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Abstract

The recent breakthroughs in structure prediction, where methods such as

AlphaFold demonstrated near-atomic accuracy, herald a paradigm shift in

structural biology. The 200 million high-accuracy models released in the

AlphaFold Database are expected to guide protein science in the coming

decades. Partitioning these AlphaFold models into domains and assigning

them to an evolutionary hierarchy provide an efficient way to gain functional

insights into proteins. However, classifying such a large number of predicted

structures challenges the infrastructure of current structure classifications,

including our Evolutionary Classification of protein Domains (ECOD). Better

computational tools are urgently needed to parse and classify domains from

AlphaFold models automatically. Here we present a Domain Parser for Alpha-

Fold Models (DPAM) that can automatically recognize globular domains from

these models based on inter-residue distances in 3D structures, predicted

aligned errors, and ECOD domains found by sequence (HHsuite) and struc-

tural (Dali) similarity searches. Based on a benchmark of 18,759 AlphaFold

models, we demonstrate that DPAM can recognize 98.8% of domains and

assign correct boundaries for 87.5%, significantly outperforming structure-

based domain parsers and homology-based domain assignment using ECOD

domains found by HHsuite or Dali. Application of DPAM to the massive

AlphaFold models will enable efficient classification of domains, providing

evolutionary contexts and facilitating functional studies.
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1 | INTRODUCTION

Annotating proteins with their constituent domains is a
fundamental step toward understanding their evolution
and function. Protein domains are conserved regions con-
veying evolutionary fitness through function (Buljan &
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Bateman, 2009). Partitioning a protein sequence into
domains and classifying each domain into an evolution-
ary hierarchy is essential in the functional annotation.
The predicted function can be used to interpret high-
volume data from large-scale studies. Homologous rela-
tionships to known domains help to generate experimen-
tally testable hypotheses about the function of poorly
characterized proteins, and accurate domain boundaries
are essential for designing gene constructs for experimen-
tal studies (Buljan & Bateman, 2009; Medvedev
et al., 2019; Sonnhammer et al., 1998; Tunyasuvunakool
et al., 2021). To date, databases for protein domain classi-
fication have fallen into two groups: sequence-based clas-
sifications that identify domains based on sequences,
such as Pfam and CDD (Apweiler et al., 2001;
Tunyasuvunakool et al., 2021), and structure-based classi-
fications that are primarily based on experimentally
determined spatial structures, such as SCOP (Andreeva
et al., 2020) and CATH (Sillitoe et al., 2021). Structure
classifications show advantages in identifying remote
homologs and delineating domain boundaries but have
been constrained to the small fraction of proteins with
experimental 3D structures.

Our Evolutionary Classification Of protein Domains
(ECOD) is a hierarchical classification of protein domains
tailored to identifying and classifying distant evolutionary
relationships (Cheng et al., 2014). Domains sharing
homology deduced from sequence and profile searches or
revealing structural similarity coupled with functional
evidence are grouped into ECOD H-groups. The current
ECOD release (v287) consists of over 966,000 domains in
3715 H-groups derived from nearly 642,000 polypeptide
chains from over 187,000 structural depositions in PDB
(Berman et al., 2000; Burley et al., 2018). ECOD has been
accepted as a standard by the field: (1) every PDB entry is
linked to the ECOD classification to provide the evolu-
tionary context; (2) ECOD is incorporated into well-
established tools, such as HHsuite (Soding et al., 2005)
and RUPEE (Ayoub & Lee, 2019), as a search database;
(3) ECOD serves as the source of homologous domains
for target classification in multiple rounds of Critical
Assessment of techniques in protein Structure Prediction
(CASP), a community-wide experiment for structure pre-
dictors to test their methods against target sequences
whose structures are not yet public.

