
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Song et al. BMC Bioinformatics           (2023) 24:22  
https://doi.org/10.1186/s12859-023-05147-w

BMC Bioinformatics

Accommodating multiple potential 
normalizations in microbiome associations 
studies
Hoseung Song1, Wodan Ling1, Ni Zhao2, Anna M. Plantinga3, Courtney A. Broedlow4, Nichole R. Klatt4, 
Tiffany Hensley‑McBain5 and Michael C. Wu1* 

Abstract 

Background:  Microbial communities are known to be closely related to many 
diseases, such as obesity and HIV, and it is of interest to identify differentially abun‑
dant microbial species between two or more environments. Since the abundances or 
counts of microbial species usually have different scales and suffer from zero-inflation 
or over-dispersion, normalization is a critical step before conducting differential abun‑
dance analysis. Several normalization approaches have been proposed, but it is difficult 
to optimize the characterization of the true relationship between taxa and interesting 
outcomes. 

Results:  To avoid the challenge of picking an optimal normalization and accom‑
modate the advantages of several normalization strategies, we propose an omnibus 
approach. Our approach is based on a Cauchy combination test, which is flexible and 
powerful by aggregating individual p values. We also consider a truncated test sta‑
tistic to prevent substantial power loss. We experiment with a basic linear regression 
model as well as recently proposed powerful association tests for microbiome data 
and compare the performance of the omnibus approach with individual normalization 
approaches. Experimental results show that, regardless of simulation settings, the new 
approach exhibits power that is close to the best normalization strategy, while control‑
ing the type I error well. 

Conclusions:  The proposed omnibus test releases researchers from choosing among 
various normalization methods and it is an aggregated method that provides the pow‑
erful result to the underlying optimal normalization, which requires tedious trial and 
error. While the power may not exceed the best normalization, it is always much better 
than using a poor choice of normalization.
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Introduction and motivation
Microbial communities have been revealed to be closely related to many conditions, 
such as obesity [1–3], diabetes [4–6], and HIV [7–9]. With the development of high-
throughput sequencing technologies enabling large-scale microbiome studies, human 
microbiome profiling studies for health conditions and diseases are gaining more atten-
tion. A central objective of human microbiome profiling studies is to identify individual 
bacterial taxa related to host outcomes, exposures, or other variables of interest among 
the meta data. This provides an important understanding of the mechanisms underlying 
different outcomes as well as host responses to exposures and potential contribution to 
therapeutic interventions.

The most common approach for identifying individual taxa related to variables of 
interest is to test the association between the variable and the abundance of each taxon, 
one by one. Many differential abundance analysis approaches have been proposed based 
on the linear model [10, 11], phylogenetic tree [12, 13], and zero-inflated model [14–
16]. Based on these tests, the p value for the association of each taxon is generated and 
statistical significance is determined after controlling for multiple testing. On the other 
hand, global association tests have also been proposed to accommodate general depend-
ency patterns between overall microbiome composition and profiles of other types of 
genomic data, including kernel-based tests [17–20] and distance-based tests [21–23].

Unfortunately, intrinsic challenges of microbiome data often make it difficult to iden-
tify differentially abundant taxa. For example, a central challenge of microbiome pro-
filing studies is the issue of differential library size (total counts per sample), which is 
difficult to control [24] and does not reflect actual differences in microbial communities. 
Under-sampling in some individuals may also exacerbate zero-inflation and over-disper-
sion, leading to substantial power loss [25].

Normalization, broadly defined, is a strategy for overcoming differences in library size 
[26]. Failure to harmonize library sizes can lead to a severe loss of power as the scale 
of assessed abundances is essentially different for each sample. Common approaches to 
normalization include scaling the observations to have a unit sum (such that the norm 
of the abundances for each sample is equal to 1—the original definition of normaliza-
tion), and scaling by other measures of central tendency, among others (see [27]). The-
oretically, as long as read depth is not systematically confounded with the variable of 
interest, analysis under any normalizations is valid. However, in addition to philosophi-
cal differences between different normalization approaches, different normalizations 
also implicitly specify the expected relationship between each taxon under considera-
tion and the outcome. A normalization that results in a better characterization of the 
true relationship between taxa and outcomes will lead to better power. Yet, the best nor-
malization (leading to the highest power) is difficult to ascertain, as this depends on the 
unknown true state of nature and may also be different depending on the taxon under 
consideration.

