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ABSTRACT: We quantify and compare three environmental
impacts from inter-regional freight transportation in the contiguous
United States: total mortality attributable to PM2.5 air pollution,
racial−ethnic disparities in PM2.5-attributable mortality, and CO2
emissions. We compare all major freight modes (truck, rail, barge,
aircraft) and routes (∼30,000 routes). Our study is the first to
comprehensively compare each route separately and the first to
explore racial−ethnic exposure disparities by route and mode,
nationally. Impacts (health, health disparity, climate) per tonne of
freight are the largest for aircraft. Among nonaircraft modes, per
tonne, rail has the largest health and health-disparity impacts and
the lowest climate impacts, whereas truck transport has the lowest
health impacts and greatest climate impacts�an important
reminder that health and climate impacts are often but not always aligned. For aircraft and truck, average monetized damages
per tonne are larger for climate impacts than those for PM2.5 air pollution; for rail and barge, the reverse holds. We find that average
exposures from inter-regional truck and rail are the highest for White non-Hispanic people, those from barge are the highest for
Black people, and those from aircraft are the highest for people who are mixed/other race. Level of exposure and disparity among
racial−ethnic groups vary in urban versus rural areas.
KEYWORDS: freight transportation, fine particulate matter, health impacts, climate impacts, environmental justice

1. INTRODUCTION
Freight transport plays a critical role in the United States (U.S.)
economy, moving ∼46 million tonnes of goods across the U.S.
each day and contributing ∼$900 billion to the U.S. GDP (year
2018).1,2 Freight accounts for ∼40% of U.S. transport energy
(∼11% of the U.S. total energy) consumption, of which >90%
was consumed by four modes: freight trucks (60%), aviation
(18%), marine (9%), and rail (5%).3 Trucks carried the most
weight (tonne), weight-distance (tonne-km), and value (U.S.
dollars) (85, 55, 93%, respectively, of total U.S. domestic freight
for the four modes in 2017), followed by rail (11, 35, 4%), water
(4, 9, 3%), and air (0.02, 0.09, 1%).1 Freight activity by these
four modes is expected to grow in the future, e.g., annual tonnage
rising 46% from 2017 to 2050, with the largest relative increase
being air freight.4

In addition to delivering large economic value, freight
transport consumes fossil fuels and emits pollution that impacts
air quality, human health, and climate. Most (∼94%) human
health impacts from air pollution are associated with fine
particulate matter (PM2.5),5 a regulated pollutant linked to
premature mortality from cardiovascular disease (ischemic heart
disease and stroke), chronic obstructive pulmonary disease, and
lung cancer.6 Emissions from fossil-fuel vehicles include
“primary” (i.e., directly emitted) PM2.5, and gasses (sulfur

dioxide (SO2), oxides of nitrogen (NOx), volatile organic
compounds (VOCs), ammonia (NH3)) that form “secondary”
PM2.5. Diesel heavy-duty vehicles, rail, commercial marine
vessels, and aircraft combined contributed 87, 50, and 43%,
respectively, of SO2, NOx, and primary PM2.5 total mobile
emissions in 2014.7 Freight represents 29% of transportation
greenhouse gas emissions.1

Environmental health impacts from transportation have been
previously quantified using various air quality models, model
spatial resolution, and health impact assessment methods and
tools.8−17 Existing estimates of annual PM2.5-related mortality
by transportation mode or subsector include the following: (i)
using U.S. EPA’s 2005 National Emissions Inventory (NEI)
emissions: 52,800 from road, 8300 from marine, and 4500 from
rail;11 (ii) using 2014 NEI emissions: 9700 from passenger
vehicles, 7700 from trucks, 1800 from railroad, 1400 from
marine vessels, and 700 from aircraft;18 (iii) using 2014 NEI
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emissions: 8600 from heavy duty diesel vehicles and 7500 from
off-highway vehicles and equipment;17 (iv) for the year 2002:
7000 in North America from oceangoing ships;8 (v) for the year
2006: 458 in the U.S. from aircraft emissions;9 and (vi) for the
year 2006: 1350 in North America from aircraft emissions.14

Dedoussi et al. reported that across three years (2005, 2011,
2018), PM2.5-related mortality decreased for road and marine,
remained constant for rail, and slightly increased for aviation.19

Looking at the decreases in on-road transportation emissions in
the U.S. from 2008 to 2017, Choma et al. estimated that vehicle-
related PM2.5-attributable deaths decrease from 27,700 in 2008
to 19,800 in 2017.20 Some recent studies have quantified
impacts specifically for freight transportation. Annual PM2.5-
related mortality reported by Tessum et al. included 4250 deaths
from combination long-haul truck, 1550 from combination
short-haul truck, 1480 from diesel-fueled line-haul locomotives,
431 from diesel marine vessels, and 400 from commercial
aircraft.17 Liu et al. estimated ∼3200 and ∼900 PM2.5-related
mortalities from inter-regional freight truck and rail in the U.S.
for 2010.21 Popovich et al. estimated 1000 PM2.5-related
mortalities from freight diesel trains in the year 2019 based on
an estimate of 1500 deaths (monetized: $12 billion) by
Goodkind et al. for the year 2011 and a linear reduction in
PM2.5 and NOx emissions under Tier 4 requirements for
locomotives by U.S. EPA.22,23 Zhang et al. estimated 94,200
global premature deaths associated with PM2.5 exposure due to
international (83%) and domestic (17%) maritime shipping in
2015.24 Corbett et al. showed that using low-sulfur fuels in ships
can reduce PM2.5-related premature mortality by 34% globally.25

