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Abstract 

Pulmonary fibrosis (PF) is a serious and often fatal illness that occurs in various clinical settings and represents a 
significant unmet medical need. Increasing evidence indicates that neutrophil extracellular traps (NETs) contribute 
significantly to the progression of PF. Therefore, understanding the pathways by which NETs contribute to the disease 
is crucial for developing effective treatments. This review focuses on the formation of NETs and the common mecha-
nisms of NETs in PF.

Highlights 

1. This review focuses on NETs formation and the role of NETs in PF and presents research progress.

2. We describe specific mechanisms by which NETs induce PF in fibroblasts while revealing the transduction mecha-
nisms that remain to be investigated.

3. We explore the possible consequences of NETs action on lung epithelial cells, including NETs-induced lung epithe-
lial damage and NETs-driven epithelial mesenchymal transition.

4. We introduce recent key findings about the role of NETs-mediated chronic inflammation in PF and the effect of 
autophagy-driven production of NETs in fibrosis.
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Introduction
Neutrophil extracellular traps (NETs), a meshwork 
structure that captures bacteria, fungi and viruses, were 
discovered by Volker Brinkmann in 2004 [1]. DNA, his-
tones, and antimicrobial proteins are found in NETs, 
which are produced by activated neutrophils, and high 
concentrations of NETs around pathogens are consid-
ered antibacterial. NETs play an important role in host 

defense mechanisms and in non-infectious diseases, such 
as autoimmune diseases, vasculitis, psoriasis and other 
pathological processes, including coagulation, throm-
bosis [2, 3], diabetes mellitus [4], atherosclerosis [5, 6], 
cystic fibrosis [7] and malignant tumors [8, 9]. Further-
more, elevated levels of NETs have been detected in tis-
sues of patients with PF, and they are associated with 
disease progression [10]. Evidence indicates that NETs 
components such as DNA, myeloperoxidase (MPO), 
neutrophil elastase (NE) and histones release cytokines 
that lead to inflammation, epithelial-mesenchymal trans-
formation (EMT) or epithelial damage, all of which pro-
mote the progression of lung fibrosis. In this review, we 
discuss the formation of NETs, their role in PF and cur-
rent advances in studying NETs in PF.
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Role and formation of NETs
As the body’s primary defense cells, neutrophils enhance 
the immune response by phagocytosis, degranulation 
and release of reactive oxygen species (ROS) [11–13]. 
NETs are extracellular structures composed of chromatin 
and granule proteins that bind and kill microorganisms. 
NETosis is the process of cell death following neutrophil 
activation, which differs from apoptosis and necrosis in 
morphological and molecular features. This novel form of 
cell death involves the formation of NETs and then con-
tinuing to play an important role in the immune response 
[1, 14].

Research has demonstrated that activated NADPH oxi-
dase may produce ROS, and the main pathways that acti-
vate NADPH oxidase include PKC-Raf, MERK/ERK and 
PI3K/Akt [15–17]. In response to the generated ROS, 
MPO is stimulated, and elastase is activated and migrates 
from asplenophilic granules to the nucleus by the syner-
gistic action of ROS and MPO [18, 19]. As NETs form, 
NE digests nucleosomal histones and promotes extensive 
chromatin deglycosylation, late binding of MPO to chro-
matin stimulates NE to depolymerize chromatin, and 
granulins bind to depolymerized chromatin released by 
neutrophils [20]. Notably, a portion of the formed NETs 
is mediated by mitochondrial ROS without NADPH oxi-
dase activity [21, 22]. Peptidylarginine deiminase type 4 
(PAD4) is involved in developing NETs because PAD4-
Knock out (KO) mice were found to eliminate NETs and 
induce histone guanylation, and this increase in histone 
guanylation was associated with chromatin deprotona-
tion during NETs formation [23]. By converting histone 
arginine to citrulline, PAD4 reduces the strong positive 
charge of histones, thus weakening histone DNA binding. 
This weakened interaction causes nucleosome unpack-
ing and chromatin depolymerization [24]. Interestingly, 
according to a recent study, the formation of NETs is 
independent of ROS and may result from the multitude 
of molecules released by Staphylococcus aureus during 
neutrophil cleavage [25].

