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The invasion-associated locus A and B genes (ialAB) of Bartonella bacilliformis were previously shown to
confer an erythrocyte-invasive phenotype upon Escherichia coli, indirectly implicating their role in virulence.
We report the first direct demonstration of a role for ialB as a virulence factor in B. bacilliformis. The presence
of a secretory signal sequence and amino acid sequence similarity to two known outer membrane proteins
involved in virulence suggested that IalB was an outer membrane protein. To develop an antiserum for protein
localization, the ialB gene was cloned in frame into an expression vector with a six-histidine tag and under
control of the lacZ promoter. The IalB fusion protein was purified by nickel affinity chromatography and used
to raise polyclonal antibodies. IalB was initially localized to the bacterial membrane fraction. To further
localize IalB, B. bacilliformis inner and outer membranes were fractionated by sucrose density gradient
centrifugation and identified by appearance, buoyant density (p), and cytochrome b content. Inner and outer
membrane proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE),
and IalB was positively identified by Western blot. Contrary to expectations, IalB was localized to the inner
membrane of the pathogen. To directly demonstrate a role for IalB in erythrocyte parasitism, the B. bacilli-
Jformis ialB gene was disrupted by insertional mutagenesis. The resulting ia/B mutant strain was complemented
in trans with a replicative plasmid encoding the full-length ialB gene. PCR and high-stringency DNA hybrid-
ization confirmed mutagenesis and transcomplementation events. Abrogation and restoration of ialB expres-
sion was verified by SDS-PAGE and immunoblotting. In vitro virulence assays showed that mutagenesis of ialB
decreased bacterial association and invasion of human erythrocytes by 47 to 53% relative to controls.
Transcomplementation of ialB restored erythrocyte association and invasion rates to levels observed in the
parental strain. These data provide direct evidence for IalB’s role in erythrocyte parasitism and represent the

first demonstration of molecular Koch’s postulates for a Bartonella species.

Bartonella bacilliformis is the only bacterium known to in-
vade human erythrocytes. The pathogen is the causative agent
of the human disease, Oroya fever, a biphasic illness whose
primary-phase symptoms include a severe hemolytic anemia,
where up to 100% of the circulating erythrocytes can be par-
asitized and 80% lysed (1, 15, 31). If untreated, this phase of
the disease has a 40% fatality rate (44). Treatment with pen-
icillin, tetracycline, or aminoglycosides is effective (43), but
diagnosis can be difficult due to the slow growth and fastidious
nature of the bacterium. The secondary phase of Oroya fever
occurs 4 to 8 weeks following the primary hemolytic phase and
is characterized by hemangiomas, nicknamed verruga peruana,
on the patient’s head, neck, and extremities. During the sec-
ondary phase, bacterial colonization and invasion shifts from
erythrocytes to vascular endothelial cells (13, 14, 21) and re-
sults in neovascularization (13). This phase of the disease is
rarely fatal but can last up to several months (43) and may
cause permanent disfigurement. B. bacilliformis is transmitted
by the phlebotamine sandfly, Lutzomyia verrucarum. Histori-
cally, Oroya fever has been limited to the mountainous regions
of South America, presumably due to geographical restriction
of its vector (19). However, recent reports of Oroya fever in
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coastal areas of South America suggest that the range of this
pathogen is expanding (1).

Although other bacteria are known to parasitize mammalian
erythrocytes (e.g., Anaplasma and Haemobartonella species),
B. bacilliformis is unsurpassed among bacteria in its efficiency
as an erythrocyte parasite. B. bacilliformis is able to invade
nearly all circulating erythrocytes during the acute phase of
infection. Erythrocytes lack the actin cytoskeleton necessary
for bacterial uptake by induced endocytosis, although endocy-
tosis can be induced under experimental conditions (35, 40).
Treatment of erythrocytes with glycolysis and proton-motive-
force inhibitors has no effect on Bartonella adhesion, suggest-
ing that these host cells play a passive role in invasion (42). In
contrast, B. bacilliformis plays an active role during erythrocyte
invasion requiring both respiration and proton motive force
(42). Taken together, these data indicate that B. bacilliformis is
the only active participant in erythrocyte adherence and inva-
sion. In contrast, B. bacilliformis entry into endothelial and
epithelial cells differs significantly from its invasion of erythro-
cytes. Bacterium-induced rearrangement of the endothelial
and epithelial cell cytoskeleton during endocytosis enhances
bacterial uptake, while cytochalasin D treatment, inhibiting
actin filament formation, reduces internalization by ~30%
(21).

The B. bacilliformis invasion-associated locus A and B genes
(ialAB) were indirectly shown to be involved in erythrocyte



4374 COLEMAN AND MINNICK

INFECT. IMMUN.