Several studies report climate impacts from freight modes.26

Evidence suggests that to the extent that shipping and e-
commerce companies consider environmental impacts in mode
selection, they typically focus on climate rather than health
impacts.27−30 Rail is considered a fuel-efficient mode choice that
emits less CO2 emissions per unit mass and distance traveled
than a truck,31 and thus, some reports have focused on truck-to-
rail conversion. For example, a 2013 report by the U.S.
Department of Energy (DOE) highlighted the potential of
truck-to-rail modal shift since rail serves many of the same routes
as truck and uses substantially less energy.32 Prior studies have
used differing assumptions to evaluate climate, air quality, and
health impacts of truck-to-rail modal shifts. Bickford et al. show
significant reduction in CO2 emissions and minor improvement
in net air quality (NO2 and primary PM2.5 concentrations) from
shifting freight from truck to rail in the upper Midwestern U.S,
though added that rail freight activity degrades air quality along
rail lines.33 Projecting emissions from freight truck and rail in the
U.S. through 2050, researchers reported that climate policy in
the form of carbon tax causes a shift from truck to rail, resulting
in reduction in long-term climate forcing,21 pollutant
emissions,34 and air quality-related net health impacts21,35 by
2050. Liu et al. estimated PM2.5-related mortality from freight
truck and rail in the U.S. for baseline and future policy scenarios
(compact urban form, carbon tax, and truck fleet maintenance);
their future scenarios (which modeled engines as being cleaner
in the future than today) show greater total damages from truck
than rail,21 although that study did not report normalized
damages by payload and distance traveled. Pan et al. find
regional differences in health impacts from a truck-to-rail
transition: locations where truck traffic decreases experience
health benefits and locations where rail freight increases
experience health disbenefits.35 The existing literature generally
investigates total emissions and impacts representing total

freight tonnage and distance traveled, rather than impacts by
mode for a given route and/or impacts per tonne-km (as is done
in this study).

Strategy documents36,37 and tools38,39 from transportation
agencies of the U.S. federal government highlight the need to
consider and address environmental injustice. Highly impacted
communities have identified transportation sources, including
diesel trucks, trains, airports, and shipping ports as important
contributors to air pollution disparities.40−48 Peer-reviewed
research on environmental justice (EJ) aspects of trans-
portation17,47−54 include the following: Patterson et al.
investigated improvements in air quality and environmental
equity from the use of diesel engine emission controls in heavy-
duty diesel trucks in Oakland, California (CA).52 In another
Oakland, CA-based study, urban transportation policies such as
freeway rerouting and boulevard replacement not only produced
substantial air quality benefits but also resulted in environmental
gentrification, with property value increases and the displace-
ment of long-time Black residents.53 National studies of a
transportation-related pollutant (NO2) report that the average
exposures are, for Hispanic, Black, and Asian people, higher than
the national average, and for White people are lower than the
national average.51,55,56 A study of many sectors of the economy
highlighted heavy-duty and off-highway vehicles as important
contributors to exposure disparities for PM2.5.17

In this work, we investigate the health and EJ impacts of PM2.5
and climate impacts of CO2 from inter-regional domestic freight
movement in the U.S. by four modes (road, rail, water, air) for
each route separately. These results advance the literature on
environmental impacts of freight by (1) comprehensively
comparing the four modes on a functionally equivalent basis
(i.e., 1 tonne traveling along a route between a specific origin and
destination), (2) comparing across three environmental impacts
(climate change, total health, and health disparity), and (3)
investigating, separately, more than 30,000 individual origin−
destination pairs.

2. METHODS
We investigate health, climate impacts, and exposure disparity
from inter-regional freight movement in the contiguous U.S.
Impacts are investigated separately for each selected route. This
work only considers impacts of exhaust emissions from the
vehicle operation and does not consider emissions from vehicle
manufacture or from nonexhaust systems (e.g., brake and tire
wear; road salt). We investigate four freight modes: combination
long-haul heavy-duty truck (HDT; referred to herein as “truck”),
freight rail, barge, and freight aircraft. Modes that are not
investigated are pipeline, multiple modes and mail, and other
and unknown�which, in total, account for ∼25% of annual
tonne-km and <10% of freight transport energy consumption.

2.1. Mode Emission Factors (EFs). EFs used here (Figures
S1, S2, and Table S1) represent the most current vehicle and fuel
properties for each mode. We use 2019 exhaust EFs from the
Greenhouse Gases, Regulated Emissions, and Energy Use in
Technologies (GREET) model for primary PM2.5, NOx, SO2,
VOC, and CO2 emissions (truck, rail, barge: diesel, 11 ppm
sulfur; air: jet fuel, 700 ppm (sensitivity analysis (Table S2): 11
ppm sulfur)).57 For NH3, EFs are from the MOVES model for
trucks,58 from EPA studies for rail and barge,59,60 and, based on
the 2017 NEI,7 are zero for aircraft. For truck, EFs are for long-
haul HDTs; in a sensitivity analysis, we employ short-haul HDT
EFs for all trips <322 km (Table S3). Four types of aircraft are
modeled: single aisle (SA), small twin aisle (STA), large twin
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aisle (LTA), and large quad (LQ), which are categorized based
on average payload and average flight distance (Table S4).
Aircraft EFs differ for landing and take-off (LTO) versus for
cruise; we further separated LTO emissions into five categories:
(1) taxi/idle-in, (2) taxi/idle-out, (3) approach/landing, (4)
take-off, and (5) climb-out (Tables S1 and S5).61,62 Units on
truck, rail, and barge EFs are kg/Mt-km, i.e., mass of pollution
emitted per payload mass per geodesic (i.e., on earth’s surface)
distance traveled. Units on aircraft EFs are, for cruise, kg per
megatonne payload per km great-circle distance traveled and, for
LTO, kg per megatonne payload.