The latest round of CASP (Kinch et al., 2021; Kinch,
Schaeffer, et al., 2021), CASP14, revealed a breakthrough
in the structure prediction field. AlphaFold (AF), devel-
oped by DeepMind, could predict 3D structures of pro-
teins from their sequences with accuracies approaching
those of experimental methods (Jumper et al., 2021;
Tunyasuvunakool et al., 2021). DeepMind has been using
AF to model proteins of biomedical importance. In

partnership with European Molecular Biology Labora-
tory, they released 3D structures for over 200 million pro-
teins from the AlphaFold protein structure DataBase
(AFDB) (Varadi et al., 2022). This breakthrough trans-
forms structural biology, where computation becomes a
key component in solving 3D structures of the most chal-
lenging and important protein complexes (Fontana
et al., 2022; Mace et al., 2022) and designing small mole-
cule drugs to target specific structures (Thornton
et al., 2021; Tong et al., 2021).

The breakthrough in structure prediction is expected
to chart protein science in the near future by speeding up
the discovery and characterization of proteins with novel
and important functions. To gain insights from these pre-
dicted structures, it is essential to partition them into
domains, evaluate their quality, and classify them by
their evolutionary relationships. However, the massive
number of AF models represents a challenge for structure
classifications, including ECOD, which are currently
designed to classify experimental structures. ECOD is fre-
quently updated to include newly released experimental
structures. These updates are done through a combina-
tion of automatic assignment with human expert cura-
tion. The current ECOD automated domain assignment
pipeline starts from BLAST searches against ECOD
domains and previously classified PDB chains to identify
homologs with high sequence similarity (Schaeffer
et al., 2018). Subsequently, distant sequence hits identi-
fied by HHsuite against a set of domain profiles are used
to assign regions that cannot be assigned by BLAST.
Then, the structural domain parser, PDP (Alexandrov &
Shindyalov, 2003), is used to make minor alterations to
domain boundaries. Finally, after the automatic determi-
nation of non-domain regions, unassigned domains (5%–
10% cases) are subject to manual curation.

Incorporating a large number of AF models into
structure classifications raises several challenges. First,
AF models contain a significant fraction of regions unsui-
table for globular domain classification, including disor-
dered segments, single transmembrane helices, protein
sorting peptides, linkers between globular domains, and
coiled coils. We refer to these regions as “non-domain
regions” for simplicity. Structure similarity in such
regions frequently arises from convergent evolution.
Therefore, annotating the non-domain regions is an
essential task. Second, structure classifications often rely
on manual curation to confirm structure similarity,
which cannot be scaled up to hundreds of millions of AF
models. Thus, better computational tools are necessary to
recognize globular domains and facilitate automatic
domain classification.

Here, we present a domain parser to recognize single
globular domains from AF protein models. Our Domain
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Parser for AlphaFold Models (DPAM) combines several
types of evidence, including the residue-residue dis-
tances, the Predicted Aligned Errors (PAE) associated
with each AF model, and candidate homologous ECOD
domains detected by HHsuite (Steinegger et al., 2019)
and Dali (Holm, 2019). Our benchmark based on previ-
ously classified proteins in ECOD shows that this domain
parser can recognize 98.8% of these domains, and the
boundaries of 87.5% of these domains agree with the
ECOD definitions. Such performance is around two times
better than the previous structure domain parsers, PDP
(Alexandrov & Shindyalov, 2003) and PUU (Holm &
Sander, 1994). Once an AF model is partitioned into sin-
gle domains, assigning the domains to an evolutionary
hierarchy becomes simplified. Therefore, we expect this
tool to be broadly helpful for researchers interested in
analyzing AF models.

2 | DEVELOPING BENCHMARK
AND REFERENCE SETS FOR
PARSING DOMAINS

We needed a set of correctly parsed domains to bench-
mark our domain parser. We derived such a dataset from
the overlap between AF models and proteins whose exper-
imental structures had been previously classified in ECOD.
In June 2022, AFDB contained 992,000 models that cov-
ered proteins from model organisms and human patho-
gens and reviewed entries from Uniprot. We obtained the
3D coordinates and the PAE plots for these models. We
extracted the sequences of all ECOD domains (v285)
(http://prodata.swmed.edu/ecod/complete/distribution).
We searched for homologous ECOD domains to each AF
model by DIAMOND (Buchfink et al., 2021) and found
ECOD hits for 585,000 AF models (e-value < 0.0001).
87,000 AF models were partially classified by ECOD
(i.e., showing ≥95% sequence identity to ECOD domains)
because 3D structures of some domains in these proteins
were solved in experimental structures.