TABLE 1. Bacteria and plasmids used in this study

Strain or plasmid

Relevant characteristics

Source or reference

Strains
B. bacilliformis
JB584 Transformation-competent strain of B. bacilliformis 5
SC1 JB584 with ialB interrupted by pSAC100 (Km', ia/B mutant) This study
SC2 SC1 complemented in trans with pSAC200 (Km" Cm", ialB™") This study
E. coli
DH5« Host strain for cloning and plasmid propagation Gibco-BRL
M15 Host strain for fusion protein expression 41
Plasmids
pIAL1 pUC19 containing ial4 and ialB of B. bacilliformis 27
pIALB pUC19 containing ialB of B. bacilliformis 27
pQE-31 Expression vector Qiagen Inc.
pREP4 Plasmid encoding lacl Qiagen Inc.
pQIALB pQE-31 with 574-bp Pvull-Pst] fragment encoding ia/B minus its This study
secretory signal sequence plus 15 nucleotides
pUBI1 B. bacilliformis suicide plasmid; Km" N
pSAC100 pUBI with an internal 430-bp Pvull-Mfel fragment of ia/B; Km" This study
pBBRIMCS B. bacilliformis shuttle vector; Cm" 18
pSAC200 Complementation plasmid; pPBBRIMCS with 756-bp Swal-BamHI This study

fragment containing intact ialB; Cm"

invasion by conferring an erythrocyte-invasive phenotype upon
minimally invasive Escherichia coli strains (27). IalA has since
been characterized as a (di)nucleoside polyphosphate hydro-
lase thought to be involved in reducing levels of stress-induced
dinucleotides during invasion, thus aiding bacterial survival (9,
11). IalB was shown to contain a putative 22-amino-acid se-
cretory signal sequence and to have approximately 60% amino
acid similarity to the virulence determinants Ail of Yersinia
enterocolitica and Rck of Salmonella enterica serovar Typhi-
murium. The presence of a potential secretory sequence and
similarity of IalB to two outer membrane virulence determi-
nants led to our hypothesis that IalB is exported to the bacte-
rial surface, where it functions as an invasion factor. This study
was undertaken to localize the IalB protein and directly deter-
mine its role in human erythrocyte association by B. bacillifor-
mis.

MATERIALS AND METHODS

Bacterial strains and culture conditions. B. bacilliformis strains (Table 1) were
cultured on heart infusion agar blood (HIAB) plates (heart infusion agar sup-
plemented with 4% sheep erythrocytes and 2% sheep serum) in a water-satu-
rated incubator at 30°C. When required, strains were cultured in the presence of
kanamycin (25 pg/ml) and/or chloramphenicol (5 pg/ml). E. coli strains (Table 1)
were cultured in Luria-Bertani (LB) broth at 37°C in the presence of antibiotics
as needed.

Preparation and manipulation of DNA. Plasmids used or generated in this
study are given in Table 1. Plasmids were propagated in E. coli DH5«a and
isolated by the methods of Birnboim and Doly (7), a Perfectprep kit (Eppendorf
Scientific, Westbury, N.Y.), or a Qiagen Midiprep kit (Qiagen, Inc., Valencia,
Calif.). Restriction digests and agarose gel electrophoresis were done using
standard protocols (2). DNA fragments from restriction digests were purified
from ethidium bromide-stained agarose gels with a GeneClean IT kit (Bio 101, La
Jolla, Calif.). Ligations were performed by standard protocol (2), and transfor-
mations were done by the method of Chung et al. (10). Genomic DNA was
isolated using cetyltrimethylammonium bromide (CTAB) (2). Electroporation of
B. bacilliformis was done as previously described (5).

PCR and oligonucleotide primers. PCR amplification was done in a GeneAmp
2400 thermocycler (Perkin-Elmer, Norwalk, Conn.) as previously described (5).

DNA was denatured at 94°C for 5 min, amplified for 30 cycles (1 min at each of
the following temperatures: 94, 59 or 65, and 72°C), and extended for 10 min at
72°C. Single-strand oligonucleotide primers for the ia/B gene, IALBF (5'-GTA
TTATGAATTACTATCGAGAATAA-3") and IALBR (5'-ATCCGACCATAA
TACTTATCTTCT-3'), and for the neomycin phosphotransferase I gene (nptl),
NPT15" (5'-AGCCACGTTGTGTCTCAAAATCTC-3") and NPTI3’ (5'-CGTC
CCGTCAAGTCAGCGTAATGC-3'), were used. A “junction” primer set con-
sisting of JALBR and NPTIS5’ was designed to amplify the site of homologous
recombination between the chromosomal ia/B gene and the suicide plasmid,
PSAC100. Annealing sites for all primers are depicted in Fig. 2.

