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Abstract

Estimation of nonlinear curves and surfaces has long been the focus of semiparametric and 

nonparametric regression analysis. What has been less studied is the comparison of nonlinear 

functions. In lower-dimensional situations, inference typically involves comparisons of curves 

and surfaces. The existing comparative procedures are subject to various limitations, and few 

computational tools have been made available for off-the-shelf use. To address these limitations, 

two modified testing procedures for nonlinear curve and surface comparisons are proposed. The 

proposed computational tools are implemented in an R package, with a syntax similar to that 

of the commonly used model fitting packages. An R Shiny application is provided with an 

interactive interface for analysts who do not use R. The new tests are consistent against fixed 

alternative hypotheses. Theoretical details are presented in an appendix. Operating characteristics 

of the proposed tests are assessed against the existing methods. Applications of the methods are 

illustrated through real data examples.
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1. Introduction

An essential task in nonparametric and semiparametric regression is to estimate nonlinear 

functions for depiction of relations between independent and dependent variables. In lower-

dimensional situations, the functions are often expressed as smooth curves and surfaces 

[1]. Various smoothing techniques have been developed for the estimation of nonlinear 

functions. Commonly used methods include local polynomial models [2], wavelets [3], 

smoothing splines [4, 5], and various types of penalized regression splines [6, 7, 8, 9]. Most 

of these estimation methods can be easily implemented in common computational platforms, 

giving analysts much flexibility for curve and surface estimation. What has been less studied 
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is the inference concerning nonlinear functions, and there is a dearth of computational 

tools for practical use. A question of general interest is whether a specific nonparametric 

smoother, when applied to different comparison groups, gives the same function.

To address the question above, we review the existing literature on curve and surface 

comparisons, and present two L2-based testing procedures with related theoretical and 

numerical justifications. Our procedures are based on B-splines, although the formulation of 

the test statistics could be extended to other smoothers. We put forward an R package, which 

can be accessed either directly from within R, or through an interactive R-Shiny interface; 

the latter allows analysts who do not use R to perform the desired comparisons. To illustrate 

the use of the proposed methods, we present two real data examples.

2. Existing methods for curve and surface comparison

Comparison of smooth curves can be formalized as a test of the following hypothesis H0 : 

g1(x) = g2(x) = ⋯ = gI(x), ∀x ∈ ℝvsH1:gi x ≠ gj x  for some i, j ∈ {1, … , I}, where i 

and j indicate different comparison groups. In the situation of x ∈ ℝ2, gi(x) and gj(x) are 

surface functions. The concept can be extended to higher-dimensional functions, although 

visualization of higher-dimensional functions becomes more difficult. In this paper, we 

restrict the discussion to lower-dimensional situations, and we write the underlying model 

as Y = gi(x) + ϵ. We use capital letters Y and X to indicate the random response and 

independent variables, and their lower-case counterparts x and y to indicate the observed 

values of the corresponding random variables.

Early work on this problem started almost three decades ago. One approach is to frame the 

problem in a regression setting, where a modified version of the Kolmogorov-Smirnov test 

could be used to compare the regression curves [10]. Another approach is to transform the 

nonparametric curves to reduce the comparison to a test of limited dimensional parameters 

within the transformation matrix [11]. Alternatively, wavelet methods have been used to 

compare density functions [12]; the methods are especially suitable for comparing higher 

frequency local features. Many of these methods, however, require the curves to have the 

same design points, i.e., all functions must be evaluated at the same x values. To remedy, 

Kulasekera (1995) fitted kernel-based regression models and proposed tests based on the 

weighted average of partial sum of squares of the quasi-residuals and error variances [13]. 

But simulations suggest that these tests tend to be overly sensitive to bandwidth selection. 

There are also specialized tests for parallelism among the curves [14, 15].

In this section, we briefly review the methods that are most frequently used in analytical 

practice.

2.1. Nonparametric Analysis of Covariance (ANCOVA)

Young and Bowman (1995)[16] described a method for testing the equality of two or more 

smooth curves, under the model Yij = gi(xij) + ϵji, where ϵij ~ N(0, σ2), for i = 1, 2, … , I, j = 

1, … , ni. The test has a homoscedastic assumption, i.e., the error variance remains constant 

across all I groups.
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Young and Bowman used a kernel-based smoothing method to approximate gi. Assuming 

that hi is the bandwidth for the ith regression function, they proposed to estimate gi with

gi x =
∑j = 1

ni K x − xij /ℎi yij

∑j = 1
ni K x − xij /ℎi

, (1)

which is sometimes referred to as the Nadaraya-Watson estimator of gi.

Under the null hypothesis, one could obtain a common regression function by combining 

data from all groups

g x =
∑i = 1

I ∑j = 1
ni K x − xij /ℎ yij

∑i = 1
I ∑j = 1

ni K x − xij /ℎ
, (2)

where h is the common bandwidth for estimating g.

The test statistic that Young and Bowman proposed is analogous to the one-way ANOVA,

T1 =
∑i = 1

I ∑j = 1
ni g xij − gi xij

2

σ2 , (3)

where gi and g are the group-specific and common curve estimators, and σ2 is the 

pooled variance. To estimate σ2, one uses σ2 = 1
N − I ∑i = 1

I ni − 1 σi
2, where N = ∑i = 1

I ni. 