2.2. Origin−Destination (O−D) Pairs. The Department of
Transportation’s Freight Analysis Framework (FAF, version 4,
for 2017)2,4 provides tonnage, tonne-km, and value of
commodity flows between 132 FAF regions (or “CFS areas”;
these are the O−D pairs studied here) by mode (Figure S3). We
studied inter-regional transport (but not intraregional trans-
port), which is composed of 16,293 O−D pairs (accounting for
84% of total tonne-km) for truck, 4875 pairs (99% of total
tonne-km) for rail, 732 pairs (97%) for water, and 7913 pairs
(98%) for air. Most (69, 97, 93, and 98% for truck, rail, water,
and air tonne-km, respectively) but not all inter-regional freight
transport is interstate.

2.3. Modal Routing. Geospatial data for road, waterways,
and airport runways are from the DOT’s National Trans-
portation Atlas Database (NTAD)63,64 (Figure S4); the rail
network is from the EPA’s 2014 NEI.65 Our analysis assumes the
shortest network route (for air: great-circle path) between origin
and destination, using ArcGIS network analyst. For air, we
employ an average cruise height of 11 km (∼36,000 ft).66,67 A
simplified LTO cycle is used at an airport based on the ICAO’s
LTO cycle62 (Figure S6). The LTO cycle is assumed to be
between 0 and 0.914 km (∼3000 feet) above ground level.9,62,68

All components of LTO are assumed along a straight line (i.e.,
along a physical extension of airport runways); slopes for climb-
out and approach (landing) paths are from the FAA’s
Aeronautical Information Manual: 200 feet per nautical mile
(ft/NM) or 2.1° for climb-out and 250 ft/NM or 2.6° for
approach.69 We employ actual runway orientations for each
specific airport studied; since a linear runway could potentially
involve climb-out and approach from either direction (e.g., a
north−south runway could be approached from the north or
south), at each airport, we model both directions and take the
average.

2.4. Air Quality Modeling. PM2.5 concentrations are
modeled using “Intervention Model for Air Pollution”
(InMAP)70 and the InMAP source−receptor matrix
(ISRM).23 InMAP (and the ISRM) predicts the change in
annual-average PM2.5 concentration attributable to a change in
annual emissions. Additional details about the model are
available elsewhere.23,71

The maximum height of sources modeled in the ISRM is
∼1000 m above ground level. We used the ISRM for sources
below 1000 m from the surface; for aircraft cruise emissions
(height above ground >1000 m), we use InMAP. InMAP/ISRM
output for each grid cell includes ground-level annual-average
concentrations (μg/m3) of primary PM2.5, particulate nitrate
(pNO3), particulate sulfate (pSO4), particulate ammonium
(pNH4), and secondary organic aerosols (SOAs).

The three main inputs to InMAP/ISRM are as follows:

(i) Annual emissions of VOC, NOx, NH3, SO2, and primary
PM2.5 for shortest road, rail, waterway, and air (LTO and

cruise) routes as line sources. The ground-level ISRM grid
is intersected with each route, and emissions (i.e.,
emissions per length × route-segment length in that
grid cell) are allocated to truck, rail, and barge routes.

(ii) Census data on population by block group for the year
2016 are taken from the 2018 American Community
Survey (ACS) (see Table S6).72 We use all age groups for
the main results and ≥35 years for sensitivity analysis.
Demographic information in the ACS is self-report in five
racial groups (White, Black, Asian, Native American, and
mixed/other) and two ethnic groups (Hispanic, non-
Hispanic). In our summaries, White people are
distinguished by ethnicity (non-Hispanic White and
Hispanic White); the remaining four racial groups
combine both ethnicities. Results further disaggregated
by race−ethnicity are in the Supporting Information (SI)
(MS Excel sheet data).

(iii) Baseline all-cause mortality data by county are for the year
2016 from the National Center for Health Statistics
(NCHS) Office of Analysis and Epidemiology (OAE) at
the Centers for Disease Control and Prevention
(CDC).73 Race-specific health impacts are calculated
using all-cause mortality rates for the entire population of
all age groups (and ≥35 years for sensitivity analysis).

2.5. Health Impact Quantification. We quantify health
impacts attributable to long-term PM2.5 exposure using a
standard log-linear concentration−response (C-R) function
for all-cause mortality from the American Cancer Society (ACS)
re-analysis.74 Here, a 10-μg/m3 change in PM2.5 was estimated
to cause a 7.8% change in mortality rates. This value is consistent
with a recent meta-analysis estimate suggesting an 8% change
per 10 μg/m3.6

2.6. Calculations and Metrics. We run InMAP/ISRM for
each mode and O−D pair (>30,000 runs) nationally and
disaggregated by urban/rural impact location. Impacts per O−D
pair are linearly scaled to represent (real) FAF v4 tonne-km by
multiplying with the ratio of actual FAF v4 tonne-km to the
tonne-km estimated using the shortest route assumption. (For
all modes, the total distance estimated using the shortest route
assumption is approximately near to the total distance from the
FAF v4 data, suggesting that the shortest-route assumption is
reasonable; see Table S7.) We investigate health impacts in
terms of total damages and disparities in damages (i.e., the
difference in risk for the most-exposed racial−ethnic group
versus for the overall population average). For comparing across
modes, we use both simple arithmetic mean (“simple average”)
and tonnage-weighted mean (“weighted average”) across O−D
pairs. One advantage of using both metrics is that the amount of
freight per mode or O−D pair may change over time; this shift
would directly impact the weighted averages but not the simple
average.