DNA hybridization analysis. Genomic DNA from B. bacilliformis and plasmid
DNA were digested to completion with Clal and separated on a 1.2% (wt/vol)
agarose gel stained with ethidium bromide. DNA was transferred to a supported
nitrocellulose membrane (pore size, 0.45 wm; Schleicher & Schuell, Keene,
N.H.) by the method of Southern (37) and then baked for 1 h at 80°C. DNA
probes were made by random primer extension (2) with [a-*?P]dCTP (New
England Nuclear, Boston, Mass.). High-stringency hybridization, washes, and
visualization were done as previously described (6).

SDS-PAGE. Protein concentrations were determined using a bicinchoninic
acid protein kit per the manufacturer’s instructions (Sigma Chemical Co., St.
Louis, Mo.). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) was done following the general procedures of Laemmli (20) with either
12.5, 15, or 15 to 20% gradient polyacrylamide (wt/vol) gels. Either 20 or 100 g
of protein was loaded per lane for gels that were Coomassie blue stained (33) and
2.5 pg was loaded per lane on gels that were silver stained (45).

Preparation of polyclonal antibodies and immunoblotting. To prepare anti-
bodies against IalB, E. coli M15 (pQIALB, pREP4) was grown overnight with
vigorous shaking in LB broth containing ampicillin and kanamycin. The over-
night culture was used to inoculate LB broth plus antibiotics and grown to an
optical density at 600 nm (OD600) of 0.7 to 0.9, and ialB expression was induced
by the addition of isopropyl-B-p-thiogalactopyranoside (IPTG; 2 mM final con-
centration). Cultures were induced for 3 h, and the bacterial pellet was harvested
by centrifugation at 4,000 X g for 20 min at 4°C. Bacterial pellets were solubilized
in Laemmli sample buffer and proteins separated by SDS-PAGE. The IalB
protein was excised from unfixed Coomassie blue-stained gels, minced, sus-
pended in 1 ml of phosphate-buffered saline (PBS; pH 7.4), and used to generate
antibody in a female New Zealand White rabbit as previously described (34).

For immunoblots, 20 to 80 pg of protein were separated by SDS-PAGE (12.5
or 15% [wt/vol] acrylamide), electrophoretically transferred to a supported ni-
trocellulose membrane (pore size, 0.45 pm; Schleicher & Schuell), and reacted
with anti-TalB antiserum (diluted 1:1,000) as previously described (34).
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FIG. 1. Recognition of B. bacilliformis 1alB and the IalB fusion protein by polyclonal anti-IalB antibodies. Cell lysates of IPTG-induced E. coli
M15(pQIALB) (lane 1) and B. bacilliformis (lane 2) analyzed by an SDS-PAGE gel stained with Coomassie blue (A) or immunoblot reacted with
polyclonal anti-IalB antibodies (B). Both B. bacilliformis 1alB and the IalB fusion protein are specifically detected with the antiserum. Molecular

mass standards in kilodaltons are indicated on the left.

Localization of IalB. Accessible outer membrane proteins of intact B. bacilli-
formis were extrinsically radioiodinated as previously described (24) and then
analyzed by SDS-PAGE. Whole bacteria were extrinsically treated with various
proteases (proteinase K, trypsin, subtilisin, papain, and thermolysin) to cleave
any accessible, sensitive surface proteins as previously described (24), and pro-
tein profiles were analyzed by gradient SDS-PAGE. Immunofluorescent labeling
of intact B. bacilliformis strains using anti-IalB polyclonal antibodies was done
according to standard protocols (2). Twenty plates of 3-day-old B. bacilliformis
were harvested into 1 ml of ice-cold Dulbecco’s PBS, and membranes were
isolated and fractionated as previously described for B. quintana (8). Cytochrome
assays were performed using inner and outer membrane fractions (final protein
concentration, 1 pg/pl) by the methods of Osborn et al. (30).

Human erythrocyte association assay. Blood was drawn from human volun-
teers into an acid citrate-dextrose Vacutainer tube and stored overnight at 4°C to
separate plasma from the erythrocytes. After removal of the plasma, erythrocytes
were washed with 10 ml of sterile saline (0.9%, wt/vol) and centrifuged at 700 X
g for 5 min. Erythrocytes were washed a second time, counted, and resuspended
in recovery broth (5) to a final concentration of 10° erythrocytes per ml.