Similarly, the group-specific variance is estimated as

σi2 = 1
2 ni − 1 ∑

j = 1

ni − 1
yi, j + 1 − yi, j

2 .

This test has been extended to comparisons of surface functions [17].

The construction of the test is intuitive, and its implementation straight-forward. The 

equal variance assumption, however, can be overly restrictive in some analytical situations. 

Additionally, when the explanatory variable xij takes different values in the comparison 

groups, the power of the test often drops precipitously because the biases can no longer be 

canceled out under H0; see Tables 1– 3 in Young and Bowman (1995)[16].

More recently, Park and colleagues considered a similar ANOVA type test statistic for 

multiple x values with a given bandwidth [18]. They obtained an empirical distribution for 

the maximum of the pointwise test statistics for controlling multiplicity. A visualization tool 

has been developed to show differences between curves at multiple locations. But simulation 

studies suggest that the test has type I error rates far below the nominal level, and very low 

power; see Table 1 of Park et al [18].
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2.2 Kernel-based nonparametric methods

Dette and Neumeyer (2001) proposed another set of tests, all based on kernel smoothing 

techniques [19]. Expressing the curves as Yij = gi(xij) + ϵij(xij), where i = 1, 2, … , I, j = 

1, … , ni, the authors introduced heteroscedastic errors ϵij xij N 0, σi2  into the model. The 

main hypothesis remains the same, H0 : g1 = g2 = ⋯ = gI vs H1 : gi ≠ gj for some i, j ∈ {1, 

… , I}.

The tests are subject to the following conditions: (1) The variances σi(·) are continuous 

functions; (2) the design points xij satisfy ∫0
xi,jri x dx = j

nj
 for a density function ri, where j 

= 1, … , ni, and i = 1, … , I; (3) the regression functions g(·) are sufficiently smooth, i.e., 

≥ 2 times continuously differentiable in the supporting space. And the Nadaraya-Watson 

estimators gi and g are as previously defined.

One test (T2) compares the group-specific error variances against that of the combined 

sample, in a way that is analogous to one-way ANOVA

T2 = σ2 − 1
N ∑

i = 1

I
niσi

2 . (4)

The second test (T3) directly assesses the distance between the group-specific curves and a 

common curve at xij, assuming that xij remain exactly the same across the groups,

T3 = 1
N ∑

i = 1

I
∑
j = 1

ni
g xij − gi xij

2 . (5)

The third test (T4) summarizes all pairwise L2-distances of the estimated individual grooup 

curves,

T4 = ∑
i = 1

I
∑
j = 1

i − 1 ∫ gi x − gj x 2wij x dx, (6)

where wij(·) are positive weight functions. Asymptotic normality of the test statistics has 

been established under the null and fixed alternatives.

The above tests have been extended to comparison of two regression curves with different 

design points and heteroscedastic variances [20]. For comparison of two curves, the authors 

proved by using the empirical process theory that the two marked empirical processes 

converged to a centered Gaussian process at a rate of N−1/2 under the null; while under the 

alternative, the means of the two processes do not converge to zero. Hence, tests could be 

constructed based on either functions of the integrated squared residuals or the supremum of 

the absolute residuals of these two processes.
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A practically important extension of Neumeyer and Dette’s methods is the comparison 

of multiple curve functions [21]. These tests have also been extended to compare surface 

functions. Since the rates of convergence of the test statistics are slower [22], and the wild 

bootstrap procedure is consistent under more relaxed conditions, analysts often calculate 

p-values from the distribution of the test statistic under H0 using a wild bootstrap procedure 

[23].

2.3. Additive model-based tests

Zhang and Lin (2000) [24] considered testing the equivalence of two nonparametric 

functions in an additive mixed model for longitudinal data

Y ijk = gi xijk + sijk
T αi + Zijk

T bij + ϵijk, (7)

where Yijk is the response from the jth subject in the ith group at the kth assessment, and αi 

is a p × 1 vector associated with covariates sijk.

To test hypothesis H0 : g1 = g2 vs. H1 : g1 ≠ g2, the authors suggested the following test 

statistic

G g1 x , g2 x = ∫T1

T2
g1 x − g2 x 2 dx, (8)

where g1 and g2 are estimated by maximizing the penalized log-likelihood function.

The penalized likelihood under the semiparametric additive mixed model for an individual 

group is l gi, αi; y −
λi
2 ∫ gi′′ x 2dx, where λi is the parameter that controls the smoothness of 

function gi(x). Note that the test statistic (8) is also an L2-based distance measure, as that in 

(6). Expressing G in Equation (8) as a quadratic function of y, Zhang and Lin approximated 

the distribution of G g1 x , g2 x  with a scaled χ2 distribution using the moment matching 

technique.

We summarize the tests reviewed in Table 1, which highlights the key features of each 

method.

3. Curve comparison in semiparametric regression

In a low-dimensional regression analysis, comparing nonlinear effects amounts to a 

comparison of nonlinear curves and surfaces. As described in Table 1, the existing methods 

are often overly restrictive in their accommodation of heterogeneity and design points. For 

example, when we compare two nonlinear functions g1(x) and g2(x), it is rather unrealistic 

to expect the two functions be evaluated at the exact same x values. Furthermore, if the 

functions are indeed different, it would not be reasonable to expect the two functions to have 

the same variance. These are the features that the existing methods and analytical software 

have not accommodated adequately.
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To remedy, we propose a testing procedure in the usual context of semiparametric 

regression. For the convenience of discussion, we consider a comparison of curve functions 

gi(xij), where xij denotes the value of independent variable of the jth subjects in the ith 

group. We are interested in testing hypothesis g1 = g2 = ⋯ = gI. We note that the test can be 

extended to compare higher dimensional functions, although visualization may be difficult.