Interstitial lung disease
Interstitial lung disease (ILD), also called diffuse paren-
chymal lung disease, is a group of disease with diffuse 
lung parenchymal, alveolar inflammation and interstitial 
fibrosis as basic pathological changes [26]. ILD is etio-
logically complex and is associated with more than 200 
diseases, which can be categorized according to known 
etiology (such as environmental exposure, drug toxicity 
and connective tissue disease) or unknown etiology (such 
as idiopathic pulmonary fibrosis (IPF)) [27]. IPF, the most 
common and aggressive form of ILD, is characterized 
by the imaging and pathologic features of conventional 

interstitial pneumonia without an established etiology 
or correlation with PF-related diseases [28]. According 
to current estimates, IPF prevalence ranges from 0.57 
to 4.51 per 10,000 people in Asia-Pacific countries, 0.33 
to 2.51 in Europe, and 2.40 to 2.98 in North America 
[29]. ILD is also a common pulmonary complication in 
patients with connective tissue diseases (CTDs). Vari-
ous CTDs, such as rheumatoid arthritis, systemic scle-
rosis (SSc), polymyositis and dermatomyositis, Sjögren’s 
syndrome (SS), systemic lupus erythematosus (SLE) 
and Mixed Connective Tissue Disease ILD (MCTD), 
are associated with ILD [30–33]. There has been a high 
but divergent reported incidence of ILD among patients 
with SSc, ranging from 40 to 91% [34, 35]. According to 
several studies, the prevalence of pulmonary involve-
ment in SS varies widely from 9 to 26% [36, 37]. Based 
on HRCT and PFT findings, ILD is reported in 47 to 90% 
of patients with MCTD, whereas ILD is reported in 1 
to 15% of patients with SLE [38]. Although PF remains 
a rare disease, statistics show that the mortality rate is 
steadily increasing (from 18.81 per 100,000 people in 
2000 to 20.66 per 100,000 people in 2017) [39, 40]. A ris-
ing mortality rate indicates that PF remains a pressing 
challenge and that a deeper understanding of its patho-
genesis is necessary. In addition to having an innate 
immune response, NETs may direct the progression and 
occurrence of fibrosis, making them a new target for anti-
fibrotic therapies.

NETs induce pulmonary fibrosis through fibroblasts
Fibroblasts that form the lung connective tissue are 
derived mainly from embryonic mesenchymal cells. 
Lung fibroblasts, as the main constituent cells of lung 
connective tissue, are postulated to perform the follow-
ing functions under physiological conditions: maintain 
the normal shape of lung tissue, provide the scaffold to 
facilitate effective gas exchange of lung tissue, and syn-
thesize and secrete a variety of proteins, collagen fibers 
and other extracellular matrix components after lung 
tissue damage has been rapidly repaired [41–43].Under 
pathological conditions, inflammation of the alveolar epi-
thelial cells and sustained damage cause the recruitment 
of large numbers of immune cells, which then produce 
and release pro-inflammatory and pro-fibrotic factors 
[44, 45]. As a result of the combined action of various 
cytokines, lung fibroblasts are abnormally activated. Acti-
vated lung fibroblasts are the key effector cells of PF. They 
can, for example, contribute directly to the occurrence 
and development of PF through abnormal proliferation, 
phenotypic transformation, and secretion of extracellu-
lar matrix (ECM) components [46–48]. Moreover, lung 
fibroblasts can indirectly promote fibrosis by secreting 
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inflammatory factors such as Interleukin-1(IL-1), IL-6, 
and tumor necrosis factor-alpha (TNF-α) [49].

NETs play a crucial role in the activation of lung fibro-
blasts and their differentiation into myofibroblasts. 
Effects of NETs components MPO and histones on the 
proliferation and differentiation of lung fibroblast were 
confirmed by MPO inhibitor or histones inhibitor with 
the down-regulation of alpha-smooth muscle actin(α-
SMA) and collagen production. Whereas pre-treated 
with recombinant human MPO (rhMPO) and rhhis-
tones3 promoted the expression of α-SMA, the colla-
gen production and the proliferation of lung fibroblasts. 
And the DNA components of NETs was confirmed by 
Toll-like receptor 9(TLR9)-miR-7-drosophila mothers 
against decapentaplegic 2(Smad2) signaling pathway to 
promote lung fibroblast proliferation and their differen-
tiation into myofibroblasts [50]. In  vitro activation and 
differentiation of human lung fibroblasts into myofi-
broblasts by NETs released from neutrophils treated 
with phorbol 12-myristate 13-acetate (PMA) resulted in 
elevated mRNA levels for a disintegrin and metallopro-
tease 12 (ADAM12), actin alpha 2 (ACTA2) and protein 
levels for the mesenchymal marker α-SMA and collagen 
production. However, the activity of NETs on lung fibro-
blasts after digestion with DNase was eliminated [51], 
indicating that DNA components in NETs likely influ-
ence the differentiation of fibroblasts positively. Despite 
not directly stimulating fibrotic responses on fibroblasts 
in  vitro, the fibrosis-inducing drugs, cigarette smoke 
extract (CSE), magnesium silicate and bleomycin indi-
rectly induce fibroblast activation through NETs release 
[51]. Furthermore, these investigators found that the 
expression of IL-17 in NETs components did not affect 
the differentiation of lung fibroblasts into myofibroblasts, 
but IL-17 acted in concert with DNA/histones in NET-
dependent fibroblast activation. The derived components 
of NETs produced under different conditions vary, and 
although they do not directly determine the activated 
differentiation of fibroblasts, they can indirectly partici-
pate in their fibrogenesis process [51]. Studies showed 
that active SLE expresses tissue factor (TF)-bearing and 
IL-17A-bearing NETs, which activate and differentiate 
human skin fibroblasts. In elucidating the components 
of NETs responsible for activation and differentiation 
of human skin fibroblasts, TF and IL-17A were found, 
in particular, to decorate active SLE NETs. Researchers 
assessed the expression of ACAT2 and found that TF or 
IL-17A neutralization of NETs did not mediate human 
skin fibroblasts activation/differentiation. Collectively, 
these results demonstrate that active SLE NETs con-
tribute to the activation/differentiation of human skin 
fibroblasts, whereas TF and IL-17A present in SLE NETs 
enhance the fibrotic activity of differentiated human skin 