Three- to four-day-old B. bacilliformis cultures were harvested into recovery
broth and diluted to an ODg, of 1.0 (~1.6 X 10° CFU/ml). Approximately 5 X
10® bacteria were gently mixed with 10% erythrocytes (multiplicity of infection
5:1) in a total volume of 0.5 ml of recovery broth. Association reactions were
incubated for 8 h at 30°C in a water-saturated environment. Erythrocytes and
parasitized erythrocytes were separated from free bacteria by Percoll gradient
centrifugation. Briefly, 1 ml of 70% Percoll (Sigma) containing 154 mM NaCl
was centrifuged at 16,000 X g for 10 min to create a continuous gradient. Then,
0.1 ml of each association reaction was carefully layered onto the preformed
Percoll gradient and centrifuged at 1,500 X g for 5 min. The erythrocyte-bacte-
rium band was collected, washed twice with sterile saline, and pelleted by cen-
trifugation at 1,000 X g for 15 s. The pellet was resuspended in 0.5 ml of heart
infusion broth, serially diluted, and then plated onto HIAB plates. Plates were
incubated at 30°C in a water-saturated incubator for 12 days and then counted
for CFU.

Statistical analysis. Numerical data reported for human erythrocyte associa-
tion assays are the means of three independent samples = the standard errors of
the mean (SEM). The statistical significance of the data was determined by use
of the Student’s ¢ test. A P value of <0.05 was considered significant.

RESULTS

Expression and purification of IalB fusion protein. To ob-
tain sufficient amounts of IalB protein to generate antibodies,
the ialB gene (excluding the portion encoding its secretory
signal sequence plus five N-terminal amino acids) was cloned
in frame into the expression vector pQE-31. This vector con-
tains a six-histidine tag and a polylinker under the control of
the lacZ promoter. The resulting construct, pQIALB, was
transformed into E. coli M15, and ialB expression was induced
with IPTG. The IalB fusion protein was synthesized at high
levels and localized to the insoluble fraction of E. coli. The
insoluble fraction was treated with a strong denaturant (6 M
guanidine hydrochloride), and the recombinant IalB was puri-
fied using nickel affinity chromatography. IalB was purified to
apparent homogeneity when analyzed by using Coomassie
blue-stained SDS-PAGE gels (data not shown). Polyclonal an-
ti-IalB antibodies were generated and found to recognize both
the IalB fusion protein synthesized in E. coli and wild-type IalB
synthesized by B. bacilliformis in Western blots (Fig. 1B). On
Western blots, the IalB fusion protein and IalB from B. bacil-
liformis have estimated masses of 18.6 and 17.1 kDa, respec-
tively. From its DNA sequence, the mature B. bacilliformis 1alB
protein was predicted to be 17.5 kDa (27), in close agreement
with our finding. Presumably, the larger estimated mass of the
TalB fusion protein is due to the presence of the charged,
six-histidine tag.

Generating an ia/B mutant and a transcomplemented strain
of B. bacilliformis. A 426-bp, Pvull-Mfel internal fragment of
the ialB gene was cloned into pUBI to create the suicide
vector, pSAC100. The pMB1 origin of pSAC100 is not func-
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FIG. 2. Schematic representation depicting site-directed mutagenesis of the B. bacilliformis ialB gene. (A) The suicide plasmid, pSAC100, was
created by cloning a 426-bp Pvull-Mfel internal fragment of the B. bacilliformis ialB gene (ialB") into pUBL. (B) The JB584 strain of B. bacilliformis
encodes the wild-type ialB gene. (C) Electroporation of JB584 with pSAC100, followed by recombination between the suicide plasmid, pSAC100,
and the chromosomal ia/B gene, results in insertional disruption and generation of the B. bacilliformis ialB mutant strain, SC1. Primer sites for ialB
(IALBF and IALBR) and nptl (NPTIS" and NPTI3’) are indicated by small arrows. (The figure is not drawn to scale.)

tional in B. bacilliformis (5); therefore, expression of the nptl
gene, conferring kanamycin resistance, would only occur fol-
lowing recombination of the suicide plasmid into the chromo-
some. Cloning an internal fragment of the ialB gene ensured
that homologous recombination between pSAC100 and the
chromosome would not result in reconstitution of a full-length
gene.

The JB584 strain of B. bacilliformis was electroporated with
PSACI100. Kanamycin-resistant colonies were isolated, cul-
tured, and initially characterized by PCR. The ialB gene, the
nptl gene, or the junction where pSAC100 recombined with the
chromosomal ialB gene were PCR amplified as depicted in Fig.
2. The nptl gene primer set (NPTIS" and NPTI3") amplified a
983-bp segment of the nptl gene in the kanamycin-resistant
strain, SC1, but not the parental strain, JB584 (Fig. 3A, lanes
3 and 2, respectively), showing that kanamycin resistance in
SC1 was due to nptl and not to selection of spontaneous ka-
namycin-resistant mutants. The ialB gene primer set (IALBF
and IALBR) was expected to produce a 4,097-bp product from
the site of homologous recombination or a 688-bp product
from an intact ialB gene. Upon analysis, an amplicon of
~4,000-bp was obtained from the kanamycin-resistant strain,
SC1, indicating that pSAC100 had recombined with the chro-

mosomal ialB (Fig. 3A, lane 6). No PCR product would be
amplified from unintegrated pSAC100 since the ialB primers
are complementary to chromosomal sequences flanking the
ialB gene and absent in pSAC100. As expected, a 688-bp am-
plicon was obtained from the intact ia/B gene in JB584 (Fig.
3A, lane 5).