In order to test the above hypothesis, one needs to estimate the functions, g1,g2,…, gI, 

as well as g. Most of the existing methods are developed based on kernel estimates. In 

practice, however, many analysts prefer various forms of regression splines, with or without 

smoothness penalty. In this paper, all theoretical results are derived under B-spline estimates. 

For all practical purposes, choices of spline basis functions are often less consequential. 

Here for curve comparison, we write the model as Yij = gi(xij) + ϵij, where ϵij N 0, σi2 , and 

we write the group-specific function gi as a B-spline function, i.e., gi x = ∑k = 1
Kn + mγkBk

m x , 

where Kn is the number of internal knots with Kn = O(nv), m is the order of the B-spline 

with m ≥ 1, γk k = 1
Kn + m

 is the set of B-spline coefficients, and Bk
m x :x ∈ a, b  are B-spline 

basis functions. For higher dimensional functions gi(x1, x2, … , xd), one could use tensor 

products, radial, or thin-plate splines [25][26][27].

3.1. Test statistics and comparison procedures

An intuitive way to compare two functions is to measure the distance between them. The L2 

norm is a commonly used distance measure. As described previously, both Zhang and Lin 

(2000) and Dette and Neumeyer (2003) used the L2 norm in the construction of their test 

statistics. Herein, we reexamine the test statistic

Tspline = 1
N ∑

1 ≤ i < m ≤ I
∑

j = 1

ni
gi xij − gm xij

2,

under B-spline estimates of gi and gm for testing the hypothesis H0 : g1 = g2 = ⋯ = gI vs H1 : 

gi ≠ gj for some i, j ∈ {1, … , I}. Theoretical properties of the test statistic are examined in 

Section 3.1.2.

In the absence of an asymptotic normal distribution, however, one has to devise a method to 

approximate the distribution of the test statistic under the null hypothesis. In the following 

section, we demonstrate how such an approximation can be done through a resampling 

procedure. Specifically, we show how to ascertain p values for the test statistic from a wild 

bootstrap procedure.

3.1.1 A wild bootstrap-based comparison method—For the standard linear 

regression models, it is usually sufficient to draw bootstrap samples from centralized 

residuals, because the errors are homoscedastic [28]. In the one dimensional case, the 

underlying model can be written as Yij = gi(xij) + ϵij, where ϵij N 0, σi2 . We present g as 

a curve function here, although the method can be easily extended to higher dimensional 

situations.
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To accommodate error heteroscedasticity, we consider a wild bootstrap procedure, which 

assures that the bootstrap error terms possess properties that are similar to those of the actual 

errors [29]. Another alternative approach is to use pairs bootstrapping, in which the analyst 

directly resamples from the joint empirical distribution function of Yi and xi, which are the 

vectors of the response and independent variables respectively. The computational burden of 

pairs bootstrap, however, tends to be greater especially if the dimension of xi is high [28].

Wild bootstrap has been used to resample the residuals of nonparametric regression models, 

as suggested by Härdle and Mammen (1993) [30], and Mammen (1993) [31]. The essence 

of wild bootstrap is to express the regression function as a conditional expectation of the 

observed response variable, i.e. E Y i
∗ |Xi = xi = g xi , where Y i

∗ is the bootstrap data. Since 

this method uses a single residual ϵ i to estimate the conditional distribution l(Yi − g(xi)|Xi 

= xi) of an arbitrary distribution (F i in the following), it is often referred to as the wild 

bootstrap.

Let Vi be a random variable following a two-point distribution F i such that EFi V i = 0, 

EFi V i
2 = 1, and EFi V i

3 = 1. We define random independent quantities ϵi∗ = V iϵ i F i, and 

use Xi, Y i
∗ = g xi + ϵi∗  as the bootstrap observations. We then create a new bootstrap test 

statistic T*.

With the bootstrap samples, for a test at level α, the null hypothesis will be rejected if T 
is greater than the corresponding quantile of the bootstrap distribution of the test statistic 

T*, i.e. T > T B 1 − α
∗ , where T B 1 − α

∗  is the ith order value of the bootstrap statistic T*. 

Härdle and Mammen (1993)[30] showed that under the null hypothesis, T* estimated the 

distribution of T consistently, since the regression function with bootstrap data g*(·) had 

mean g(·) for nonlinear models under the standard regularity conditions.

Using the wild bootstrap method, we propose the following procedure:

Step 1: Estimate function gi(x) with gi x , i = 1, 2, … , I, and compute the test statistic

Tspline = 1
N ∑

1 ≤ i < m ≤ I
∑

j = 1

nl
gi xij − gm xij

2 .

Step 2: Estimate the common function g x  from the combined sample and calculate 

the residuals ϵ ij = yij − g xij .