To address the challenge of picking a single, optimal normalization, we develop 
an omnibus approach wherein we consider analyzing the data under several different 
normalization strategies. We then aggregate the results from different normalization 
approaches while adjusting for the fact that different normalizations have been used, 
in order to prevent p-hacking. Our approach is based on a Cauchy Combination Test 
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(CCT) [28] which allows aggregation of correlated p values (calculated under different 
normalizations). Simulations show that our approach often leads to power similar to, or 
exceeds, the best individual normalization strategy, while still protecting the false dis-
covery rate.

Methods
We assume a study in which there are n samples on which p taxa are measured. Let the 
raw vector of abundances for the ith sample be Xi . For a given normalization T (·) , we 
set X̃i = T (Xi) and X̃ = T (X) = [T (X1), . . . , T (Xn)] . We further assume that there are 
J different normalizations that can be considered such that we have T1(·), T2(·), . . . , TJ (·) . 
We focus on the objective of identifying individual bacterial taxa as associated with the 
outcome of interest.

The fundamental challenge that we hope to address is that it is unclear which nor-
malization to use. Different normalizations correspond to different interpretations and 
implications of different bacterial taxa. Consequently, we propose a strategy in which 
we consider multiple potential normalizations. In this section, we first describe differ-
ent, commonly used normalization strategies before outlining the specific approach for 
implicating taxa across different normalization approaches. We further describe simula-
tion settings for evaluating the power and type I error of our strategy.

Common normalization approaches

Normalization is an important step for reducing variability in the data due to differential 
library size. Some easily applicable normalization strategies include: 

(i)	None T (Xi) = Xi.
(ii)	 Rarefaction Each sample’s observed counts are sub-sampled such that the total 

count is the same for all samples.
(iii)	Total sum scaling (TSS) Observed counts are scaled by the sample’s library size 

(sum of counts).
(iv)	Cumulative sum scaling (CSS) Observed counts are scaled by the sum of counts up 

to a cutoff quantile1. (see details in [29]).
(v)	 Center Log Ratio (CLR) transform Observed counts are divided by the geometric 

mean of the sample’s counts, then log-transformed.

Even though these normalization strategies work well under many settings, some con-
cerns are discussed in the literature: artificial uncertainty in the sub-sampling step (rar-
efaction) [30], a bias in differential abundance estimates (TSS) [31], and uncertainty in 
the selection of quantile (CSS). Hence, it is difficult to find an optimal normalization 
approach and it depends on the unknown form of relationship between microbiome 
data and interesting outcomes.

Given the inherent challenge of selecting a single optimal normalization strategy, we 
propose to simply apply multiple normalization approaches. Specifically, for each choice 
of normalization, we apply a valid statistical test to get the p value for the association 

1  https://www.metagenomics.wiki/tools/16s/norm/css
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between each taxon and the variable of interest. In the next section, we describe how we 
combine the p values to get a single omnibus p value for each taxon.

Combining results across normalizations via the cauchy combination test

Assume that after applying each normalization, we apply a valid test to assess the asso-
ciation between each taxon and the variable of interest such that we have a J × p matrix 
of individual p values P with pj,k , the p value for the kth taxon after applying the jth nor-
malization strategy to the dataset.

Given P , we apply the Cauchy combination test (CCT) [28] for each taxon to obtain 
the omnibus p value. It is well-known that the Cauchy combination test is useful for deal-
ing with sparse alternatives, high-dimensional large-scale datasets, and small p values, 
which are common situations in GWAS. In particular, the analytic p value approxima-
tion by the Cauchy distribution is very accurate under arbitrary dependency structures. 
Hence, in practice, the test only requires the individual p values as input, so this omni-
bus testing procedure is very fast. Specifically, for k = 1, . . . , p , we set

to be the final p value for the kth taxon and pk incorporates each normalization strategy.
Though CCT is convenient and exact for any number of p values, it suffers the draw-

back of sensitivity to p values at or near 1. Specifically, the Cauchy combination p value, 
pk , converges to 1 as one of pj,k approaches 1 (j = 1, . . . , J ) . This can happen for tests of 
discrete data or when the model to derive p values is mis-specified. To address this, we 
propose to use a truncated Cauchy combination test proposed by [32]:

where ǫ = 0.01 . This prevents the overshoot of pk over the threshold 1− ǫ.