The junction primer set (NPTI5" and TALBR) produced an
amplicon of approximately 1,700-bp from SC1 and no product
from the parental strain, JB584 (Fig. 3A, lanes 11 and 8, re-
spectively). As expected, no amplicon was obtained when
PSAC100 DNA was added to JB584 genomic DNA and then
amplified with the junction primer set (Fig. 3A, lane 10). From
these data we concluded that homologous recombination had
occurred between pSAC100 and the chromosomal ialB gene,
creating an ialB mutant strain, SC1.

We then proceeded to create a transcomplemented strain
using SC1 as the parental strain. The pIALB plasmid was
digested with Swal and BamHI, the 756-bp fragment contain-
ing the intact ialB gene isolated, and cloned into the broad-
host-range plasmid, pBBR1MCS to produce the shuttle plas-
mid, pSAC200. pSAC200 was subsequently electroporated into
SC1, and transformants were selected on HIAB plates supple-
mented with both kanamycin and chloramphenicol. Potential
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FIG. 3. Electrophoretic analysis of PCR products derived from ialB mutant strain, SC1, and transcomplemented strain, SC2. PCR products
were generated by amplification of genomic DNA from parent and recombinant strains using three amplimer sets (nptl [NPTI3’ and NPTI5'], ia/B
[TALBF and IALBR], and junction [jct] [NPTI5" and IALBR]). Brackets below the gel indicate the amplimer set used in each reaction. Amplimer
sets and template DNA for PCR used in this analysis are as follows. (A) Lane 1, NPTI3’ and NPTI5’, no template; lane 2, NPTI3" and NPTI5’,
JB584; lane 3, NPTI3' and NPTI5’, SC1; lane 4, IALBF and IALBR, no template; lane 5, IALBF and IALBR, JB584; lane 6, IALBF and IALBR,
SC1; lane 7, NPTIS" and IALBR, no template; lane 8, NPTIS" and IALBR, JB584; lane 9, NPTI5" and IALBR, pSAC100; lane 10, NPTI5" and
IALBR, JB584 and pSAC100; lane 11, NPTIS' and IALBR, SC1; lane 12, lambda DNA/HindIII and $X174 DNA/Haelll markers. (B) Lane 1,
TALBF, and IALBR, JB584; lane 2, IALBF and IALBR, SC1; lane 3, IALBF and IALBR, SC2; lane 4, NPTI5" and IALBR, SC2; lane 5, lambda
DNA/HindIII and $X174 DNA/Haelll markers. PCR products were analyzed by ethidium bromide-stained agarose (1.2%, wt/vol) gel electro-

phoresis. Size standards in kilobase pairs are indicated on the right.

transcomplemented strains were isolated, cultured, and char-
acterized by PCR.

The ialB gene primer set (IALBF and IALBR) was used to
screen for potential transcomplemented strains. One strain,
SC2, produced amplicons of 4,097 and 688 bp representing the
interrupted ialB gene on the bacterial chromosome and the
intact ialB gene on pSAC200, respectively (Fig. 3B, lane 3).
PCR amplification of SC2 DNA using the junction primer set
(NPT15" and TALBR) resulted in a product of approximately
1,700 bp (Fig. 3B, lane 4), indicating that the original site of
integration was intact.

To determine whether expression of the ialB gene had been
disrupted in SC1 and transcomplemented in SC2, cell lysates of
the bacteria were analyzed by SDS-PAGE and Western blot
(Fig. 4). A 17.1-kDa band was present in both JB584 and SC2
lysates but absent in SC1 lysates. This protein was positively
identified as IalB by Western blots (Fig. 4B). We consistently
observed more IalB in cell lysates of SC2 relative to JB584, by
both SDS-PAGE and Western blots. Presumably, increased
synthesis in SC2 is due to the multiple copies of pSAC200
encoding ialB (Fig. 5B).