After removing redundancy by mmseqs2 (Steinegger &
Soding, 2017) (identity ≥50%, coverage > 80%) and map-
ping these 87,000 proteins to ECOD, we obtained 18,759
AF models that were used as the benchmark set. 10,545
(56%) of these AF models were fully classified in ECOD,
and the rest were partially classified because the experi-
mental structure did not cover the entire protein. 6776
(36%) AF models in this benchmark contain multiple pre-
viously classified ECOD domains. This dataset was used to
test the performance of our method.

We obtained the PDB70 database (PDB chains filtered
by 70% sequence identity, date 220,313) for HHsuite from
http://wwwuser.gwdg.de/compbiol/data/hhsuite/databases/

hhsuite_dbs/. We parsed the PDB70 database to get the
92,111 representative PDB chains and found 126,416
ECOD domains annotated from these PDB chains. We fur-
ther removed redundancy in these ECOD domains by
mmseqs2 (identity ≥ 70%, coverage > 80%), and a total of
63,065 representative ECOD domains were selected as a
result. These ECOD domains were included in a Dali
search database called the ECOD70. ECOD70 was used as
the reference sets for parsing domains by homology to
these domains.

3 | GATHER DATA FOR
HOMOLOGY-BASED DOMAIN
PARSING

For each AF model in the benchmark set, we identified
its sequence hits by HHsuite search against the PDB70
database. The vast majority of PDB entries were classified
in ECOD. Based on these classifications, we partitioned
each PDB70 hit into ECOD domains. In addition, we
identified the structural hits for each AF model by Dali
search against the ECOD70 database. Although Dali
remains the best tool to find structural similarities
(Holm, 2019), in most cases, it aligns an ECOD domain
to only one segment in a query structure, even if the
query contains multiple copies of this ECOD domain.
Thus, Dali cannot detect duplicated domains in proteins.
To alleviate this problem, we developed an iterative Dali
alignment procedure (Figure 1e) for ECOD hits found by
a traditional Dali search run. In iterations, the segment
of a query aligned to an ECOD domain in a previous
round was excluded, and the remaining structure was
used to perform a Dali search until no similarity was
found between the remaining portion of the query and
the ECOD domain.

To avoid simplifying the task to parse domains by
finding a highly similar (frequently identical) ECOD
domain, we detected each protein's closely related ECOD
domains by BLAST (Camacho et al., 2009). We removed
these close homologs from the HHsuite, and Dali hits,
respectively. We then identified “acceptable HHsuite
hits” using two criteria: (1) the aligned residues covered
40% of the ECOD domains, and (2) the HHsuite probabil-
ity was at least 50%. These “acceptable HHsuite hits”
were used for domain parsing. Similarly, we defined
“acceptable Dali hits” as those satisfying any of the fol-
lowing criteria: (1) the top Dali hit in this region is from
the same ECOD H-group as the current hit; (2) the Dali
z-score between the query and this hit divided by the Dali
z-score when aligning this hit to itself is higher than 0.25;
(3) the fraction of aligned residues in the hit is more than
50%; (4) the Dali z-score between query and this hit is
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better than the 25% quantile of Dali z-scores for compari-
sons of domains within the same ECOD H-group; (5) the
Dali z-score between query and this hit is better than the
25% quantile of Dali z-scores for comparisons between
the hit domain and other domains from the same ECOD
H-group as the hit; (6) the fraction of aligned residues in
the hit domain is higher than the 25% quantile of such
fractions for comparisons between the hit domain and
other domains from the same ECOD H-group as the hit;
(7) the same hit is also detected by HHsuite. The “accept-
able HHsuite hits” and “acceptable Dali hits” are not nec-
essarily homologous to domains in the query, but we

considered them sufficiently confident to assist domain
parsing.