Step 3: For each xij, draw a bootstrap residual ϵij
b , for b = 1, 2, … , B, where B 

is the number of bootstrap samples, from the two-point distribution with probability 

mass points 1 − 5
2 ϵ ij and 1 + 5

2 ϵ ij, occurring with probabilities 5 + 5
10  and 5 − 5

10

respectively, so that E ϵij
b = 0, E ϵij

b 2 = ϵ ij
2  and E ϵij

b 3 = ϵ ij
3 .

Step 4: Generate a bootstrap sample xij, Y ij
b  from Y ij

b = g xij + ϵij
b .
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Step 5: From this sample, estimate the bth bootstrap regression function gi
b , and 

calculate the test statistic T(b) as in the original Tspline calculation.

Step 6: Repeat Step 3 to 5 B times, and use the B generated values of the test 

statistics, Tspline* = T 1 , T 2 , …, T B , to determine the quantiles of the distribution 

of the test statistic. For a test at significance level α, the null hypothesis is rejected 

if Tspline is greater than the corresponding (1 − α)th quantile of the bootstrap 

distribution of Tspline* .

3.1.2. Consistency of the test against fixed alternatives—In this section we show 

that the proposed test is consistent against any fixed alternatives. We also provide the 

optimal number of internal knots for the B-spline that leads to the best possible rate of 

convergence. We first rewrite the model in a slightly more general form; here we use X 
instead of x to emphasize the random nature of the independent variable.

We write the true model as follows

Y j = g0 Xj + ϵj = g0 Xj + σej,

where g0 is an unknown function of interest, (Yj, Xj), j = 1, … , n, are i.i.d. random variables 

independent of the error term ej ~ N(0, 1). For simplicity and without loss of generality, we 

assume that the covariate Xj ∈ X a.s., where X = 0, 1 . As defined, X is a compact subset in 

ℝ.

As previously described, a B-spline estimate of g x = ∑k = 1
Kn + mγkBk

m x  can be achieved by 

minimizing the objective function

1
n ∑

j = 1

n
Y j − g Xj

2,

or, equivalently, by maximizing

Mn g ≡ ℙnmg = 2ℙn g − g0 e − ℙn g − g0
2,

where ℙnmg denotes the empirical process indexed by the function mg, i.e.

ℙnmg = 1
n ∑

j = 1

n
mg Xj = − 1

n ∑
j = 1

n
Y j − g Xj

2 .

Direct maximization of the above objective function over the full infinite-dimensional 

parameter space G may lead to inconsistant estimates[32]. There-fore, one has to use the 

sieve M-estimation framework by considering the spaces of B-spline functions
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Gn Dn, Kn, m = gn:gn x = ∑
k = 1

Kn + m
γkBk

m x ∈ Sn Dn, Kn, m , x ∈ 0, 1 ,

where Dn = d1, …, dKn  is a set of partition points for the set [0, 1], Kn is the number of 

internal knots with Kn = O(nv), m is the order of the B-spline with m ≥ 1, γk k = 1
Kn + m

 is the 

set of the unknown coefficients or control points for the B-spline, Bk
m x :x ∈ a, b  are the 

basis functions, and Sn(Dn, Kn, m) is the space of polynomial splines on a partition Dn with 

Kn internal knots and of order m. Then, the sieve estimator gn of g0 satisfies

Mn gn ≥ Mn g for allg ∈ Gn,

that is gn maximizes g Mn g  over the sieve space Gn Dn, Kn, m .

For simplicity of presentation, we consider the special case of the two-sample comparison. 

We assume the following regularity conditions:

C1. The error ej has a distribution with zero mean and sub-exponential tails, i.e., tails 

bound by the supremum of an empirical process. Also, e and the covariate X are 

independent.

C2. The parameter space Gi ∋ g0, i, i = 1, 2, contains functions uniformly bounded 

by C ≥ 1/2 on [0, 1], with bounded pth derivatives, for fixed p ≥ 1, with the first 

derivative being continuous.

C3. The number of internal knots satisfies Kn = O(nv), such that

max
1 ≤ k ≤ Kn + 1

dk − dk − 1 = O n−v .

C4. The sample sizes of the two groups satisfy

n1
n1 + n2

λ ∈ 0, 1 ,

as min(n1, n2) → ∞.

Theorem 1. Assuming conditions C1-C4 hold, we consider a wild-bootstrap procedure that 

of level α asymptotically. Then, the proposed test is consistent against any fixed alternative 

hypothesis: If πn(θδ) is the power function of the test under the fixed alternative hypothesis 

θδ, then πn(θδ) → 1 as n → ∞.

A sketch of the proof is provided in Appendix A. Even though the proposed test is, by 

Theorem 1, consistent against any fixed alternative hypothesis, the asymptotic distribution of 

the test statistic is difficult to derive. The difficulty stems from the fact that the convergence 

rate of the B-spline estimator of g1 and g2 is
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d gni, i, g0, i = Op n
p

1 + 2p , i = 1, 2,

where d(g1, g2) = {E[g1(X) − g2(X)]2}1/2. Note that the above rate is the optimal 

convergence rate for nonparametric regression and is achieved if one sets v = 1/(1 + 2p). 

This convergence rate is slower than the usual n rate for parametric models, even though it 

is the optimal rate in nonparametric regression.

In the absence of an analytically derived asymptotic distribution, we assessed the 

performance of the wild-bootstrap procedure through extensive simulations. Results of the 

simulation experiments are presented in Section 5.