To estimate monetary damages (year 2020 dollars), we first
use a social cost of CO2 (SCC) of $53.53 per tonne CO2
(corresponding to a 3% discount rate) from the 2017 National
Academy of Sciences (NAS) report75 and a value of statistical
life (VSL) of $9.7 million derived by the U.S. EPA as the mean of
a Weibull distribution from 26 studies.76 Next, as a sensitivity
analysis, we consider the impact of alternative values for SCC
and VSL. Specifically, for SCC, we employ the four values
($/tCO2) of 15, 54, 79, and 157 given in the NAS report, and for
VSL, we separately employ results from each of the 26 studies
documented in the U.S. EPA report.
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3. RESULTS
3.1. Health, Climate, and Health Risk Gap from Each

O−D Pair by Mode. Premature deaths, CO2 emissions, and
health risk gap per megatonne are estimated for each of 16,293
(truck), 4875 (rail), 732 (barge), and 7913 (aircraft) O−D pairs
(Figure S8). The median (interquartile range [IQR]) value for
deaths per megatonne is 0.5 (0.3−0.8) for truck, 0.7 (0.5−1.1)
for rail, 0.4 (0.2−0.7) for barge, and 1.1 (0.8−1.4) for aircraft.
Median (IQR) of CO2 emissions per tonne is 107 (65−166) for
truck, 23 (14−36) for rail, 21 (10−35) for barge, and 772 (581−
1009) for aircraft. Median (IQR) of the health risk gap (×10−5)
per megatonne is 6 (4−9) for truck, 9 (5−14) rail, 5 (3−8)
barge, and 12 (7−31) aircraft. Examples of O−D pairs with the
largest deaths per megatonne include Los Angeles (CA) to
Boston (MA), San Diego (CA) to Boston, and Los Angeles to
Hartford (CT) for truck; Los Angeles to New York City (NY);
New York to San Francisco (CA); and Philadelphia (PA) to Los
Angeles for rail; Pittsburgh to Remainder of Ohio, Pittsburg to
New York (NY), and Kansas City (MO) to Philadelphia for
barge; and Los Angeles to Maine, Houston (TX) to San Diego
(CA) for aircraft. Examples of O−D pairs with the largest health
disparity include Arkansas to Remainder of CA, Memphis (TN)
to Remainder of CA, and Arkansas to Las Vegas (NV); Kansas
City to Remainder of Louisiana, Arkansas to Sacramento, CA,
and Mobile, Alabama (AL) to Hartford, CT for rail; Tulsa,
Oklahoma (OK) to Arkansas, Mississippi, and Savannah (GA)
for barge; and Los Angeles to Maine, San Francisco, and Fresno
(CA) for aircraft. Results for all O−D pairs by mode are
provided in the SI (as MS Excel sheet data).

Impact per megatonne increases for a longer travel distance
(Figure S9), with two exceptions: barge for large distances
(>3001 km) and aircraft. The former result reflects open-ocean
routes crossing the Panama Canal, outside the InMAP (and,
U.S. Census) domain. The latter result reflects, for aircraft, (1)
more efficient, lower-emission engines used for larger distances
and (2) most modeled impacts for aircraft are near-airport rather
than during cruising. Specifically, we estimate that total average

aircraft damages are composed of 63% runway emissions (taxi-
in, taxi-out, and take-off), climb-out 23%, approach 14%, and
cruising ∼0% (reflecting that cruising emissions occur relatively
far from population centers).

3.2. Pairwise Comparison between Modes for Each O−
D Pair and Averages. There are 4858 common O−D pairs
that carry freight by both truck and rail (truck−rail),
representing 66 and 99.6% of total truck and rail tonne-km,
respectively; 731 truck-barge O−D pairs (12 and 99.9%,
respectively, of total truck and barge tonne-km); 490 rail−
barge O−D pairs (6 and 68% of total rail and barge tonne-km);
7906 air−truck O−D pairs (91 and 61% of total air and truck
tonne-km); 2594 air−rail O−D pairs (29 and 44% of total air
and rail tonne-km); and 305 air−barge O−D pairs (2 and 41% of
total air and barge tonne-km). There are 214 O−D pairs
common between all four modes, carrying 6, 3, 28, and 1%,
respectively, of total truck, rail, barge, and aircraft tonne-km.
Intercomparisons by mode (Figure 1) reflect only the O−D
pairs, where these two modes operate.