4 | GATHER FEATURES TO PARSE
AF MODELS INTO DOMAINS

Each AF model is accompanied by a PAE plot
(Figure 1b) that specifies the estimated errors in inter-
residue distances. PAEs reflect predicted flexibility
between residue pairs. If a flexible linker connects two
domains (Figure 1a), residue pairs within the same

FIGURE 1 Evidence to parse an AF

model into globular domains. (a) An

example AF model (UniProt accession:

Q9ZFH0). (b) PAE plot for the same

model. As the PAE value increases, the

color changes from dark green to light

green. Residues in the blue, yellow,

orange, and red circles in (a) correspond

to the blue, yellow, orange, and red

squares in (b) with lower PAE values

inside. (c) Minimal inter-residue

distance plot for the same model. The

color changes from dark blue to light

blue as distance increases. (d) Similar

sequences detected by HHsuite.

(e) Similar structures detected by Dali.

We aligned an ECOD hit to a query in

an iterative fashion to allow the

detection of duplicated domains in the

query
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domain are expected to show low PAEs, while pairs from
different domains obtain high PAEs. Thus, as AF devel-
opers also noted in AFDB, the PAE plots suggest domain
boundaries (Figure 1b). Additionally, the PAE plots can
be deployed to detect intrinsically disordered regions: dis-
ordered residues exhibit high PAE values except for those
nearby in sequence. However, a PAE plot is insufficient
to identify evolutionary units because two ECOD
domains might be closely packed against each other,
show low cross-domain PAEs, and appear as a single
domain in a PAE plot. Thus, we exploited additional fea-
tures to parse domains, including the inter-residue dis-
tances in AF models (Figure 1c) and similar ECOD
domains found by sequence (HHsuite, Figure 1d) and
structure (Dali, Figure 1e) searches. Although these cri-
teria were designed to parse AF models into ECOD
domains, they could be generalized to other classifica-
tions if HHsuite and Dali were used against other domain
databases.

Based on our benchmark of 18,759 AF models, we
used the above features to calculate the probabilities for a
pair of residues to be in the same domain. We binned the
residue pairs by their PAEs (Figure 2a) and their distances

(Figure 2b) in the 3D structure, respectively. We counted
the number of residue pairs (Nsame) in the same domains
and the number of pairs (Ndiff ) in different domains in
each bin, and a residue pair in this bin will receive a
“same domain” probability of N same= N sameþNdiffð Þ. The
probabilities derived from PAEs and distances are
denoted as PPAE and PDIST , respectively. Based on this
benchmark, if two residues show PAE values of less than
8 Å, the probability for them to be in the same domain is
at least 50%. Similarly, if two residues are less than 35Å,
the probability for them to be in the same domain is at
least 50%.

Being aligned to the same ECOD domain by sequence
or structure comparison tools provides additional support
for two residues to be in the same domain. We expect the
strength of such support to depend on whether the
detected domain is a confident homolog. We used the
well-established confidence measurements, HHsuite
probabilities (HHSp, range between 0 and 1) and Dali z-
scores (DALIz), respectively, to evaluate the confidence of
HHsuite and Dali hits. For a pair of residues, we identi-
fied all “acceptable HHsuite hits” to which both residues
were aligned, and we termed them supporting hits. We

FIGURE 2 The probabilities for a

residue pair to be in the same domain

are derived from four parameters:

(a) PAE, (b) inter-residue distance,

(c) HHsuite support, and (d) Dali

support. The values for these parameters

were binned, and probability was

calculated as the fraction of residue pairs

to be in the same domain in each bin

based on our benchmark
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integrated the confidence of these supporting hits using
the following formula to obtain the HHsuite support for a
residue pair:

HHsuitesupport ¼ max HHSp ið Þ� �þ0:1 �min Itotal�1,10ð Þ:

We added 0:1 �min Itotal�1,10ð Þ to the maximal HHsuite
probability, where Itotal is the total number of supporting
HHsuite hits. This term allows a pair of residues to
receive better support from HHsuite if they are simulta-
neously aligned to multiple HHsuite hits. Similarly, we
identified all “acceptable Dali hits” for each pair of resi-
dues and obtained Dali support by the following formula:

