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ABSTRACT
The prevalence of anxiety and depression soared following the COVID-19 pandemic. To effectively 
treat these conditions, a comprehensive understanding of all etiological factors is needed. This 
study investigated fecal microbial features associated with mental health outcomes (symptoms of 
anxiety, depression, or posttraumatic stress disorder (PTSD)) in a Spanish cohort in the aftermath of 
the COVID-19 pandemic. Microbial communities from stool samples were profiled in 198 individuals 
who completed validated, self-report questionnaires. 16S ribosomal RNA gene V3-4 amplicon 
sequencing was performed. Microbial diversity and community structure were analyzed, together 
with relative taxonomic abundance. In our cohort of N=198, 17.17% reported depressive symptoms, 
37.37% state anxiety symptoms, 40.90% trait anxiety symptoms, and 8.08% PTSD symptoms, with 
high levels of comorbidity. Individuals with trait anxiety had lower Simpson’s diversity. 
Fusicatenibacter saccharivorans was reduced in individuals with comorbid PTSD + depression + 
state and trait anxiety symptoms, whilst an expansion of Proteobacteria and depletion of 
Synergistetes phyla were noted in individuals with depressive symptoms. The relative abundance 
of Anaerostipes was positively correlated with childhood trauma, and higher levels of Turicibacter 
sanguinis and lower levels of Lentisphaerae were found in individuals who experienced life- 
threatening traumas. COVID-19 infection and vaccination influenced the overall microbial composi-
tion and were associated with distinct relative taxonomic abundance profiles. These findings will 
help lay the foundation for future studies to identify microbial role players in symptoms of anxiety, 
depression, and PTSD and provide future therapeutic targets to improve mental health outcomes.
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Introduction

Depression and anxiety disorders are among the 
most prevalent neuropsychiatric disorders, with an 
estimated 322 million people living with depression 
and 264 million living with an anxiety disorder 
(including PTSD).1 PTSD, currently classified as 
a trauma- and stress-related disorder, can develop 
following exposure to a potentially traumatic event.2 

The global prevalence of stress, anxiety, depression, 
and PTSD soared during the COVID-19 
pandemic.3,4 The burden of these diseases is further 
compounded by non-response and non-adherence 
to the available treatments.5,6 Many patients with 
depression experience relapse,7 and each successive 
episode is more severe and increases resistance to 

treatment.8 More than one-third of patients with 
major depressive disorder (MDD) have an inade-
quate or partial response to initial treatment.9 

Adherence to psychiatric treatment is further hin-
dered by the long period until the onset of a clear 
clinical effect as well as the side-effect profiles of the 
medication.5 Furthermore, drug development for 
psychiatric conditions has been sluggish. These lim-
itations in the treatment of neuropsychiatric disor-
ders highlight the need to identify all role players in 
these complex conditions, to discover novel thera-
peutic targets to lighten the burden of disease.

The microbes we harbor play a vital part in health 
and disease.10 The gut-microbiota-brain axis 
describes the complex, tridirectional communication 
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system between the gut, its microbiota, and the cen-
tral nervous system;11 the gut microbiota can influ-
ence central nervous system functioning and 
behavior, whereas, stress and emotions can elicit 
effects on the microbiota. The tridirectional interac-
tions within this axis modulate neural, hormonal, 
and immune responses,12 as well as intestinal and 
blood–brain barrier integrity.13 The composition of 
the gut microbiome is amenable to change, and 
several factors can alter its composition, including 
age,14 diet,15 exercise,16 the environment,17 cohabita-
tion (more so than genetic relatedness), 17 medica-
tion use,17 disease,18,19 childhood living conditions 
and exposures,17 and traumatic life events.20

Clinical data on the gut microbiome in mental 
health disorders are dominated by studies focused 
on depressive cohorts, whilst data for anxiety and 
stress-related disorders are somewhat limited. The 
systematic reviews by Sanada et al., 21 and Simpson 
et al., 22 provide detailed information on gut micro-
biome findings in anxious and depressed cohorts 
and highlight consistent, but also conflicting 
results. Consolidation of findings is hampered by 
differences in methodology (including diagnostic 
tools, sample collection and preservation methods, 
sequencing methodologies, reference databases, 
and analysis approaches), small sample sizes, and 
various confounding factors (psychiatric and other 
prescription medication use, stool consistency, and 
diet), 23,24 which many studies do not incorporate 
into the analyses.