3.1.3. Extending the testing procedure to correlated data—The same testing 

procedures can be modified and extended to the analysis of correlated data. A key 

requirement for the modification is the preservation of the correlation structure that exists 

within each subject. The following algorithm is a natural extension and it performs a 

Cholesky decomposition on the estimated covariance structure [33]. Combining with the 

estimated regression functions, we generate the bootstrap sample Y ijk
b .

The algorithm is described below.

Step 1: Obtain group-specific estimates gi x  of function gi by using semiparametric 

mixed effect models, and then compute the test statistic Tsplcorr.

Step 2: Obtain a common regression function estimate g x  for the combined sample.

Step 3: For i = 1, … , I, obtain the group-specific covariance matrix estimate Ri from 

the fitted group-specific model and ascertain the residuals ηi = ηi11, ηi12, …, ηinni .

Step 4: Perform a Cholesky decomposition on Ri so that Ri = LiLi
T , where Li is a 

lower triangular matrix. We then obtain

ei = ei11, ei12, …, einni = Li
−1ηi;

and calculate the “whitened” residuals ei = ei − 1
ni

∑j = 1
ni ei.

Step 5: Draw a random sample from the “whitened” residuals ei and calculate 

ηi
b = Liei. We use Y ijk

b = g xijk + ηijk
b  as the bootstrap sample.

Step 6: Calculate the test statistic T(b) with the bootstrap sample. Repeat Steps 3 to 5 

B times to construct an empirical distribution of the statistic with bootstrap samples, 

and then calculate the p value from the tail area of the empirical distribution.
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4. Software development

We published an R package gamm4.test in CRAN to make the proposed testing procedures 

available to practitioners. The two main functions are gam.grptest for comparisons of 

nonlinear functions with cross-sectional data, and gamm4.grptest for comparisons involving 

correlated data. Key features of this package are:

a. It utilizes a syntax that is consistent with mgcv and gamm4, two packages that 

are often used for fitting semiparametric regression models. Users familiar with 

those packages can perform comparisons with gam.grptest and gamm4.grptest.

b. The package performs parallel computing with an automatic detection of 

thenumbers of available CPU cores for enhanced computational efficiency.

c. The R package includes a data visualization function plot.gamtest that allows 

users to visually examine the fitted curves and surfaces. The graphics are 

produced by the R package plotly. With option type = plotly.persp, the users 

can create 3-dimensional interactive plots. Finally, setting the option test.statistic 

= TRUE generates the empirical distribution of the test statistic under the null 

hypothesis of equal regression functions.

Computational efficiency of gamm4.test in the analysis of the example data in the package 

was assessed on a computer with Intel(R) Core(TM) i5–3470, CPU @3.20GHz, 64-bit 

operating system, and 4 CPU cores. The computing time is summarized in Table 2.

To enhance the usability of the testing methods, we also created an interactive R Shiny 

interface for the gamm4.test package. This interface allows analysts that do not use 

R to access the testing procedure through a web link. See https://heather.shinyapps.io/

shinygamm4/ for the app. See https://youtu.be/SHqaZXSLaMw for a related youtube 

tutorial.

5. Simulation Studies

We conducted a series of simulation studies to verify the theoretical results and to examine 

the operating characteristics of the proposed tests, in comparison with the other L2-based 

methods. We additionally investigated the influences of the number of knots on the tests.

5.1. Curve comparisons

For curve comparisons, we considered the following model

Y ij = gid xij + ϵij, (9)

where i = 1, 2;j = 1, … , ni.

In this simulation, we generated values of the independent variable xij from Unif[0, 1], with 

sample sizes n1 and n2 for the two comparison groups. The nonlinear functions for the two 

groups were specified as g1(x) = 2xexp(2−4x)−2x+0.5 and g2(x) = 2xexp(2−4x)−0.5, with 

g(x) = (4xexp(2−4x)−2x)/2. More generally, we considered gid(xij) = (d/10)gi(xij) + (1 − d/

10)g(xij), with d = 0, 1, 2, 3, where d controlled the distance between the two group-specific 
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functions. For example, d = 0 corresponded to the situation where the two groups shared the 

same regression function; as d increased, the functions grew further apart. These functions 

were plotted in Appendix B; see Supplemental Figure 1.

Values of the dependent variables Yij were generated from Equation (9) with standard 

errors σ1 and σ2, i.e.ϵ1j N 0, σ1
2 , ϵ2j N 0, σ2

2 . Comparisons of the nonlinear functions were 

carried out under the following three conditions: (1) a distance parameter d = 0, 1, 2, 3; (2) 

sample sizes (n1, n2)=(125, 125), (216, 216), and (512, 512); (3) values of the error standard 

deviations (σ1, σ2)=(0.20, 0.15) and (0.25, 0.20).

With the generated data sets, we comparatively evaluated the performance of five discussed 

methods:

• Method 1: The proposed testing method with cubic B-spline regression bases for 

curve estimation, and a wild bootstrap procedure for p-value calculation.

• Method 2: The proposed testing method with penalized cubic spline bases for 

curve estimation, with a wild bootstrap procedure for p-value calculation by 

using the gam function in the R package mgcv. Numbers of knots were set to 

the default value, which was determined by a generalized cross-validation (GCV) 

method.

• Method 3: Kernel smoothing based on the L2 distance test statistic, followed by a 

wild bootstrap procedure [19].

• Method 4: The testing method based on variance estimator [19].