Dalisupport ¼ max DALIz ið Þð Þþ5 �min Itotal�1,5ð Þ:

We binned the residue pairs by their HHsuite support
values (Figure 2c) and Dali support values (Figure 2d),
respectively. Similar to our treatment of PAEs and inter-
residue distances, a residue pair in a bin will receive the
“same domain” probability of Nsame= NsameþNdiffð Þ,
where N same and Ndiff are the numbers of residue pairs
from the same and different domains in this bin, respec-
tively. The probabilities derived from HHsuite and Dali
hits are denoted as PHHS and PDALI, respectively. From
our benchmark, PHHS HHsuitesupport ≥ 0:5

� �
and PDALI

(Dalisupport ≥ 6) are always larger than 0.5 because even
less confident ECOD hits still primarily map to single
domains in a query protein. Therefore, we assigned PHHS

of 0.5 for residue pairs that were never aligned to the
same HHsuite hit with HHsuitesupport of at least 0.5. Simi-
larly, we assigned PDALI of 0.5 for residue pairs that were
never aligned to the same hit with Dalisupport of at least 6.

We calculated the weighted geometric mean of PPAE,
PDIST, PHHS, and PDALI to get the combined probabilities,
PCOMB, using the following formulas:

PCOMB ¼ PPAE
wPAE �PDIST

wDIST �PHHS
wHHS �PDALI

wDALI

wPAEþwDISTþwHHSþwDALI ¼ 1

The weights for different components were optimized by
the ability for PCOMB to distinguish residue pairs of the
same domains from residue pairs of different domains.
We scanned the values of wPAE, wDIST, wHHS, and wDALI

from 0 to 1 with a step size of 0.1, and quantified the per-
formance of PCOMB in ranking residue pairs from the
same domains above those from different domains using
the area under the “receiver operating characteristic
(ROC)” curves (AUC). ROCs for individual components,
and their optimized combination, are shown in
Figure S1, and the AUCs are shown in Table 1. Supports

from HHsuite and Dali hits contribute more than inter-
residue distances and PAEs to the optimized PCOMB, but
the latter two are expected to be helpful in the absence of
confident sequence and structure hits.

5 | IDENTIFY DISORDERED
REGIONS AND FLEXIBLE INTER-
DOMAIN LINKERS

We hypothesize that disordered regions can be character-
ized as segments showing high PAE values against the
rest of a protein. We tested this hypothesis using a subset
of the benchmark AF models (7881 models) whose 3D
structures had been entirely determined (BLAST identity
≥95%, coverage ≥90%) in experimental structures from
PDB. We derived the sets of ordered residues as consis-
tently observed in experimental structures. In contrast,
residues that were always missing in the experimental
structures despite being included in the experimental
constructs were considered disordered. Most proteins
from this benchmark are ordered proteins with disor-
dered segments. We tested the following procedure for
identifying the disordered regions in these proteins using
AF models.

For each target residue, we identified other residues
that are at least Xdistant (tested values: 5, 10, 15, 20, 25, 30;
optimized value: 20) residues away from the target resi-
due in sequence but show PAE less than XPAE (tested
values: 4, 6, 8, 10, 12; optimized value: 6) to the target res-
idue. Despite being distant from the target residue, such
residues are rigid in 3D structures relative to the target
residue, and we thus term them PAE neighbors of the
target. We considered a segment of X length (tested values:
5,10; optimized value: 5) residues to be disordered if the
total number of PAE neighbors for residues in this seg-
ment is no more than Xneighbor (tested values: 5, 10,
15, 20, 25; optimized value: 10). We performed a grid
search for the parameters used in this method,

TABLE 1 Performance of different PCOMB components and

their combination

wPAE wDIST wHHS wDALI AUC

1 0 0 0 0.753

0 1 0 0 0.790

0 0 1 0 0.765

0 0 0 1 0.803

0.3 0.7 0 0 0.798

0 0 0.5 0.5 0.873

0.1 0.1 0.4 0.4 0.899
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i.e., Xdistant, XPAE, X length, and Xneighbor, as indicated in
the parenthesis after each parameter. We calculated the
precision and recall for identifying disordered residues
using each combination of parameters. The optimal
parameters were selected to maximize the harmonic
mean of precision and recall, that is, F-score. The chosen
parameters show a precision of 0.80 and a recall of 0.64
on our benchmark set, that is, the subset of 7881 models
discussed above.