Genotypes of the mutant and transcomplemented strains
were corroborated using DNA hybridization (Fig. 5). Restric-
tion endonuclease digestion of pIALB with Kpnl and HindIII
yielded a 744-bp fragment containing ia/B that was used to
probe Southern blots of Clal-digested genomic DNA from
each strain (Fig. 5A). Hybridization of the probe with JB584
DNA showed a single, distinct band of ~23 kbp (Fig. 5B, lane
2), while hybridization with the ia/B mutant strain, SC1, gave
two bands of ~23 and ~3.7 kbp (Fig. 5B, lane 3). The two
hybridization products in SC1 are due to the presence of a Clal
restriction enzyme site in the integrated suicide plasmid (Fig.
2). Each band contains a portion of the ialB gene. The inser-
tionally mutagenized ial/B gene of the transcomplemented
strain SC2 gives the expected two-band pattern like SC1, plus
an additional hybridization band of ~5.4 kbp from ialB on
PSAC200 (Fig. 5B, lane 4).

No overt phenotypic differences between the parental, ialB
mutant, and transcomplemented strains were apparent.

Localization of IalB in the bacterium. As expected, SDS-
PAGE analysis of total membranes showed that IalB was
present in the membrane fraction of JB584 and SC2 but not
the mutant strain, SC1, and its identity as IalB was verified by
Western blot (data not shown). Extrinsic radioiodination of
intact JB584 and SC1 showed no difference in protein profiles
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FIG. 4. Abrogation and complementation of ialB expression in B.
bacilliformis strains. (A) Cell lysate proteins (80 wg/lane) separated by
SDS-PAGE (12.5%, wt/vol) and stained with Coomassie blue. Lane 1,
JB584; lane 2, SC1; lane 3, SC2. (B) Corresponding immunoblot re-
acted with polyclonal anti-IalB antibodies showing IalB is present in
the parental B. bacilliformis strain, JB584 (lane 1), and the
transcomplemented mutant strain, SC2 (lane 3), but is absent in the
ialB mutant strain, SC1 (lane 2). Molecular mass standards in kilodal-
tons are indicated on the left.
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FIG. 5. Detection of the wild-type and mutated ia/B genes in B.
bacilliformis strains using DNA hybridization. (A) Ethidium bromide-
stained agarose gel (1.2%, wt/vol) of Clal-digested genomic DNA from
the parental B. bacilliformis strain, JB584 (lane 2), the ialB mutant
strain, SC1 (lane 3), and the transcomplemented strain, SC2 (lane 4).
The shuttle plasmid used in transcomplementation, pSAC200, digested
with Clal is shown in lane 5, and DNA size standards (Lambda
DNA/HindIII markers) are provided in lane 1. (B) Corresponding
Southern blot hybridized with the ialB probe. Lane 1, DNA size stan-
dards; lane 2, single hybridization band of ~23 kbp from the parental
B. bacilliformis strain, JB584; lane 3, two-band hybridization pattern
from the disrupted ia/B gene in the ialB mutant strain, SC1; lane 4,
two-band hybridization pattern from the disrupted ialB gene, as well as
the ~5.4-kbp hybridization band from pSAC200 in the transcomple-
mented strain, SC2; lane 5, single hybridization band from pSAC200.
Size standards in kilobase pairs are indicated on the left.

when analyzed by SDS-PAGE (data not shown). Whole JB584
bacteria extrinsically treated with several proteases showed no
alteration in the migration of IalB on gradient SDS-PAGE gels
(data not shown). No difference in immunofluorescence was
seen when whole JB584 and SC1 bacteria were surface labeled
using anti-IalB polyclonal antibodies (data not shown). Radio-
iodination, proteolysis, and immunofluorescence data sug-
gested that IalB is an inner membrane protein.

To conclusively localize IalB to the inner membrane, crude
lysates were subjected to sucrose density gradient centrifuga-
tion as we previously described for B. quintana (8). Inner and
outer membrane bands were collected from gradients and
identified on the basis of their appearance. Outer membrane
fractions typically showed a white flocculent appearance, while
inner membrane fractions were typically tea colored (28). The
average buoyant densities (p) were determined from three
membrane preparations and calculated to be 1.08 g/cm? for the
inner membrane and 1.22 g/cm® for the outer membrane.
These values are very similar to the buoyant densities for the
outer and inner membranes of E. coli (28) and Salmonella spp.
(30) and are nearly identical to those we obtained from B.
quintana membrane fractions (8). Outer membrane fractions
analyzed by SDS-PAGE on a 15 to 20% gradient gel and
stained with silver gave a protein profile similar to that previ-
ously reported for B. bacilliformis (24). In addition, the outer,
but not the inner, membrane fractions contained the 42-kDa
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flagellin protein (34) and three bacteriophage proteins with
molecular masses of 32, 34, and 36 kDa (4). The identity of the
inner membrane fraction was unequivocally established by the
presence of cytochrome b. Difference spectra for the inner and
outer membrane fractions were obtained between 499 and 600
nm. The inner, but not the outer, membrane fraction had an
absorbance peak at 558 nm, which is characteristic of cyto-
chrome b. Once the identity of the inner and outer membrane
fractions was established, their respective protein profiles were
analyzed using SDS-PAGE. Contrary to our hypothesis that
IalB was an outer membrane protein, the protein was found in
the inner membrane fractions of both JB584 and SC2 (Fig. 6,
lanes 3 and 7). The identity of IalB was confirmed by Western
blot (Fig. 6B).