• Method 5: Young and Bowman’s (1995) method [16], which calculates the p 
value by matching with a scaled chi-square distribution.

For each simulation setting, we generated a total of 1,000 testing datasets. For each dataset, 

we performed the proposed test on 200 wild bootstrap samples to calculate the p value. We 

calculated the rate of rejection in the 1,000 simulated samples at a significance level of 0.05.

Rejection rates for curve comparison under the null and alternative hypotheses are reported 

in Appendix B; see supplemental Table 1. When d = 0, the rejection rates are Type I error 

rates; when d = 1, 2, 3, the rejection rates represent the power of the tests. In comparison 

with other testing methods, the proposed tests in general had an excellent control of Type 

I error rates. As d increased, the power of rejecting the null hypothesis increased as well. 

The power of the new tests was comparable to, if not slightly better than, that of the existing 

tests. We noticed that Method 5 showed a slightly higher type I error rates than others. 

On the other hand, the Method 4 exhibited a tighter type I error control, while having 

considerably lower power. For the proposed testing methods, B-splines and penalized splines 

produced similar results. As previously discussed, we set the number of knots to n13 . In 

the simulation studies we observed that when an unpenalized semiparametric model was 

used, incorrect number of knots selection could lead to substantial bias and hence inflated 

the Type I error rates. The penalized semiparametric regression estimates, however, were 

generally very robust.
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To verify the consistency theory in Section 3, we further examined the rejection rates (i.e., 

power) of the test as the sample size increased, under a fixed alternative hypothesis. We 

showed that when the distance between the null and alternative hypotheses was set to d = 1, 

the power increased with the sample size. The power approached to 1 when n1 = n2 = 1000. 

See Figure 2 in Appendix B.

Besides of the five methods listed above, we also compared the proposed methods with 

the test proposed by Kulasekera (1995) [13]. The latter’s performance has left much to be 

desired: In the tested settings, the type I error rates were close to zero, and the power was 

low as well. The suboptimal performance could be due to the simulation settings we chose, 

where the functional curves were close and data variability was large. The proposed tests, on 

the other hand, performed well in such situations. We omitted the results of Kulasekera’s test 

from the summary table.

We further examined the performance of the tests in situations of three group comparison. 

The nonlinear functions of the three groups were specified respectively as g1(x) = 

2xexp(2−4x)−x−(d1/10)(x−0.5), g2(x) = 2xexp(2−4x) − x + (d2/10)(x − 0.5) and g3(x) = 

2xexp(2 − 4x) − x, with di = 0, 1, 2, 3 and i = 1, 2, where d1, d2 respectively controlled 

the distances between g1 and g3, and g2 and g3. Comparisons of the nonlinear functions 

were carried out with various distance values of d1 and d2, as well as sample sizes. For each 

setting, we generated a total of 500 testing datasets.

See Supplemental Table 2 in Appendix B for rates of rejection in 500 simulated samples at a 

significance level of 0.05. Similar to two curve comparisons, when d1 = d2 = 0, the proposed 

tests in general had a good control of type I error rates. As di increased, regardless the equal 

or unequal distances between the curves, the power of rejecting the null hypothesis increased 

with the sample size.

5.2. Surface comparisons

Simulations for surface comparisons were carried out in a similar manner. We used the 

following surface functions in the simulation:

a. g1(x) = g2(x) = sin(2πx1) + cos(2πx2)

b. g1 x = g2 x = 2x1
2 + 3x2

2

c. g1 x = g2 x = exp −x1
2 − x2

2

d. g1(x) = sin(2πx1) + cos(2πx2) g2(x) = sin(2πx1) + cos(2πx2) + x1

e. g1 x = 2x1
2 + 3x2

2 g2 x = 2x1
2 + 3x2

2 + sin 2πx1

f. g1 x = exp −x1
2 − x2

2 g2 x = exp −x1
2 − x2

2 + sin 2πx1

Scenarios a-c represented situations under the null hypothesis, i.e., where the surfaces were 

the same; Scenarios d-f corresponded to various alternative hypotheses. The independent 

variables x1 and x2 were simulated from independent Unif[0, 1] with sample size n1 and n2 

for each group. The dependent variables Yij were generated from the above functions with 
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standard errors σ1 and σ2. i.e. Yij = gi(xij) + ϵij, where i = 1, 2; j = 1, … , ni, ϵ1j N 0, σ1
2 , 

ϵ2j N 0, σ2
2 .

We conducted the simulation under the following parameter settings: (1) Three sample size 

settings of (n1, n2) as (125, 125), and (216, 216), (512,512); (2) Two different values of 

standard errors (σ1, σ2) for each function. For each simulation setting, we generated 500 

datasets. For each dataset, we tested the new method with 300 wild bootstrap resamples. We 

calculated the rejection rate based on the 500 simulated datasets at α = 0.05.

Type I error rates for function pairs of a-c are reported in Appendix B; see supplemental 

Table 4; powers for function pairs in d-f are reported in Table 5 of Appendix B. The 

Type I error rates of the proposed tests were generally good and power was superior than 

the existing tests. Similar to the simulation studies for curve comparisons, the penalized 

semiparametirc model with the default number of knots from ‘GCV’ method showed a 

performance similar to the tests using semiparametirc estimating methods and ni3  number of 

knots. Numbers of knots had relatively minor influences on the testing performance.