In addition to disordered regions, globular domains
in proteins are frequently linked by long helices. The
above procedure was extended to identify flexible helical
linkers or coiled coils between domains. These helical
linkers could be long, and it is important to evaluate if
residues in the linker show high PAE values to residues
from other secondary structure elements. Therefore, we
first defined secondary structure elements in AF models
aided by DSSP (Kabsch & Sander, 1983): three or more
consecutive residues annotated as “B” or “E” by DSSP are
considered as a beta-strand. Six or more successive resi-
dues annotated as “G”, “H”, or “I” by DSSP are regarded
as an alpha helix. We modified the above procedure by
excluding the PAE neighbors from the same secondary
structure elements. Finally, HHsuite and Dali hits could
be used to indicate globular domains. We identified resi-
dues aligned to “acceptable HHsuite hits” or “acceptable
Dali hits” in ECOD, and we dubbed them “candidate
intra-domain residues”. Inter-domain linkers should not
contain a high fraction of “candidate intra-domain resi-
dues”, and thus we further modified the above procedure
by requiring this fraction to be no more than 40%.

6 | CLUSTER RESIDUES INTO
DOMAINS BY COMBINED
PROBABILITIES

A visual summary of the principles behind DPAM is pre-
sented in Figure 3: inter-residue distances, PAE values,
and homology-based evidence are combined to cluster
5-residue segments into domains. We partitioned residues
in a protein into non-overlapping and consecutive seg-
ments of 5 residues. We chose 5-residue segments to bal-
ance the performance and speed, and we observed a slight
performance improvement (<1%) if we decided to cluster
single residues. We excluded this segment if three or more
residues were from disordered regions or flexible helical
domain linkers. For all remaining segments, we computed
the average PCOMB for every pair of segments. We then
clustered segments showing relatively high PCOMB into
the same domain using the following procedure.

We sorted segment pairs by PCOMB, and only consid-
ered those pairs with PCOMB greater than cutoffP, a

parameter to be optimized. The top-ranking segment
pairs were clustered into one candidate domain. Starting
from the second pair, we iterated over the existing candi-
date domains to identify those containing segments from
this pair. We handled three possible scenarios. First, if nei-
ther segment in the current pair was previously included
in a candidate domain, we created a new candidate
domain. Second, if only one segment in this pair was pre-
sent in a previously defined candidate domain, we exam-
ined if the other segment should be merged into that
candidate domain by comparing the average PCOMB for
segments within the candidate domain (intra_aPCOMB)
and the average PCOMB between the new and existing seg-
ments in the candidate domain (inter_aPCOMB). We
merged the new segment into the candidate domain if
inter_aPCOMB ≥ intraaPCOMB ∕ cutoffM , where cutoffM was
another parameter to be optimized. Third, if the two segments
in this pair were present in two previously defined candidate
domains, we examined if these two candidate domains should
be merged. We computed the average PCOMB for segments
within the first domain as intra1_aPCOMB, average for
segments within the second domain as intra2_aPCOMB,
and the average for pairs of segments from two different
domains as inter_aPCOMB. We merged the two candidate
domains if inter_aPCOMB � cutoffM ≥ intra1_aPCOMB or
inter_aPCOMB ≥ intra2_aPCOMB ∕ cutoffM was satisfied;
cutoffM was the same parameter as used in the previous
scenario.

We optimized the two parameters, cutoffP and
cutoffM , in the above procedure to maximize the percent-
age of correctly predicted domains (overlapping residues
>75% of all residues in the ECOD defined domains).