Considering the separate pairwise mode intercomparisons
(Figure 1A, lower-left, e.g., 4858 O−D pairs for the rail−truck
plot), PM2.5-related health impacts are greater for rail than truck
for almost all (99%) of the routes and are larger for barge than
truck for a little over half (55%) of the routes. Rail has greater
impacts than barge for 81% of the routes; aircraft has greater
impacts than truck, rail, and barge for 82, 74, and 93% of the
routes, respectively. In pairwise comparison for aircraft, certain
data points can be seen as a separate patch with higher-than-
average health impacts (>∼2.4 deaths per megatonne); those
are routes that start or end with Los Angeles International
Airport. Average unweighted (tonnage-weighted) aircraft health
impacts are 1.9 (4.6), 1.4 (2.2), and 2.4 (5.2) times larger than
truck, rail, and barge, respectively. Average unweighted
(tonnage-weighted) rail health impacts are 1.6 (3.2) and 1.5
(2.0) times greater than truck and barge, respectively. Average
(tonnage-weighted) health impacts from barge are slightly
greater than truck (1.1 (1.3)). We observe that if routes are

Figure 1. Pairwise health, climate, and exposure disparity impacts from each origin−destination (O−D) pair by mode. Each dot in the scatterplots
represents one O−D pair. (A) Deaths per megatonne payload from PM2.5, (B) carbon dioxide (CO2) emissions in kg per megatonne payload, (C)
health risk gap between most-exposed racial−ethnic group and population average (deaths per 100,000 people per megatonne payload). In panels
(A)−(C), the lower six plots (background color: white) show all O−D pairs in common between the two modes; the upper six plots (background
color: yellow) show the n = 214 O−D pairs that are common across all four modes. The blue dashed line signifies y = x. Percentages in each plot show
percent of data points above y = x line for a mode. For example, 99% of the n = 4858 truck−rail O−D pairs have greater health impacts from rail than
truck. ZSA (ZWA) represents the ratio of simple average (2017 tonnage-weighted average) of the mode with a greater percentage to the mode with a
lower percentage. For example, for truck−rail O−D pairs, ZSA = 1.6 means average deaths per megatonne for rail are 1.6 times of truck and ZWA = 3.2
means tonnage-weighted average deaths per megatonne for rail is 3.2 times of truck.
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weighted by 2017 tonnage (i.e., reflecting the state of freight in a
recent year), average (in Figure 1: “ZWA”) impacts are larger for
all modes than if routes carry equal weightage (“ZSA”). This
result reflects that more freight weight travels on higher-impact
routes than on lower-impact routes.

The simultaneous intercomparisons across all modes (i.e.,
Figure 1A upper-right six plots; 214 O−D pairs for all six plots)
yield broadly similar order of pairwise comparison as for the
separate pairwise comparisons (i.e., Figure 1A lower-left six
plots). Analogous pairwise comparisons for each PM2.5 chemical
species (Figures S10−S14) reveal, for example, that primary
PM2.5 impacts from aircraft are lower than those from truck, rail,
and barge for most (>50%) of the O−D pairs, and pSO4 and
SOA impacts from truck are greater than those from rail and
barge for >90% of the O−D pairs.

Considering CO2 emissions (Figure 1B), truck has greater
impacts than rail and barge for 100 and 98% of the routes,
respectively; barge has greater impacts than rail for 59% of the
routes; aircraft has greater impacts than truck, rail, and barge for
100% of the routes. Average unweighted (tonnage-weighted)
CO2 emissions for aircraft are 6 (17), 25 (34), and 21 (42) times
those for truck, rail, and barge, respectively. Average unweighted
(tonnage-weighted) CO2 emissions per megatonne for truck are
3.9 (1.7) and 2.9 (2.6) times that for rail and barge, respectively.
Average unweighted CO2 emissions from barge are 40% greater
than rail but 20% lower than rail when weighted by tonnage.
Figure 1 presents “Z” values: the ratio of unweighted (Zsa) or
weighted (Zwa) average impact from one mode to another mode.
(The mode with impacts greater than the other mode for >50%
of the routes comes first in the ratio. Z is usually but not always
>1; see Figure 1.) Z values are generally larger for the aircraft
pairs than for the other pairs, reflecting aircraft’s comparatively
greater impacts. In many cases (e.g., deaths per megatonne for
air−truck), Z values are larger when weighted than when
unweighted, indicating that more freight travels on routes where
the difference in impacts is greater (e.g., here, greater for air than
for truck) than on routes where the difference in impacts is
lesser. For reverse cases with Z (e.g., CO2 impacts for truck−
rail), the reverse holds (i.e., more freight is shipped on routes
where the difference is lower than where the difference is
higher). The large-emission outliers in Figure 1B for barge (>75

kg CO2 emissions per ton) reflect long routes that travel through
the Panama Canal. In the scatter plot (Figure 1B), aircraft
impacts appear “lumped” because the CO2 emission factor is a
function of aircraft type. Modal comparison for 214 O−D pairs
(Figure 1B upper-right panels) show similar conclusions for
weighted and for unweighted comparisons.

For exposure disparity (Figure 1C lower-left), we find that rail
has a greater disparity than truck for 94% of the routes, barge has
a greater disparity than truck for 55% of the routes, rail has a
greater disparity than barge for 76% of the routes, and aircraft
has a greater disparity than truck, rail, and barge for 78, 73, and
84% of the respective common routes. Average unweighted
(tonnage-weighted) aircraft exposure disparity is 3.3 (7.6), 2.6
(4.4), and 5.0 (10.8) times larger than truck, rail, and barge,
respectively. Average unweighted (tonnage-weighted) rail
exposure disparity is 1.6 (2.8) and 1.9 (2.2) times larger than
truck and barge, respectively. Barge and truck have the lowest
exposure disparity among nonaircraft modes with truck slightly
higher, 1.06 (1.05) times greater than barge.