In comparison with the existing methods, we found that in general the proposed methods 

had reasonable Type I error control as expected. The power was either comparable to or 

superior than that of the other methods.

5.3. Tests with correlated data

We considered the following models for correlated data

Yijk = gid xijk + bij + ϵijk,

where i = 1, 2; j = 1, … , ni; k = 1, 2, 3. As previously presented in Equation (9), we 

used Yijk to indicate the measure on the kth occasion in subject j from group i. Values 

of the independent variable xijk were generated from independent Unif[0, 1]. Values of 

the dependent variable Yij were generated based on the above functions with random 

effect bi N 0, σi′  and the i.i.d. random error ϵijk ~ N(0, σi). We used the same regression 

functions in Section 5.1, where the two curves gradually grew apart with an increasing d (see 

Appendix Figure 1).

We considered the following parameter settings: (1) d=0, 1, 2; (2) three sample size settings 

(n1, n2) = (50, 60), (100, 120), and (150, 160) and all with three repeated measures; 

(3) three different combinations of the standard deviations of the random intercept and 

the i.i.d random variable as σ1′ , σ2′ , σ1, σ2 = (0.2, 0.15, 0.04, 0.05), (0.2, 0.15, 0.10, 0.12), and 

(0.25, 0.20, 0.10, 0.12). We used penalized semiparametric mixed regression to estimate the 

curves.

The simulation results are reported in supplemental Table 6 of Appendix B. Results 

suggested a relatively tight Type 1 error rate control and good power. Zhang’s (2000) 

scaled chi-square test is the only existing comparative test for correlated data [24]. We 

compared the performance of the new test with that of the scaled chi-square test. Under 
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sample sizes (n1, n2) = (50, 50) and (100, 100), we performed the test using 1) the same x 
values for two groups; 2) slightly different x (x2 = x1 + Unif(0, 0.05)); 3) completely random 

and independent x1, x2 for two groups. Simulation was repeated for 200 times under each 

scenario and the results were shown in Appendix B Table 7.

The proposed test clearly outperformed the scaled χ2 test. When the two groups had the 

same values in x, the scaled χ2 test had Type I error rates that were lower than the nominal 

level. The power was generally lower as well. The scaled chi-square test was not designed 

for situations of randomly distributed independent variables so the power deteriorated when 

we introduced different x values between the two groups.

6. Real data applications

To illustrate the proposed testing procedures, we analyzed two data sets from a large 

observational study. The original study was designed to examine the factors related to blood 

pressure development in children. Detailed study protocols were published elsewhere [34]

[35]. Briefly, healthy children between 5 and 17 years of age were recruited from schools in 

Indianapolis, Indiana. Blood pressure, height, and weight were measured twice a year from 

the study participants. Blood and overnight urine samples were collected. The study protocol 

was approved by a local Internal Review Board. Informed consent was obtained from study 

participants, or their parents when appropriate.

6.1. Comparisons of weight growth curves

We compared the weight growth curves between blacks and whites within each sex, and 

between boys and girls within each race. We write the model as

Weigℎtij = gi Ageij + ϵij,

where i indexes the groups and j the ni observations within each group. Here we used the 

baseline assessment data to examine the weight-age relationships in the four sex and race 

combinations. The sizes of the four groups were: 205 black boys, 311 white boys, 232 black 

girls, and 289 white girls. We performed comparisons by testing the hypotheses H0 : g1 = g2 

vs H1 : g1 ≠ g2, where g1, g2 are the weight growth curves between the sexes within each 

race group, or weight growth functions between the races within each sex group.

We first estimated the weight growth curves of the groups as part of the preliminary analysis. 

See scatter plots in Figure 1(a). We reported the p values of the four competing testing 

methods in Table 3. We presented the curve estimates with 95% pointwise confidence 

intervals from the semiparametric regression model (Generalized Cross-Validation for 

selecting smoothing parameter and thin-plate penalized basis function) in Figure 1(b). The 

nonparametric smoothing curves by loess produced curve estimates that were similar to the 

semiparametric regression estimates.

Testing results from the semiparametric spline-based estimating method were consistent 

with the curve estimations shown in Figure 1. The tests showed that the weight-for-age 

curves were significantly different between white and black girls. In our sample, the black 
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girls gained more weight around ages 12 and 13 than their white peers, but the two curves 

converged gradually at age 14 years. The confidence intervals became wider after age 15, 

possibly due to the reduced sample sizes. Similar patterns were seen in the height-for-age 

curves.

For surface comparison, we considered weight as a function of age and height. We wrote the 

model as

Weigℎtij = gi Ageij, Heigℎtij + ϵij,

where i is the index for the sex-race group, and j is the index for a specific subject, j = 1, 

2, … , ni within the group. We compared simultaneous effects of height and age on weight, 

among the four race-sex groups. The p-values of the four types of tests were summarized 

in Table 3 and the corresponding contour plots were presented in Figure 2 . No statistically 

significant differences were detected using the four tests.

6.2. Hormonal influences on blood pressure

Blood pressure is regulated by hormones in the renin-angiotensin-aldosterone system 

(RAAS). An essential product of RAAS is aldosterone, a mineralocorticoid hormone. 

