensitive to structural variations, reflected by the higher dispersion
of their predicted AAG values. One of the major limitations of
CartddG is that around 10% of the test cases yield exceptionally
high destabilizing values, compromising quantitative predictions of
AAG. Nevertheless, this method has top ROC and recall curves, par-
ticularly with direct mutations with both $¥™ and S461 datasets.
Whether it is preferable to perform well on direct mutations, or to
respect the anti-symmetry, may depend strongly on the type of appli-
cation. But either way, the clear advantage of KORPM is that it
stands among the top predictors for direct mutations, while still
maintaining a very high level of anti-symmetry and speed.

By taking a close look at KORPM outliers, we identified some
expected limitations which are also common to most approaches for
predicting AAG: the poor handling of conformational changes upon
mutation (our method, as most others, completely neglects them,
while some methods like FoldX or Cartddg include a short mini-
mization), the difficulty to account for changes in protonation states
or disulfide bonding, as well as the interferences from protein-ligand
or protein—protein interactions.

We showed that KORPM has comparable or better performan-
ces than competing methods but such comparisons between methods
should be always considered with a certain degree of caution.
Besides the difficulty to identify overfitted methods without purely
novel and non-redundant data, there are still many sources of uncer-
tainty in the available experimental AAG data itself. Firstly, the
most critical point is that the amount of data is limited, with no
more than a few thousand mutations in a few hundred distinct pro-
teins. The variability in terms of protein folds, functions or amino
acid nature is also rather small, and no more than a third of current-
ly available mutations are stabilizing. Furthermore, the data are far
from homogeneous as it includes measurements made with different
experimental methods, and in different environmental conditions
(temperature, pH, additives, etc.), which creates a numerical vari-
ability that can go way beyond the experimental errors. To defini-
tively improve and properly cross-validate protein stability
prediction methods, it would be mandatory to increase the amount
of mutational data by orders of magnitude.

Secondly, there is no genuine and perfect correspondence be-
tween the available crystallographic structure and the soluble struc-
ture in the conditions of the experiment. Potential changes of the
oligomeric state, presence or absence of a particular ligand, con-
formational changes or partial aggregation are critical but largely
ignored intrinsic limitations of AAG predictions. Notably, if the mu-
tation is located at a protein—protein interface or protein-ligand
binding site, it becomes a different prediction problem, related to
the binding affinity. And of course, since experimental research is
typically focused on the protein’s biological activity, functional and
interaction sites are often chosen as targets for mutagenesis. Even if
the AAG measurements are explicitly performed on the apo form,
active sites tend to have properties distinct from the rest of the pro-
tein, with significantly more options for stabilizing the fold via
mutations, but often at the cost of functionality (Dehouck ez al.,
2011; Jacquier et al., 2013). For example, eight state-of-the-art pre-
diction methods reported a weak correlation between predicted and
experimental AAG for 51 mutants of f-glucosidase around its bind-
ing site (Huang ez al., 2020). Moreover, in the most common pro-
tein design application of maintaining stable and active a given
target protein at higher temperatures, one has to search for thermal
stabilizing mutations without affecting the function of the protein,
and thus binding regions should be excluded. We tried to alleviate
these issues by removing from the training and validation sets any
mutations near ligand binding sites or protein—protein interfaces.
However, precise information about the presence of specific ions or

ligands and the correct oligomeric state of the mutated and wild-
type proteins is often unavailable in the specific conditions of the
AAG measurement. Note also that the experimental characteriza-
tion of the oligomerization state and the correspondence of the PDB
structure is totally ignored in the current databases.

Thirdly, the very definition of the target quantity, the stability
change upon mutation, is not without ambiguity. The scope of most
predictors is limited to a simple two-state folding model. Any devia-
tions from this model, or occurrences of higher-order transitions
with multiple intermediates, are bound to generate inaccuracies, and
this information is rarely well translated into database annotations.
Furthermore, most predictors are essentially blind to the different
types of contributions that participate in the change in free energy.
Notably, entropic contributions are critical, but very rarely taken
explicitly into consideration. Some methods based on effective en-
ergy functions may implicitly include solvent entropy but do not ac-
count for changes in the conformational entropy of the protein. On
the other hand, AAG is the change of the free energy difference be-
tween the native and non-native or unfolded state of a protein, but
the effect of the mutation on the free energy of the non-native state
is usually neglected. As an exception, the DDGREM contact poten-
tial (Bastolla, 2014), which is based on the same contact potential
included in DDgun3D, is also able to estimate the free energy of the
non-native state through a Random Energy Model. However, this
potential was calibrated with a limited number of known structures
and tested only on a small subset of mutations. We plan to improve
and test it more specifically in the future.

Despite this realistic view of the limitations of the quality and
availability of data, and in consequence of our ability to properly as-
sess predictive methods, there is room for future improvements. The
higher throughput afforded by new deep mutational scanning meth-
odologies (Nisthal et al., 2019) has the potential to revolutionize the
field by adding large-scale mutational data of specific proteins.
Freely available AlphaFold structure predictions (Jumper et al.,
2021), and in particular, high confidence models can also have an
impact on rescuing AAG experimental data orphans of 3D protein
structures.

In summary, we believe that our approach constitutes a very
valuable addition to the field, thanks to its simplicity, its natural ro-
bustness against overfitting, and its good balance between efficiency
and accuracy. These characteristics make it likely that further
advances in prediction performances could be achieved by combin-
ing/integrating it with other methods, or with some of the energetic
functions or features considered by those methods. Future work
should address merging our structural base potential with comple-
mentary evolutionary information derived from multiple sequences
that have been proven useful to predict mutations. Other weak-
nesses of the proposed method such as protonation and disulfide
bonding could be alleviated with ad hoc modules for adding effect-
ive correction factors. Meanwhile, KORPM offers a costless alterna-
tive to estimate protein stability changes upon mutation, with an
accuracy comparable to or better than currently available methods.
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