Simulation setup

To check the performance of the method, we first follow the simulation setup in [16] 
using data generated to mimic a real data set. Specifically, we simulate data from the 
Coronary Artery Risk Development in Young Adults Study (CARDIA) [33] which aimed 
to investigate microbial taxa related to cardiovascular disease risk factors. The broader 
parent study [34] was balanced in terms of race (black or white), education (more than 
high school or not), and age. Between 1987 and 2016, each subject had up to eight fol-
low-up visits. A variety of cardiovascular disease-related parameters, as well as physical 
measurements and lifestyle factors, were gathered.

We follow the preprocessing of [16] and focus on microbiome count data aggregated 
at the genus-level. The processed data contains data on 106 genera for 549 subjects. Our 
goal is to identify differentially abundant taxa between subjects with high blood pressure 
(HBP) and without HBP and examine how powerful the omnibus approach is over indi-
vidual normalization strategies. Here, we treat blood pressure as a binary variable (HBP 

(1)pk =
1

J

J

j=1

tan{(0.5− pj,k)π}

(2)pk =
1

J

J∑

j=1

tan{(0.5−min(pj,k , 1− ǫ))π},
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vs. non-HBP). We then consider two scenarios based on unadjustment/adjustment for 
covariates:

•	 Setting 1 (type I error and power of individual-level analysis on a single taxon): We 
select ‘Streptococcus’ taxon, which is differentially abundant with strong differences 
in the mean abundance by HBP status, and test the association between the selected 
taxon and HBP without adjustment for other covariates. To assess the type I error 
rate, we generate 600 samples from the empirical distribution functions (edf ) of the 
normalized abundance in subjects without HBP. To assess the power of the test, we 
generate 300 samples each from the edf of HBP and non-HBP groups. We also exam-
ine cases where the two groups are mixed by δ % with each other. We simulate 10,000 
datasets and the significance level is set to be 0.01.

•	 Setting 2 (type I error and power of individual-level analysis on an OTU table): We 
create the starting dataset by rarefying the CARDIA dataset 10 times and averaging 
the resulting datasets. With this starting data, we fit each of the genera by the two-
part quantile regression model (see Additional file 1: Figure S1): 

where D = I(Y > 0) is a binary indicator of the presence of genus, and γi ’s and βi ’s 
are estimated by the starting data and non-zero observations of the starting data 
using τ = 0.01, . . . , 0.99 , respectively. To assess the type I error rate, we gener-
ate n samples by resampling each of the real covariates with replacement indepen-
dently and simulate D with the constraint γ1 = β1(τ ) = 0 . If D = 0 , we assign 0 as 
the count. If D = 1 , we simulate the count by the inverse CDF method: compute 
Y = β0(u)+ β2(u)age+ β3(u)physical activity+ β4(u)diet quality score , where 
u ∼ U(0, 1) and round it to the nearest integer. To assess the power of the test, we 
follow the same procedure without the constraint. We simulate 1000 datasets and the 
significance level is set to be 0.05.

For each test, normalization strategies (i)–(v) are considered and we compare the omni-
bus p value with the p values based on each normalization strategy. To obtain the p val-
ues, we apply the simple linear regression, a zero-inflated quantile approach (ZINQ) 
proposed by [16], a quantile regression using a rank score function and ignoring zero 
inflation (QRank) proposed by [35]. In addition, the mixing rate (δ) and sample size (n) 
are chosen so that the results can be compared well between normalization strategies.

We also consider the simulation setup in [36] to examine the performance of the 
omnibus method by a global microbiome association test. Specifically, we generate n/2 
genotype data of haplotypes from African and European ancestry by randomly pairing 2 
haplotypes, respectively, over a 1 MB chromosome according to coalescent theory using 
the cosi2 program [37]. We also generate n samples of microbiome OTU counts from 
the Dirichlet-multinomial distribution. We first estimate the parameters of the Dirichlet-
multinomial distribution using a real upper-respiratory-tract microbiome dataset [38]. 
This dataset is publicly available by an R package GUniFrac . This consists of 856 OTUs.

logit{P(D = 1|X)} = γ0 + γ1HBP+ γ2age+ γ3physical activity

+ γ4diet quality score,

QY (τ |X ,Y > 0) = β0(τ )+ β1(τ )HBP+ β2(τ )age+ β3(τ )physical activity

+ β4(τ )diet quality score,



Page 6 of 15Song et al. BMC Bioinformatics           (2023) 24:22 

•	 Setting 3 (type I error and power of community-level analysis on an OTU table): To 
assess the type I error rate, we use the above setting without introducing any genetic 
effect on the microbiome. To assess the power of the test, we introduce the associa-
tion between genetics and microbiome. For each individual i = 1, . . . , n , let gi be the 
genotype at a chosen common SNP (with MAF ≥ 0.05). Then we increase the counts 
of the ηth–20th most common OTUs by a factor fi = 1+ 1.7 ∗ gi.