fibroblasts [52]. Together, these findings indicate the 
presence of NET-derived components, suggesting their 
involvement in fibrotic aspects. Although some authors 
have demonstrated the effects of different components of 
NETs on lung fibroblast proliferation and differentiation, 
the mechanisms by which some components of NETs 
exert these effects remain unclear.

PAD4 also promotes the release of NETs through his-
tone guanylation [24]. Inducing PF in PAD4-KO mice 
with bleomycin suppressed the expression of fibrosis-
associated mediators significantly, including collagen 
type I α 1 chain, elastin, fibronectin 1, connective tis-
sue growth factor and fibroblast growth factor 2 [53]. 
The PAD4 deficiency prevented a decrease in alveolar 
epithelial and pulmonary vascular endothelial cell num-
bers and increased ACTA2-positive mesenchymal cells 
and S100A4-positive fibroblasts in the lung. Pretreat-
ment of neutrophils with Cl-amidine, a PAD4 inhibi-
tor that inhibits NETs release by blocking guanylation 
of histone H3 and subsequent incubation with cigarette 
smoke extract inhibited the differentiation and activation 
of fibroblasts [53]. The findings suggest that the PAD4 
inhibitor is a therapeutic target for PF because it reduces 
bleomycin-induced NETs and fibrosis formation. This 
promising research area will require further investigation 
into how anti-NETs interrupt PF and represents a poten-
tial treatment (Fig. 1).

NETs drive lung epithelial injury and pulmonary fibrosis
Repetitive injury and alterations of the alveolar epithe-
lium (including alveolar epithelial cell proliferation and 
hyperplasia) [54], abnormal alveolar epithelial cell acti-
vation that leads to impaired epithelial-mesenchymal 
crosstalk [55] and senescence of pulmonary epithelial 
cells [56] have been described and linked with the devel-
opment of PF. Currently, PF is postulated to be caused 
by repeated damage to alveolar epithelial cells, which 
can cause abnormal interactions between epithelial cells 
and fibroblasts [57, 58]. Cell death of alveolar epithe-
lial may occur during the early stages of PF [59, 60], in 
which alveolar epithelial cell type II (ATII) damage is sig-
nificant, and there have been reports that in the lungs of 
patients with IPF, 70–80% of the ATII stained positive for 
apoptotic markers [61, 62].

NETs play various roles in lung epithelial injury and 
fibrosis. For example, protein components of NETs, par-
ticularly histones, caused epithelial and endothelial cell 
death in a mouse model of acute lung injury induced by 
lipopolysaccharide [63]. In  vitro, extracellular histones 
are cytotoxic to endothelial cells, while in  vivo, histone 
administration leads to neutrophil margins, vacuolar 
endothelial cells, intra-alveolar hemorrhage, and macro- 
and microvascular thrombosis [64]. Other pathways 
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besides NETs-DNA may also damage lung epithelial 
cells, such as NETs mediating inflammasome activation 
and IL-1β secretion from monocytes and causing air-
way epithelial cell injury, and NETs modify and regulate 
lung injury by activating ferroptosis in alveolar epithe-
lial [65–67]. Additionally, NETs are associated with the 
development of lung fibrosis after COVID-19, because 
NETs induce the downregulation of the epithelial marker 
E-cadherin and the upregulation of the mesenchymal 
marker α-SMA in pulmonary epithelial cells [68–71]. 
Exposure to butyl benzyl phthalate (BBP), a widely used 
plasticizer, has been linked to asthma and impaired lung 
functions [72, 73]. As a consequence of promoting glu-
cose uptake and ROS burst in neutrophils, BBP promotes 
EMT through the formation of NETs [74]. The regulation 
of NETs on lung epithelial cells is primarily determined 
by epithelial cell injury and mesenchymal transition, and 
there remains much to be learned about the role of NETs 
in driving pulmonary epithelial injury and PF.