Aldosterone acts on the epithelial sodium channel (ENaC) to help retain sodium. Increased 

sodium load causes extracellular fluid volume (ECFV) expansion, which in turn leads to 

blood pressure elevation. Recent biological experiments have shown that in the American 

population, blacks are more responsive to the stimulation of aldosterone in comparison to 

whites [35]. As a result, blacks tend to have greater levels of ECFV, which helps to suppress 

renin secretion. Renin, together with potassium, helps production of aldosterone [36]. This 

process is essential for the maintenance of blood pressure [37].

In this analysis, we examined the simultaneous influences of plasma renin activity (PRA) 

and plasma aldosterone concentration (PAC) on systolic blood pressure (BP):

BPij = gi log PRA ij, log PAC ij + ϵij,

where i is the index for the race group, and j is the index for a specific subject, j = 

1, 2, … , ni within the group. We were interested in comparing the surface functions in 

blacks and in whites. A quick visual examination (Figure 3) showed that blood pressure in 

whites (n=313) was on average lower than that in blacks (n=184). In whites, PRA and PAC 

were not significantly correlated with blood pressure, as one would expect in a steady-state 

sample. But in blacks, lower PRA and higher PAC were associated with a higher systolic 

blood pressure, which suggested an increased blood pressure sensitivity to aldosterone. 

We compared the two surface functions and obtained a p-value of 0.054, based on 500 

bootstrap resamples. The comparison generated a p value that was close to, but did not 

reach the commonly accepted threshold of 0.05. Other testing methods, including Young and 

Bowman’s (1995) tests (Method 4 and 5 in Section 5.1) gave p-values of 0.15 and 0.73, 

while the L2 distance-based test using kernel smoothing (Method 3 in Section 5.1) provided 

a p-value of 0.03. Indication for the racial difference in this analysis is generally consistent 
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with the experimental evidence from drug-induced hyperaldosteronism in human subjects 

[35]; the actual power of the tests, however, is likely influenced by the sample size and data 

variability.

7. Discussion

Statistical analysis of biomedical data is never complete without a proper test. In analysis 

of lower-dimensional nonlinear functions, inference typically involves comparisons of 

curves and surfaces. In parametric analysis where the functions are fully specified, 

inference is generally straightforward and can be carried out in the usual likelihood-based 

framework. In nonparametric or semiparametric analyses, due to lack of knowledge of 

the true functional forms of the relationships, hypotheses cannot be formulated solely on 

prespecified parameters. Analysts, therefore, can no longer rely on likelihood-based tests. 

Standard software packages or functions typically do not produce comparison of interest. 

In practice, estimation and inference of the functional curves and surfaces are often done 

separately, in part due to the lack of integration of estimation and inference tools and 

common programming syntax. In the present paper, we propose new testing procedures 

based on the L2 distance. We show that the proposed tests are consistent against any fixed 

alternative hypothesis. To evaluate the level of statistical significance we provide a set of 

bootstrap testing methods. We have developed an R package to assist analysts who are 

interested in using the tests. For those who do not use R, we present an R Shiny interface to 

wrap around the software package so that analysts could directly upload their data to a web 

server and implement the tests through interactive web-based operations.

Extensive simulation studies show that, in comparison to the existing methods, the proposed 

tests have good control of type I error rate and excellent power. Despite our use of 

computer intensive methods such as the wild bootstrap, the procedures are generally quite 

efficient. Our own testing of the method with real data shows that the software package 

is easy to operate and it is flexible for accommodating covariates and repeated measures. 

We showed that the testing procedure possesses the property of consistency, a necessary 

condition for bootstrap to work. The rate of convergence, however, has not reached the 

optimum of n1/2. The empirical evidence from our simulation has nonetheless supported 

the good performance in finite sample situations. Notwithstanding this limitation, we put 

forward a computational tool for the comparison of curves and surfaces in nonparametric or 

semiparametric analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
(a) Weight growth by race and sex; (b) Estimated weight growth curves with pointwise 95% 

CI, by race and sex
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Figure 2: 
Estimated contour plots of weight as a function of height and age, by race and sex
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Figure 3: 
Estimated contour plots of systolic blood pressure as a function of logarithmic transformed 

plasma renin activity (PRA) and plasma aldosterone concentration (PAC), by race
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Table 2:

Average run times and standard errors in seconds over 20 runs of the proposed methods for each of the 

examples in the package, with and without using the parallel computing

Data Functions Obs per group Time (parallel) Time (no parallel)

cross-sectional curve (474,465) 9.6(0.2) 9.1(0.2)

surface (474,465) 14.8 (0.2) 23.5(0.6)

correlated curve (1873,1713) 86.4(0.6) 204.5(1.6)

surface (1873,1713) 664.6(13.6) 1749.0 (30.3)

Comput Stat Data Anal. Author manuscript; available in PMC 2023 January 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhao et al. Page 25

Table 3:

P-values for weight growth curves and weight growth surfaces for different race and sex groups

Endpoints vs predictor(s) Group effect Subset data T spline T 4 T 3 T 2

Weight vs. Age Sex Black 0.08 0.16 0.55 <0.01

White 0.48 0.18 0.69 0.28

Race Boys 0.41 0.09 0.69 0.2

Girls <0.01 0.01 0.96 <0.01

Weight vs. Age & Height Sex Black 0.16 0.65 0.66 0.49

White 0.49 0.55 0.55 0.77

Race Boys 0.42 0.42 0.46 0.35

Girls 0.34 0.19 0.91 0.06
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