For each test, we use a kernel RV coefficient (KRV) test to evaluate the overall asso-
ciation between genetic expression and microbiome composition. [39, 40]. We use the 
Bray-Curtis kernel and choose normalization strategies (i)–(iv) since CLR transforma-
tion provides negative results and this does not allow the KRV test. We simulate 1000 
datasets and the significance level is set to be 0.05.

Results
Type I error

Table 1, 2, and 3 show the empirical size of the tests under Setting 1, 2, and 3, respec-
tively. We see that the omnibus approach in general controls the type I error rate well, 
compared to other normalization approaches.

Power

Table  4, 5, and 6 show the estimated power of the tests under Setting 1, 2, and 3, 
respectively. Figure  1 shows their visualization. Under Setting 1, we see that CLR 
normalization exhibits the best performance, while rarefaction shows the worst 

Table 1  Empirical size of the tests under Setting 1 at 0.01 significance level

None Rarefaction TSS CSS CLR Omnibus

Linear regression 0.009 0.010 0.010 0.010 0.010 0.010

ZINQ 0.010 0.009 0.010 0.010 0.012 0.010

QRank 0.009 0.010 0.009 0.009 0.009 0.009

Table 2  Empirical size of the tests under Setting 2 at 0.05 significance level, where n is the sample 
size

None Rarefaction TSS CSS CLR Omnibus

n = 700 Linear Regression 0.048 0.048 0.049 0.050 0.050 0.051

ZINQ 0.052 0.051 0.052 0.052 0.055 0.056

QRank 0.050 0.050 0.050 0.049 0.049 0.052

n = 600 Linear Regression 0.049 0.049 0.048 0.050 0.050 0.052

ZINQ 0.052 0.052 0.055 0.053 0.055 0.056

QRank 0.052 0.052 0.052 0.050 0.049 0.055

n = 500 Linear Regression 0.047 0.047 0.048 0.050 0.049 0.051

ZINQ 0.052 0.052 0.054 0.053 0.055 0.056

QRank 0.050 0.050 0.050 0.049 0.049 0.055

n = 400 Linear Regression 0.047 0.047 0.047 0.050 0.049 0.050

ZINQ 0.052 0.053 0.054 0.054 0.055 0.056

QRank 0.051 0.050 0.050 0.050 0.049 0.052
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performance. Within this gap, the omnibus approach exhibits power that is almost as 
high as the performance when using CLR normalization. On the other hand, under 
Setting 2, when applying the linear regression, CSS normalization exhibits high 
power, while the rarefaction approach shows the worst performance. Surprisingly, 
the omnibus approach exhibits the best performance, even over the CSS approach. 
When using ZINQ, rarefaction approach still shows the worst performance, while 

Table 3  Empirical size of the tests under Setting 3 at 0.05 significance level, where n is the sample 
size

None Rarefaction TSS CSS Omnibus

n = 500 0.049 0.049 0.049 0.049 0.046

n = 400 0.056 0.056 0.056 0.053 0.056

n = 300 0.058 0.058 0.058 0.053 0.056

Table 4  Estimated power of the tests under Setting 1, where δ is the mixing proportion

The two highest powers are in bold

None Rarefaction TSS CSS CLR Omnibus

δ = 0% Linear Regression 0.943 0.842 0.844 0.991 0.999 0.996
ZINQ 0.882 0.738 0.902 0.882 0.992 0.974
QRank 0.780 0.821 0.799 0.809 0.943 0.900

δ = 10% Linear Regression 0.738 0.613 0.616 0.924 0.976 0.948
ZINQ 0.658 0.493 0.689 0.651 0.923 0.833
QRank 0.526 0.576 0.551 0.564 0.761 0.571

δ = 20% Linear Regression 0.415 0.332 0.336 0.658 0.793 0.690
ZINQ 0.348 0.241 0.371 0.346 0.650 0.497
QRank 0.245 0.276 0.261 0.267 0.417 0.328

δ = 30% Linear Regression 0.148 0.120 0.122 0.268 0.364 0.271
ZINQ 0.114 0.084 0.125 0.117 0.265 0.164
QRank 0.086 0.098 0.090 0.092 0.140 0.108

Table 5  Estimated power of the tests under Setting 2, where n is the sample size