FIGURE 3 Illustration of the DPAM method. Eight 5-residue

segments of a protein are clustered into two domains based on a

consensus of PAEs, inter-residue distances, similar domains found

by HHsuite, and similar domains found by Dali
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Since cutoffP is the minimal PCOMB to classify two seg-
ments into the same domain, we expect its value to be
slightly above 0.5. Since cutoffM is the ratio between
average intra-domain PCOMB and average inter-domain
PCOMB when merging two candidate domains, we expect
its value to be slightly above 1. We performed a grid
search to find the optimal cutoffP and cutoffM values,
and the results are shown in Figure S2. The following
cutoffs, 0.54 for cutoffP and 1.07 for cutoffM , resulted in
the best performance and were chosen for the current
version of DPAM.

The above clustering procedure resulted in an initial
set of domains, and these domains were further refined.
First, we observed that short (L1 ≤ 10 residues) inserted
segments might be excluded from a domain if they are
considered disordered or loosely packed against the
domain, and we merged such short segments into the
domains. Afterward, if a domain contains multiple dis-
continuous segments, we excluded segments containing
less than 15 (L2) residues. Finally, short domains of less
than 20 (L3) residues were removed. The parameters used
in this domain refinement process, that is, L1, L2, and L3,
were optimized to maximize the fraction of corrected pre-
dicted domains (overlapping residues >75% of all resi-
dues in ECOD defined domains).

7 | PERFORMANCE EVALUATION

Since DPAM integrates structure-based and homology-
based evidence, we compared its performance against
these two types of methods. The structure domain
parsers, PDP and PUU, were applied to AF models in our
benchmark set. In addition, among the “acceptable
HHsuite hits” (closely related ECOD domains detectable
by BLAST were removed), we identified a set of non-
overlapping best hits. We first ranked these hits by
HHsuite probability. Starting from the top-ranking hit,
we included a hit to this set if the majority (>75%) of the
query residues it mapped to were not covered by previous
hits. The query segments aligned to these “best HHsuite
hits” were regarded as HHsuite-based domains. Similarly,
we identified a set of “best Dali hits” according to Dali z-
scores and detected domains based on Dali for each query
AF model. Thus, we obtained domains by five methods
for each AF model, including DPAM, PDP, PUU,
HHsuite, and Dali.

We compared the parsed domains by each method
against the domains defined by ECOD. Out of the 18,759
AF models in our benchmark set, ECOD currently anno-
tated 28,348 domains. We removed 166 domains that sig-
nificantly overlap (>25% residues in the domain) with
the disordered regions or flexible domain linkers we
detected and kept the remaining 28,182 as reference

domains. If over 75% of residues in a reference domain
were included in the predicted domains by a method, we
considered this domain to be covered by that method.
The fraction of domains covered by different methods is
shown as the blue bars in Figure 4a. Both PDP (96.5%)
and DPAM (98.8%) domains covered most of the ECOD
domains; however, the high coverage of ECOD domains
by PDP is because PDP included a much higher fraction
of residues in its domains (92.3%) than DPAM
(Figure 4b). However, a significant fraction (6%) of resi-
dues in PDP domains belong to disordered regions or
flexible linkers in AF models, and they should not be
included in the globular domains.

We further analyzed the accuracy of different
methods in delineating domain boundaries. We consid-
ered a predicted domain to have accurate boundaries if it
satisfies the following criteria: (1) the fraction of overlap-
ping residues is higher than 75% of all residues for both
the reference domain and the predicted domain, or
(2) the numbers of non-overlapping residues in both the
reference domain and the predicted domain are no more
than 10. The fraction accurately delineated domains by
different methods is shown in Figure 4c. DPAM outper-
forms other methods and shows accurate domain bound-
aries for 87.5% of domains. Even the remaining 12.5% of
DPAM domains still mostly overlap with reference
ECOD domains by more than 50% of residues
(Figure S3). The second-best method is Dali. Indeed,
domain assignment by structure similarity to known
domains is efficient as long as a confident template can
be detected. However, domain parsing by structural evi-
dence is helpful when a confident template cannot be
detected. DPAM integrates both homology and structural
evidence, and thus it could be particularly useful for
domains that cannot be easily assigned by homology.