Role of IalB in erythrocyte adhesion and invasion. Follow-
ing the 8-h association assays, Percoll gradient centrifugation
was used to separate erythrocytes from free bacteria. Since
both adherent and invaded bacteria were complexed with
erythrocytes, CFU counts from these assays include bacteria
that are adhering to, or have invaded, erythrocytes.

Association assays were carried out at least four times, with
each experiment containing two to five independent samples.
While the number of CFU varied between experiments, the
data trends remained consistent. For the association assays
conducted with the ia/B mutant strain, SC1, and the parental
strain, JB584, SC1 adherence and invasion decreased 47 to
53% compared to JB584. In a representative experiment, SC1
showed a significant decrease (P < 0.05) of 53% in adherence
and invasion compared to JB584 (mean CFU of 91,750 =+
14,655 versus 196,300 + 12,537, respectively) (Fig. 7A). Asso-
ciation assays conducted with JB584 and the complemented
strain, SC2, showed statistically insignificant differences in ad-
herence and invasion, although the range of values varied more
than that observed in assays with JB584 and SC1. This in-
creased scatter in SC2 values may be due to multiple plasmid
copies of the ialB gene in SC2. In a representative experiment,
the frans-complemented strain, SC2, showed no significant
change (P = 0.7825) in association assays when compared to
JB584 (mean CFU of 10,833 * 1,906 versus 11,775 = 2,575,
respectively) (Fig. 7B).

DISCUSSION

This study is the first demonstration of molecular Koch’s
postulates (12) for a Bartonella species. Insertional mutagene-
sis of ialB, creating the B. bartonella mutant strain, SC1, re-
sulted in a 47 to 53% decrease in human erythrocyte adherence
and invasion compared to the parental strain, JB584.
Transcomplementation of ia/B, creating the SC2 strain, re-
stored erythrocyte adherence and invasion to parental levels.
These data clearly establish IalB as a virulence determinant for
B. bacilliformis erythrocyte parasitism.

Mitchell and Minnick originally isolated and characterized
the two-gene locus, ialAB, reporting that both ial4 and ialB
were necessary to confer an invasive phenotype upon E. coli
(27). However, the results of the present study demonstrate
that ialB has a significant effect on B. bacilliformis erythrocyte
parasitism. In vivo experiments with the rat pathogen, B. tribi-
corum, support our findings that ialB is a virulence factor.
Specifically, an ia/B mutant strain of B. tribicorum failed to
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FIG. 6. Localization of IalB to the B. bacilliformis inner membrane. (A) Proteins (2.5 wg/lane) were separated by SDS-PAGE (15 to 20%
[wt/vol] gradient), and the gel was silver stained. IalB was found in the inner membrane fractions of JB584 (lane 3) and SC2 (lane 7), the parental
and transcomplemented B. bacilliformis strains, respectively. IalB was absent from all outer membrane fractions and the inner membrane fraction
of SC1, the ialB mutant strain. (B) Corresponding immunoblot reacted with polyclonal anti-IalB antibodies. IalB localized to the inner membrane
fractions of JB584 and SC1 (lanes 3 and 7, respectively). IPTG-induced E. coli M15(pQIALB) cell lysate is provided as a control in lane 1.

develop bacteremia and to invade rat erythrocytes in vivo (C.
Gille, C. Lanz, and C. Dehio, Abstr. 1st Int. Conf. Bartonella
Emerging Pathogens, abstr. 28, 1999).

ialA and ialB homologues are present in the three most
prevalent, human pathogenic species of Bartonella: B. henselae,
B. quintana, and B. bacilliformis (26). B. henselae and B. quin-
tana cause cat-scratch disease and trench fever, respectively.
All three species share phenotypic similarities: they are trans-
mitted by arthropod vector, are intracellular parasites, and
have an absolute growth requirement for hemin. All three
species invade or attach to erythrocytes during the course of
infection (17, 22, 23) and can cause neovascularization of in-
fected tissue (25). Erythrocyte parasitism and neovasculariza-
tion may provide the blood and heme required for these patho-
genic bacteria. Given the phenotypic similarities of B.
bacilliformis, B. quintana, and B. henselae, T1alA and TalB may
share similar functions contributing to the virulence of all three
species.