To further explore mode intercomparisons, we calculated
average impacts across O−D pairs (see Figure 2; these data
correspond to the lower-left portions of Figure 1A−C), using
unweighted average (Figure 2, shaded circles) and tonnage-
weighted average (open circles). Each plot in Figure 2 presents
all three impacts (CO2 [x-axis], total population mortality [y-
axis], and disparity in mortality [icon-size]). For the separate
pairwise comparisons (Figure 2A), aircraft has the largest
average and tonnage-weighted health, climate, and exposure
disparity impacts per megatonne. Among nonaircraft modes, rail
has the largest average and tonnage-weighted health impacts,
and exposure disparity, and lowest CO2 emissions; among
nonaircraft modes, truck has the largest average and tonnage-
weighted CO2 emissions and the lowest average and tonnage-
weighted health impacts. When restricting to the 214 routes with
all four modes (Figure 2B), conclusions are similar, with the
exception that, if weighted by tonnage, rail has larger CO2
emissions impact than barge. An investigation of the same
comparisons, segregated by travel distance (Figure S15), reveals
the same rank-order of health impacts between modes at all
distance bands. Health impacts per tonne-km (Figure S16)
reveals the same rank-order as Figure 2 except for truck and

Figure 2. Pairwise health, climate, and exposure disparity impacts, averaged across origin−destination (O−D) pairs by mode. Simple average (shaded
icons) and tonnage-weighted average (unshaded icons) for (A) all O−D pairs in common between the two modes and (B) the 214 O−D pairs that are
common across all four modes. Icon size (area) is proportional to health risk gap (deaths per 100,000 people per megatonne); “n” is the number of O−
D pairs.
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barge (truck > barge; though the difference is modest, ZSA =
1.3). Disaggregating the unweighted impacts by chemical
species (Figures S17 and S18), particulate nitrate accounts for
most (>75%) of damages for all modes. Particulate sulfate
contributes 13% for aircraft and <2% for the other modes.
3.2.1. National Estimates. Using U.S. DOT’s FAF data to

scale from per-tonne-km to total impacts (Table S8), we
estimate total premature deaths and CO2 emissions from each
mode in the year 2017 at 660 premature deaths and 124 billion
kg of CO2 from truck, 663 premature deaths and 23 billion kg of
CO2 from rail, 65 premature deaths and 3 billion kg of CO2 from
barge, and 2 premature deaths and 1 billion kg of CO2 from
aircraft. A sensitivity analysis based only on people aged ≥35
years yields similar results (<8% difference). Total deaths by
mode differ by the distance between origin and destination.
Deaths from truck are the largest for shorter distances (<898
km) and deaths from rail are the largest for longer distances
(1648−3001 km) (Figure S19).

3.3. Health Impacts in Urban and Rural Areas and
Impacts by Race−Ethnicity. We find that truck, rail, and
barge have modestly larger total health impacts to rural
populations than to urban populations (see Table 1), reflecting
the major portion of highways, railway lines, and navigable
waterways for inter-regional freight transportation travel
through rural areas (partially counterbalanced by the larger
number of people in urban than in rural areas). Aircraft impacts
are greater for urban than for rural populations, in part reflecting
that most impacts are near-airport and most airports are near
urban centers. Based on the portion of urban-impact routes
(right-most column, Table 1), overall average findings given
here apply to most but not all O−D pairs.

Among racial−ethnic groups considered here, the most-
impacted group (risk per 100,000 people) is White non-
Hispanic from all freight movement (Figure 3A). This finding
reflects, in part, rural truck travel as a major source of emissions,
and these rural areas are predominantly White; the most-
impacted group to rural populations by truck and rail is non-
Hispanic White (Figure 3B). If considering only impacts to
urban populations, the most-impacted group (overall (Figure
3A), and separately for truck, rail, and barge (Figure 3B)) is
Black people. The most-impacted group for barges is Black
people (for overall, urban, and rural populations) and for aircraft
is the mixed/other groups (overall and urban populations). This
paper considers inter-regional freight, rather than within-region
or within-urban freight; differences between the “urban” and
“rural” results in Figure 3 suggest that findings for those other

conditions (e.g., within-urban freight) would likely differ from
results presented here.

3.4. Monetized Damages. Climate and health are
fundamentally different impacts. To combine or compare
them directly, they first must be put onto a single scale. A
common way to do so is by converting to monetized damages.
This conversion is necessarily imperfect and can be
controversial, reflecting the many assumptions required and
what is lost by converting impacts into monetary terms. Here, we
do that conversion and comparison, recognizing the imperfec-
tions, in hopes that the outputs lend insight into the relative
impacts to health versus climate.

As an obvious omission, we have not monetized the health
disparities, i.e., we have not attempted to place a monetary value
on the disparities themselves. (Monetizing disparities is different
from disparities in monetization. The former refers to placing a
value on the disparities; the latter refers to differences among
groups in their monetized impacts.) Methods for monetizing
impacts are common for climate and health damages but
currently are not for health disparities.

Total average monetized damages are the largest from aircraft
followed by truck and rail and lowest from barge (Figure 4A).
Damages from aircraft are 4, 5, and 7 times those from truck, rail,
and barge, respectively; those from truck are slightly (13%)
greater than rail and ∼39% greater than barge; and those from
rail are ∼33% greater than barge. Considering damages from all
routes for a mode (Figure 4B) rather than only common routes
between modes (Figure 4A), rail and barge have greater health-
related monetized damages (8 and 4 million USD per
megatonne, respectively) than climate-related damages (1 and
1 million USD per megatonne, respectively). For aircraft,
monetized damages for climate are 4 times those for health (42
versus 11 million USD per megatonne). For truck, climate-
related damages are slightly greater than health-related
monetized damages (6.4 versus 5.6 million USD per
megatonne).