To further evaluate the performance of DPAM, we
manually studied the results for AF models containing a
large number of domains (≥5). The performance of
DPAM on these proteins is slightly worse (81.9%), but it
is still higher than other methods (Figure 4c, orange
bars). Several correctly parsed models are shown in
Figure 5a–e. These examples suggest that DPAM can cor-
rectly parse multi-domain proteins, even when domains
are tightly packed against each other or proteins contain-
ing tandem repeat domains. Our manual study also
revealed scenarios where DPAM tends to make mistakes.
The first is when a domain is not compact and thus lacks
long-range contacts, such as the elongated beta-sheet in
blue circles in Figure 5f. The second is when domains are
small or poorly modeled, such as the zinc fingers in
Figure 5g. Zinc fingers are small domains whose folding
relies on zinc ions. Due to the lack of zinc in AF models,
zinc fingers tend to be poorly modeled and prone to
errors in domain parsing.
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FIGURE 4 Performance evaluation of DPAM against existing structure-based domain parsers (PDP and PUU) and assignment based on

similar ECOD domains found by sequence (HHS: HHsuite) and structure similarity searches (Dali). (a) The fraction of ECOD domains

covered in domains annotated by different methods. (b) The fraction of residues covered in domains annotated by different methods. (c) The

fraction of domains whose boundaries were correctly predicted by different methods

FIGURE 5 Examples of parsed domains in AF models by DPAM. Different domains in a protein are colored from blue (or purple, N-

terminal) through green, yellow, to red (or magenta, C-terminal). Non-domain regions are colored in gray. (a–e) cases where DPAM domain

definitions agree with ECOD definitions. (f) a case where DPAM domain definitions are not all accurate, and domains that are incorrectly

split are in blue circles. (g) a case where DPAM missed some poorly modeled zinc fingers (in a green circle) and combined multiple

consecutive zinc fingers (in orange circles). (H) a case where the boundaries of DPAM domains differ from ECOD domain boundaries, but

the DPAM domains appear more meaningful
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However, in many cases, although DPAM's domain
boundaries differ remarkably from the ECOD definition,
a close inspection revealed that DPAM's domain defini-
tions are equally or more accurate. One example is
shown in Figure 5h, the voltage-dependent L-type cal-
cium channel subunit alpha-1C (CAC1C). CAC1C con-
tains 24 transmembrane helices (TMHs) and adopts a
4-fold pseudo-symmetry. These TMHs were parsed into
four domains by ECOD (Figure 5h right), and each
domain with 6 TMHs corresponds to one asymmetric
unit. Each of the four domains utilizes two THMs to form
the central channel for calcium to go through. Because
these two central TMHs are used for oligomerization
between the 4-domains, they do not pack tightly against
the other four peripheral TMHs in each domain. There-
fore, DPAM considered the two central TMHs to form a
separate domain from the four peripheral TMHs, a more
reasonable decision from the structural perspective but
less meaningful from the evolutionary standpoint.
CAC1C contains another cytoplasmic domain (magenta
in Figure 5h) that was both classified in ECOD and rec-
ognized by DPAM. However, DPAM assigned a more rea-
sonable boundary (Figure 5h left) for this domain, while
the ECOD domain missed two helices (gray in Figure 5h
right).

8 | CONCLUSION

We developed a domain parser for AF models that com-
bines predicted aligned errors, inter-residue distances in
the 3D structures, and similar domains found by
sequence and structural similarities. DPAM significantly
outperforms existing structure-based domain parsers and
homology-based domain assignments. Although DPAM
was developed based on ECOD, it can be easily extended
to work with other structure classifications. We expect
this tool to simplify and accelerate the classification of
AF models into their evolutionary context and allow the
scientific community to benefit the most from these valu-
able structural data. We have applied the DPAM to clas-
sify domains in a series of model organisms, and the
results, together with our scripts, are released through
GitHub at https://github.com/CongLabCode/DPAM.
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