NETs‑mediated inflammation and pulmonary fibrosis
PF is commonly associated with chronic inflammation. A 
complex network of cytokines, chemokines and inflam-
matory mediums are released during the process of PF, 
driving fibroblast recruitment, proliferation and over-
production of ECM. Key cytokines and chemokines 
that induce a pro-fibrotic environment include TNF-α, 

transforming growth factor-β (TGF-β), monocyte chem-
otactic protein 1 (MCP1)/CCL2, macrophage inhibitory 
protein 1α (MIP1α)/ CCL3 and T-2-chemokines such as 
CCL17, CCL18 and CCL22 [75, 76]. TGF-β is an impor-
tant mediator of pro-fibrosis and induces fibroblast dif-
ferentiation into myofibroblasts. TGF-β also promotes 
ECM production by promoting ECM gene transcription 
(including collagen, fibronectin and proteoglycan) and 
preventing collagen degradation by inhibiting matrix 
metalloproteinase, fibrinogen activator and elastase 
activities [58, 77, 78]. NE is a main protein compo-
nent of NETs and an inhibitor of NE has been demon-
strated to attenuate PF in a murine model by inhibiting 
TGF-β1 and inflammatory cell recruitment to the lungs 
[79]. The mechanism by which NETs rely on TGF-β as 
a signaling pathway has not been investigated in detail; 
however, NETs have been shown to activate TGF-β in 
other diseases. For example, NETs induce proliferation, 
invasion, migration, and EMT of gastric cancer cells by 
activating the TGF-β-p-Smad2/3 signaling pathway [80]. 
NETs are associated with the upregulation of the TGF-β 
signaling pathway and associated genes, including TGF-
β1, Smad3 and collagen type III α 1 chain in chronic 
thromboembolic pulmonary hypertension monocytes. 
Further studies have indicated that NETs-dependent 
monocyte differentiation causes a predominantly fibro-
blast phenotype with increased TGF-β-dependent signal 

Fig. 1  NETs induce pulmonary fibrosis through fibroblasts. PMA, Bleomycin, CSE could promote the release of NETs from neutrophils. Under 
hypoxia conditions, REDD1 promotes NETs release by enhancing autophagy, while Cl-amidine (a PAD4 inhibitor) and DNase prevent NETs 
production and action process. It has been suggested that MPO and Histones contribute to the proliferation and differentiation of fibroblasts, 
whereas DNA promotes myofibroblast differentiation by connecting with the pathway TLR9-miR-7-SMAD2. There is evidence that IL-17, IL17A, and 
TF promote fibrotic activity in differentiated fibroblasts, but not their differentiation. NETs: neutrophil extracellular traps; PMA: phorbol 12-myristate 
13-acetate; CSE: cigarette smoke extract; PAD4: peptidylarginine deiminase type 4; MPO: myeloperoxidase
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transduction [2]. TGF-β may act as a downstream mole-
cule of NETs to promote the progression of PF. Moreover, 
NETs may promote the release of TGF-β, an important 
agent for tissue remodeling after acute lung injury dur-
ing late phases [81]. According to existing studies, NETs 
probably activate the TGF-β signaling pathway in lung 
fibroblasts to promote PF progression. Confirmation of 
this activation process requires further research efforts.

NETs also stimulate the alveolar and bronchial epi-
thelial cells to secrete pro-inflammatory factors such as 
IL-8 and IL-6, not by inducing DNA or histones in the 
cells, but by releasing the high mobility group box  1 
(HMGB1) protein. HMGB1 induces the secretion of 
IL-8 and IL-6 via the receptor of advanced glycation 
end-product (RAGE) [82]. Studies have shown that the 
mRNA of RAGE is highly expressed in alveolar epithelial 
cells and the nuclear protein HMGB-1 was also identi-
fied in NETs [83]. HMGB-1 was also shown to induce the 
release of pro-inflammatory cytokines when released into 
the extracellular environment [84–86]. IL-17A acts as a 
pro-inflammatory factor that promotes PF by depend-
ing on NETs [51, 87]. Furthermore, NETs also promote 
the release of cytokines such as IL-1, TNF-α, IL-1RA and 
IL-1α [51, 88, 89]. The essential role of NETs-produced 
inflammatory factors is clearly important in PF progres-
sion. Interestingly, Chirivi and his colleagues described 
the inhibition of NETs with the therapeutic anti-citrulli-
nated protein antibody (tACPA) for the first time in mice 
models. By using tACPA, it may be possible to reduce 