Sensitivity analyses (Figure 4C) reveal that, while total
damages depend on SCC and VSL, pairwise comparisons
between modes (i.e., determination of which mode has higher
impact) are relatively robust to variations in SCC and VSL. The
one exception is truck−rail: impacts are slightly higher for truck
than for rail in the base case (see Figure 4A,C), however, in the
case of comparatively small SCC and large VSL (Figure 4C), the
reverse holds. The reason for this sensitivity is that estimated
damages are larger for trucks than for rail for climate impacts,
and the reverse for PM2.5 air pollution. In sensitivity analyses
considering each mode separately (Figure S20), for trucks (but
not for the other modes), impacts from climate versus from
health are nearly equal; therefore, the relative impacts from
climate versus from health are more sensitive to the choice of
SCC and VSL for truck than for the other modes.

4. DISCUSSION
This work quantifies and compares health and climate impacts
and exposure disparity from inter-regional transport of a unit
mass of freight payload from origin to destination by four
different modes: truck, rail, barge, and aircraft.

We find that aircraft poses the greatest health and climate
damages among all four modes. Among the nonaircraft modes,
rail has the greatest health impacts and lowest climate impacts
per megatonne payload. Truck has the lowest health impacts
among all modes and greatest climate impacts among the

Table 1. Health Impacts for Urban versus Rural Populations

deaths per megatonnea b

mode
n (number of
O−D pairs) urban rural combined

percentage urban-
impact routes (%)b

truck 16,293 0.27 0.30 0.57 32
rail 4875 0.37 0.42 0.79 32
barge 732 0.19 0.26 0.45 19
aircraft 7913 0.72 0.40 1.11 85

aOverall average for that mode (“combined”), subdivided into
impacts to urban and rural populations. Values reflect, where the
impacts occur (urban versus rural), attributable to total emissions.
Numbers given here might not sum because of rounding. bPercent of
O−D pairs for which health impacts are greater in urban than in rural
areas.
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nonaircraft modes. Barge has slightly greater health impacts than

truck and greater climate damages than rail.

One policy implication is that efforts from shipping
companies and policymakers to incentivize rail due to its greater
efficiency and lower carbon emissions per ton-mile should also

Figure 3. PM2.5 health impacts by the racial−ethnic group in the whole U.S., urban, and rural areas (A) from all freight movement and (B) by mode.
Dashed line indicates the population average.

Figure 4. (A) Pairwise comparison of average monetized damages from PM2.5 and CO2 emissions in million USD per megatonne payload by
employing central-tendency values (year 2020 dollars) for value of a statistical life (VSL; $9.7 million) and social cost of carbon (SCC; $54/tC); (B)
average monetized health and climate damages in million USD per megatonne from all routes for a mode; (C) sensitivity of results in panel (A) to VSL
($1.1−25.8 million) and SCC ($15, $54, $79, $157/tC), with 1:1 line (black-dashed) and base case value (black multiplication sign).
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consider health impacts from rail. Truck has the largest tonnage
and tonne-km among all modes; hence, policymakers tend to
consider truck as worst for human health, whereas we find that
rail has the largest health impacts per unit tonnage, only ∼30%
lower than health impacts from aircraft. A second policy
implication is the important benefits from electrification of inter-
regional (and other) freight transportation, combined with low-
emission or renewable electricity generation.22,77 We estimate
that annual damages from freight movement (combined, across
the four modes) are ∼1400 premature deaths (monetized: $13
billion), 150 billion kg CO2 (monetized: $8 billion), and health
disparity of 0.06 deaths per 100,000 people (risks are ∼13%
greater for the most-exposed race−ethnicity than the
population-average). (These values may be underestimates; as
noted in the O−D pairs Section 2, we modeled 84−98% of
tonne-km by mode.) For truck and rail tradeoffs between
climate and health impacts as well as lowering the exposure
disparity, vehicle electrification is the key solution. A third
implication is that the damages and disparities (and, potentially,
the solutions) differ between inter-regional versus within-
regional transportation. Figure 3 (above) reflects damages to
urban and rural populations attributable to inter-region freight;
our inputs and results do not investigate within-regional or
within-urban freight.

The health and exposure disparities by race−ethnicity in part
reflect racism in urban planning, leading to the (on average)
greater proximity of freight transportation-related infrastructure
to communities where people of color live. Thus, as a fourth
policy implication, policymakers and infrastructure planners
should, at a minimum, structure future freight infrastructure
such that it does not privilege nor disproportionately affect one
demographic group over the other. In addition to not worsening
the problem, it is also important to address existing disparities�
to actively work to eliminate the observed exposure disparities.

Health impacts from PM2.5 are dominated by NOx emissions
for all modes. This finding complements previous findings23 and
emphasizes the benefits of lowering NOx emissions from all
freight modes, especially aircraft. The rail−truck intercompar-
ison reflects in part the higher NOx and PM2.5 emission factors
(mg per tonne-km) for rail than for truck (NOx: 184 versus 124;
PM2.5: 5.2 versus 1.4).