The two highest powers are in bold

None Rarefaction TSS CSS CLR Omnibus

n = 700 Linear Regression 0.270 0.255 0.258 0.324 0.308 0.348
ZINQ 0.398 0.338 0.377 0.377 0.388 0.441
QRank 0.341 0.278 0.304 0.305 0.409 0.411

n = 600 Linear Regression 0.243 0.229 0.232 0.295 0.279 0.312
ZINQ 0.353 0.301 0.336 0.337 0.348 0.392
QRank 0.300 0.242 0.268 0.270 0.361 0.362

n = 500 Linear Regression 0.233 0.219 0.222 0.280 0.265 0.298
ZINQ 0.330 0.283 0.314 0.315 0.325 0.365
QRank 0.278 0.230 0.252 0.252 0.331 0.335

n = 400 Linear Regression 0.190 0.178 0.181 0.230 0.219 0.240
ZINQ 0.260 0.223 0.248 0.248 0.259 0.286
QRank 0.215 0.179 0.196 0.196 0.252 0.257
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ZINQ achieves high power without normalization. The omnibus approach shows the 
best performance, the same as the linear regression case. When applying QRank, CLR 
approach exhibits high power, but the omnibus approach achieves the best power. 

Table 6  Estimated power of the tests under Setting 3, where n is the sample size and η indicates the 
order of taxon

The two highest powers are in bold

None Rarefaction TSS CSS Omnibus

n = 500 η = 14 0.975 0.965 0.966 0.719 0.966
η = 15 0.921 0.905 0.910 0.647 0.909

η = 16 0.880 0.864 0.871 0.591 0.871
n = 400 η = 14 0.947 0.929 0.930 0.655 0.931

η = 15 0.897 0.881 0.886 0.607 0.883

η = 16 0.833 0.824 0.828 0.493 0.830
n = 300 η = 14 0.894 0.875 0.881 0.563 0.876

η = 15 0.824 0.812 0.819 0.470 0.820
η = 16 0.806 0.797 0.804 0.375 0.804

Fig. 1  Estimated power of the tests under Setting 1, 2, and 3



Page 9 of 15Song et al. BMC Bioinformatics           (2023) 24:22 	

Under Setting 3, the omnibus approach exhibits high power, while raw data and TSS 
normalization show good performance as well.

As shown in Table 4, 5, and 6, the best normalization strategy depends on different 
differential abundance methods and situations, and it is difficult to choose the optimal 
normalization strategy. However, the omnibus method generally performs well without 
prior or true relationship knowledge between taxa and outcomes, so this would be more 
efficient and useful when applying differential abundance tests in microbiome studies.

Real data application

In this section, we illustrate the omnibus approach on the HIV dataset analyzed in [41]. 
The HIV dataset is obtained by a multicolor flow cytometry-based method that sepa-
rates neutrophils from other leukocytes in order to get a more precise measurement of 
neutrophil frequencies in the Gastrointestinal (GI) during HIV infection. This allows the 
identification of neurophils in blood and fresh GI issues and the calculation of the fre-
quency of neutrophils as a percentage of all live CD45+ cells.

As a result, this dataset consists of colorectal biopsies from a total of 40 HIV-infected, 
antiretroviral therapy (ART) suppressed individuals and 35 HIV-uninfected individuals 
with relevant participant demographic information, such as age, sex, sexual orientation, 
and race/ethnicity. The authors characterized the intestinal microbiome of colorectal 
biopsies using 16S rRNA sequencing and studied the association between the mucosal 
microbiome composition of colorectal biopsies and some relevant factors. For example, 
based on the fact that men who have sex with men (MSM) have an increased abundance 
of Prevotella, independent of HIV status, and this may result in the dysbiosis previously 
attributed to HIV infection, the authors observed the significant association between the 
overall microbial composition at the genus level and sexual orientation (MSM or non-
MSM). They also showed that this association remained when adjusted for age, race, and 
HIV status.

We utilize this dataset to illustrate how the omnibus approach accommodates several 
normalization strategies. Specifically, we conduct association tests between the mucosal 
microbiome composition of colorectal biopsies and the sexual orientation. According to 
the results in [41], we test the association with the sexual orientation without adjustment 
for other covariates or with adjustment for age, race, and HIV status. Here, we fix the 
false discovery rate (FDR) at 20%.