Homologues of ial4 and ialB have been found in other

gram-negative pathogenic bacteria. Brucella melitensis is a fac-
ultative intracellular pathogen and the causative agent of ovine
brucellosis. The ability of B. melitensis to cause disease is tied
to its ability to adapt and survive in a range of environments. B.
melitensis’ adaptive responses to heat, oxidative, and acid stress
were recently characterized (39). Protein levels, in response to
these stresses, were analyzed by two-dimensional PAGE. In
response to heat shock (a temperature shift from 37 to 42°C),
an appreciable reduction in synthesis was observed for a pro-
tein with homology to the IalB protein of B. bacilliformis. No
change in synthesis was seen for the IalB homologue in re-
sponse to either oxidative or acid stress. Brucella and Bar-
tonella are closely related a-proteobacteria, and their phyloge-
netic relationship is underscored by the ability of both genera
to interact with eukaryotic cells in a parasitic or mutualistic
association. In light of these similarities, it is interesting that
these two species may share a virulence factor associated with
eukaryotic cell invasion. We are currently examining the effect
of environmental cues on ialB expression, as the transfer of B.
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FIG. 7. Effect of ialB mutagenesis and transcomplementation on human erythrocyte adherence and invasion on B. bacilliformis strains. (A) The
ialB mutant strain, SC1, shows a 53% decrease in erythrocyte adherence and invasion compared to the parental strain, JB584. The n values for
JB584 and SC1 are 5 and 4, respectively. (B) Transcomplementation of ia/B in SC2 restores erythrocyte adherence and invasion to parental strain
levels. The n values for JB584 and SC2 are 3 and 2, respectively. Experimental data presented graphically in panels A and B are the mean * the

SEM from two separate but representative experiments.

bacilliformis from sandfly to human would be associated with
significant changes in temperature, iron availability, pH, and
oxidative stress. These environmental cues could serve as sig-
nals for expression of virulence factors necessary for human
infection.

In another study, differential fluorescence induction was
used to identify E. coli K1 genes expressed under environmen-
tal conditions favoring bacterial invasion of human brain mi-
crovascular endothelial cells (HBMEC) (3). One gene identi-
fied in that study was an IalA homologue (38% homology).
Site-directed mutagenesis of this E. coli gene reduced HBMEC
invasion twofold, and transcomplementation restored the in-
vasive phenotype to wild-type levels. IalA and IalB homo-
logues are being identified in a number of bacterial species, all
of which invade eukaryotic cells. Additionally, experimental
evidence for the role of these proteins in virulence is accumu-
lating.

We originally hypothesized that IalB is exported to the bac-
terial surface, where it functions as an invasion factor. Con-
trary to our hypothesis, IalB was localized to the inner mem-
brane in this study. Our original hypothesis was, in part, based
on the reported ~60% amino acid sequence similarity of IalB
to Ail and Rck (27). However, although these proteins have
significant amino acid similarity, their amino acid identity is
actually quite low (~11%). The IalB protein also lacks a ter-
minal phenylalanine amino acid residue characteristic of most
outer membrane proteins (38), including Ail and Rck.

Localization of IalB to the cytoplasmic membrane necessi-
tated rethinking of its function as a virulence factor. Virulence-
related activities for inner membrane proteins include trans-
port of virulence factors, uptake of nutrients, response to
environmental stresses, chemotaxis, cell motility, and intracel-
lular survival, to name a few. These various functions fall into
one of two general categories: transport or signal transduction.
For example, the virB operon of Brucella suis and Brucella
abortus was found to be essential for virulence and intracellular
survival of these mammalian pathogens. The virB operon en-

codes homologues to a type IV secretory system including
putative inner membrane proteins (29, 36). An intriguing ex-
ample of a signal-transducing, inner membrane protein is
found in Pseudomonas aeruginosa. Normally, the sigma factor
responsible for expression of a mucoid phenotype is seques-
tered at the cytoplasmic membrane by an inner membrane
protein. Release of this sigma factor into the cytosol, presum-
ably in response to some signal, results in the expression of
mucoidy (32). Phosphorylation is another mechanism by which
an inner membrane protein could facilitate signal transduction.
The etk gene of E. coli encodes an inner membrane protein
capable of autophosphorylation (16). Interestingly, while all E.
coli strains possess the etk gene, it is only expressed by a subset
of pathogenic strains.

With these examples as precedents for cytoplasmic mem-
brane proteins serving as virulence factors, we are currently
investigating whether IalB functions as a transporter or signal
transduction protein. To date, database searches for proteins
with homology to TalB have not suggested any function. This
lack of homology to known proteins may reflect IalB’s unique
and unusual role in erythrocyte parasitism by B. bacilliformis.
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