This work is the first to explore exposure disparity between
different racial−ethnic groups from inter-regional freight
transportation. We find that impacts from truck and rail are
greatest for non-Hispanic White people, impacts from barge are
greatest for Black people, and impacts from aircraft are greatest
for the mixed/other groups. Health impacts and disparity among
groups differ in urban versus rural areas. These findings add to
ongoing efforts of understanding and addressing environmental
inequality and injustice from transportation51−53,78−80 by
reflecting on disparities from existing inter-regional freight
flows and infrastructure. Results here do not explicitly
investigate local impacts, e.g., from warehouses or intermodal
facilities.81

Health damages from aircraft only include the LTO phase
because we find that contribution of cruise emissions is
negligible to ground-level PM2.5 impacts, a conclusion from a
sample of 20 routes that are representative of the U.S.
geography. In contrast, findings from Barrett et al.9 show that
globally 80% of the total PM2.5-related premature mortalities per
year from aircraft are attributable to cruise emissions and only
20% to LTO emissions (for U.S., 84% from cruise and 16% from
LTO). They likely underestimate near-source LTO emissions

owing to the low resolution of the global atmospheric model
used. Other model parameters too (e.g., rates of vertical mixing)
may also play a role in explaining differences among these
estimates. Yim et al.14 estimated 57% of aircraft impacts in North
America are from cruise and 43% from LTO emissions. That
paper used increased regional model resolution relative to
Barrett et al.9 and found a greater share of LTO impacts. Those
aircraft studies investigated all travel types and routes (including
passenger travel); our estimates are only for freight movement
along the routes investigated.

Our primary results use conventional jet fuel (700 ppm S) for
aircraft, reflecting current practice. In sensitivity analyses, we
find that shifting to ultra-low-sulfur (ULS) fuel (11 ppm S)82

yields only modest (∼9%) decreases in aircraft PM2.5 health
impacts (Figure S21). While particulate sulfate is reduced
dramatically by the shift to ULS fuel (to ∼2% of the
conventional fuel emissions), direct PM2.5 emissions increase
(approximately double), and particle nitrate, which dominates
aircraft PM2.5 health impacts, remains unchanged. The net result
is that with ULS fuel, aircraft still has higher impacts than rail,
barge, and truck, though the difference between the two is
lowered by 18−31% for ULS fuel compared to conventional fuel
(Table S9).

Aircraft impacts presented here are for minimum slopes of
approach and climb-out. In sensitivity analyses, total PM2.5
health impacts from aircraft are not strongly sensitive to
approach and climb-out slope (Figure S22). Truck emission
factors employed here are for long-haul heavy-duty trucks. In
sensitivity analyses (reflecting assumptions in the MOVES
model),83 health impacts for routes shorter than 322 km
decrease by 58% on average (range: 51−61%) if we assume
short-haul rather than long-haul trucks. Routes <322 km carry
19% of total truck tonne-km. For ship routes through the
Panama Canal, the focus here on impacts in the U.S. (e.g., use of
U.S. Census data and the U.S.-based ISRM grid) results in non-
U.S. impacts being excluded (Figure S23). Sensitivity analyses
suggest that the non-U.S. portion (i.e., the 5642 km that
Panama-bound ships spend outside the ISRM domain; see
Figure S23) may account for 42−78% of the total impacts for
those Panama journeys depending on the route (Table S10).

Future research could usefully explore the impact on results of
(1) alternative models and modeling approaches, (2) grid cell
size,84,85 (3) alternative concentration−response functions (e.g.,
a supralinear C−R) or allowing the C−R to vary by source,
geography, or chemical components,86−89 (4) health impacts of
tropospheric (i.e., ground level) ozone formation from NOx and
VOC emissions from transportation modes,19,90 (5) improved
modeling of routes between origin and destination using
additional parameters such as travel time, congestion, and
road conditions, and (6) emission factors that are characterized
by route conditions and include non-tailpipe emissions, e.g., tire
emissions from wear and tear on road.91 Health impacts of
ozone from transportation emissions have been previously
modeled for the years 2005, 2011, and 2018 and are estimated to
be much smaller than PM2.5-related impacts.19 However, recent
evidence also suggest that ozone and NO2-related mortalities
might be seriously underestimated.90 This study employs the
mortality hazard ratio of 1.078 for all-cause mortality from the
American Cancer Society (ACS) re-analysis study74 to estimate
premature deaths using a linear C−R function with no
threshold. Alternative mortality hazard ratios exist, such as
Lepeule et al. (i.e., reanalysis of the Harvard Six Cities (H6C)
study) [1.14, 95% CI = 1.07−1.22],92 Vodonos et al. [1.129,
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95% CI = 1.109−1.150],93 and Pope et al. [1.12, 95% CI =
1.08−1.15],94 indicating that mortality impacts estimated in this
work may be underestimated. Changing the C−R could modify
the calculated health impacts (the absolute results) without
changing the comparisons across modes (relative results).
Evaluation of InMAP compared to other models such as
EASIUR, AP3, COBRA, and WRF-Chem is presented else-
where.18,70,95

Available projections from the U.S. Department of Trans-
portation1 and the U.S. Energy Information Agency31 predict
freight-shipment increases in coming decades, especially for
aircraft. Emission reductions would be needed if total emissions
from freight transport are to stay constant or not increase. With
regulatory efforts, railroad emissions may come down in the
future.96 As shown here, increases in aircraft-based transport will
have especially large environmental impacts, relative to the three
other modes. Future work on this topic could usefully explore
impacts from within-region freight transport; impacts from
vehicle electrification (especially for trains and trucks,
particularly the urban portion); and approaches for accounting
for environmental disparities in risk, in decision-making.
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