neutrophil-driven inflammation and decrease lung fibro-
sis [90]. According to the evidence presented above, 
NETs cause chronic lung inflammation by producing a 
series of inflammatory factors that, in turn, stimulate 
fibrotic pathways downstream in cells (such as lung epi-
thelial cells, fibroblasts and immune cells) to accelerate 
the progression of PF (Fig. 2).

Autophagy‑driven NETs and pulmonary fibrosis
Autophagy is a self-degradative process responsible for 
balancing energy sources during critical developmental 
stages and in response to nutrient stress [91]. Rather than 
eliminating materials, autophagy serves as a dynamic 
recycling system that creates new building blocks and 
energy to maintain the integrity of cells and homeostasis. 
Abnormalities in the autophagic process may cause the 
development of diseases [92]. Autophagy is involved in 
the NETosis process, and different types of vesicles with 
a double phospholipid bilayer are found in PMA-stimu-
lated neutrophils and monitoring the localization of the 
autophagy marker microtubule-associated protein 1 light 
chain 3 suggests that PMA induces autophagy in a super-
oxide-independent manner. Additionally, the pharmaco-
logical inhibition of autophagy did not affect the activity 
of PMA-induced NADPH oxidase [93]. A significant 
reduction in the release of NETs was observed after treat-
ing neutrophils with the autophagy inhibitors bafilomy-
cin A1 and chloroquine [51, 94]. Typically, autophagy is 
a protective mechanism for an organism, with enhanced 

Fig. 2  NETs drive lung epithelial injury and pulmonary fibrosis. MPO, DNA and histones in Nets can cause damage to alveolar epithelial cells, 
which release a large number of pro-inflammatory and pro-fibrotic factors (including IL-6, IL-8, IL-1α, IL-1β and TNF-α) and initiate subsequent 
inflammatory immune repair. Excessive repair of alveolar epithelial cells after injury is an important mechanism of pulmonary fibrosis. HMGB1 in 
NETs could act on the RAGE receptors in lung epithelial cells, which in turn leads to the downregulation of the epithelial cell marker E-cadherin and 
the upregulation of the myofibroblast cell marker α-SMA. NETs: neutrophil extracellular traps; MPO: myeloperoxidase; HMGB1: high mobility group 
box 1; RAGE: the receptor of advanced glycation end-product; α-SMA: alpha-smooth muscle actin
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autophagy reducing the progression of PF [95–99]. In 
contrast excess of autophagy stimulates the activation 
of fibroblasts and causes tissue fibrosis. For example, the 
coactivator peroxisome proliferator-activated receptor 
gamma coactivator-1α is upregulated in SSc patients and 
mouse animal models to promote autophagy for TGF-β-
induced fibroblasts activation [100]. TGF-β also activates 
autophagy through epigenetic mechanisms to amplify 
its pro-fibrotic effects [101]. The hypoxia-response and 
stress-response protein (REDD1)/ autophagy/ NETs 
axis is involved in kidney injury and dermatofibrosis in 
patients with SLE. Studies showed that endothelin-1 and 
hypoxia-inducible factor-1α inhibition, prior to stimula-
tion of neutrophils with an active serum, ameliorated the 
activation/differentiation of human skin fibroblasts to 
myofibroblasts, indicating the importance of NETs in the 
activation/differentiation of fibroblasts [52]. Addition-
ally, the REDD1/autophagy pathway has been reported 
to induce NETs and increase IL-1β secretion [102]. 
Although the regulatory mechanism of PF by autophagy/
NETs has not been fully resolved, we were able to detect 
a possible role for autophagy/NETs in PF regulation.

Conclusion
NETs are associated with the early and advanced stages of 
PF. Evidence suggests that NETs may regulate the fibro-
sis process by causing pro-inflammatory effects, injur-
ing pulmonary epithelium and endothelium, promoting 
pulmonary EMT, activating lung fibroblasts, or inducing 
autophagy. Further research is required to fully under-
stand how NETs interact with cells and downstream sign-
aling pathways during lung fibrosis. Current research on 
NETs and PF is based primarily on basic experiments, 
and potential clinical transformation still requires further 
exploration. Signaling pathways and molecular targets 
related to NETs have been partially identified, so inhib-
iting NETs to delay disease progression or onset should 
still be possible.
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