Table 7  Number of differentially abundant taxa based on the sexual orientation

The two highest powers are in bold

None Rarefaction TSS CSS CLR Omnibus

without covariates Linear Regression 1 5 7 24 26 21

ZINQ 13 11 8 16 24 17
QRank 10 9 13 20 10 15

with covariates Linear Regression 1 6 6 20 23 19

ZINQ 0 0 11 1 24 16
QRank 13 7 6 5 6 8
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Table 7 shows the number of differentially abundant taxa out of 108 taxa based on the 
sexual orientation at 20% FDR. We see that the best normalization approach is different 
for each case, but the omnibus approach in general identifies nearly as many significant 
taxa as the best normalization approach.

We also assess type I error control based on permuted HIV datasets to check the valid-
ity of the omnibus test. For each normalization strategy, covariates as well as the sex-
ual orientation are jointly permuted over the whole samples to create a permuted OTU 
table. This removes the association between the mucosal microbioal abundance and the 
sexual orientation, and taxa with small p values are considered false positive signals. We 
evaluate type I error control by the proportion of taxa with p values less than 0.1. We 
repeat this procedure 50 times and the results are presented via boxplots (Figs. 2 and 3). 
Compared to other normalization strategies, we see that the omnibus approach consist-
ently controls the type I error rate well.

Discussion
We propose the omnibus approach to accommodate multiple potential normalization 
strategies. Essentially, each choice of normalization inherently assumes a different model 
for the relationship between taxa and variables of interest, with the optimal choice being 
unknown (and potentially differing across taxa). By using the omnibus approach, we can 
avoid the problem of choosing the optimal normalization strategy and instead test across 
a range of different normalization approaches. Numerical experiments and the real data 
application demonstrate that the omnibus test not only avoids the possibility of choosing 
the worst-performing normalization method but also exhibits power nearly as high as 
the power of the best normalization strategy.

Other factors, such as sequencing methods, amplicon bias, and target gene copy num-
ber could impact the differential abundance analysis results. However, they generate bias 
in microbiome sequencing, making measured relative abundances systematically differ-
ent from their underlying truth. In this case, bias-resistant modeling or bias-insensitive 
analytical methods are needed. However, the impact of bias is usually not handled via 
normalization approaches, and thus goes beyond the scope of this paper. This paper 
mainly handles the differences caused by differential library sizes that affect all taxa 
more or less evenly. The focus of this paper is to study whether the omnibus approach 
helps bypass the normalization issue in microbiome differential abundance testing.

Certain transformations, in principle, can reduce the impact of compositional effects. 
However, without extrinsic information, there ultimately remains a particular denomi-
nator for normalization. Thus, our approach does not seek to overcome the issue, but 
rather we note that the statistical analysis is “valid” under any choice of normalization 
and compositionality is an issue of subsequent interpretation. That is, interpretation of 
significant findings is affected by the compositionality of the data and potentially by the 
normalization approaches considered, but fully assessing the impact of compositionality 
on the omnibus test lies outside the scope of the present work.

In this paper, we focus on the linear regression, ZINQ, QRank, and KRV. We 
acknowledge that a wide range of alternative methods for differential abundance anal-
ysis could also be used [42–44]; however, many of these methods are specialized in 
particular normalizations. For example, a metagenomeSeq method proposed by [43] 
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Fig. 2  Boxplots of type I error rate under different normalization strategies without adjustment for covariates
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Fig. 3  Boxplots of type I error rate under different normalization strategies with adjustment for covariates
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internally implements CSS normalization and a DESeq2 method proposed by [45] 
implements relative log expression (RLE) normalization. More importantly, many of 
these approaches often fail to control the type I error [26, 46, 47] and are, therefore, 
statistically invalid. In contrast, the simple linear regression, ZINQ, QRank, and KRV 
have been shown to consistently protect the type I error and do not depend on the 
particular choice of normalization. We could also combine results across different 
association testing methods, as well as normalizations, but given their lack of statisti-
cal validity, aggregating invalid results just results in further false positives.

In addition, we consider four normalization strategies, including the rarefaction, 
TSS, CSS, and CLR transformations. Other normalization methods are also com-
monly used, such as an additive log-ratio transformation (ALR) or an isometric log-
ratio transformation (ILR) [48]. However, ALR is computed with respect to the last 
element of variables, so it heavily depends on this element and its noise. Though ILR 
has good theoretical properties, it is difficult to interpret the result since transformed 
variables are intricate mixtures of the original variables. To fairly examine the perfor-
mance of our approach, we choose four normalization methods that are simpler and 
more flexible to use.
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