This study aimed to contribute to the current 
body of evidence by investigating the fecal micro-
biome in a naturalistic Spanish cohort of indivi-
duals with symptoms of anxiety, depression, and 
PTSD in the context of the recent COVID-19 pan-
demic as well as previous traumatic experiences.

Results

Clinical and demographic characteristics

In the total cohort of 198 individuals, 92 suffered 
from at least one or a combination of the psychiatric 
symptoms we assessed (depression, state, and trait 
anxiety, and PTSD), and 106 were mentally healthy 
controls, henceforth referred to as healthy controls 
(individuals who did not meet the cutoff criteria 
described for depression, state and trait anxiety, 

and PTSD). Of the 92 individuals with psychiatric 
symptoms, 32 presented with depressive symptoms 
(based on the Center for Epidemiologic Studies 
Depression [CESD] scores), 74 with state anxiety 
symptoms, 81 with trait anxiety symptoms (based 
on state-trait anxiety and depression inventory 
[STAI] scores), and 16 with symptoms of PTSD 
(based on the PTSD Checklist for DSM-5 with Life 
Events Checklist for the Diagnostic and Statistical 
Manual of Mental Disorders, Fifth Edition [PCL-5] 
scores). As expected, comorbidity was common with 
psychiatric symptoms;25 of the 63 individuals who 
had both state and trait anxiety symptoms, 28 also 
had depressive symptoms, 14 had comorbid PTSD 
symptoms and eight had PTSD and depressive 
symptoms. Of the 32 individuals who had depressive 
symptoms, all had trait anxiety symptoms, while 16 
also had symptoms of PTSD (Figure 1a-d illustrate 
the comorbidities for each symptom cohort).

For the demographic and clinical data and sub-
sequent analysis, specific sub-groups were defined. 
Symptom cohorts consisted of participants who met 
the cutoff criteria for the self-report questionnaires 
that evaluated depressive, state anxiety, trait anxi-
ety, and PTSD symptoms, therefore four symptom 
cohorts. Symptom control cohorts consisted of par-
ticipants with symptom scores below the cutoff 
criteria for each of the separate outcome measures, 
therefore, depression controls [CESD score ≤15, 
irrespective of the other scores], state anxiety con-
trols [STAI-S scores < 41, irrespective of the other 
scores], trait anxiety controls [STAI-T scores < 45, 
irrespective of the other scores], and PTSD controls 
[PCL-5 score < 33, irrespective of the other scores]). 
The healthy control cohort consisted of participants 
with good mental health, who did not meet the 
cutoff criteria described for any of the outcome 
measures, namely depression, state and trait anxi-
ety, and PTSD (CESD, STAI-S, STAI-T, and PCL-5 
scores all below the cutoff). (Tables 1-4).

Common variables that differed between all 
symptom groups and respective control groups 
included higher use of psychiatric medication, 
higher levels of childhood trauma, lower quality of 
life, and higher levels of other psychiatric symp-
toms. Those with state anxiety reported higher 
levels of smoking (Table 2) and those with trait 
anxiety and PTSD reported a more recent 
COVID-19 positive test compared to symptom 
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controls (Tables 3 and 4). Participants with PTSD 
symptoms reported lower psychological quality of 
life compared to those without PTSD symptoms 
(Table 4).

Lower diversity in individuals with symptoms of trait 
anxiety

Alpha diversity, as measured by Simpson’s diversity 
index, was lower in individuals with trait anxiety 
symptoms (median [mdn] = 0.9) compared to 
those without (mdn = 0.92) (Wilcoxon rank-sum 
tests, p = 0.016, r = 0.19, n = 198, Figure 2a) and 
compared to healthy controls (mdn = 0.92) 
(Wilcoxon rank-sum tests, p = 0.01, r = 0.17, n = 
198; Figure 2b).

There were no significant differences in genus- 
or phylum-level gut microbiome community com-
position (measured by Aitchison distance, 
an Euclidean distance on clr-transformed data), 
for any of the mental health symptoms of interest 
compared to their respective control groups. In 
addition, no differences in genus- or phylum-level 

gut microbiome community composition were 
noted based on the scores of the tests that evaluate 
these psychiatric symptoms. When evaluating the 
effect of other metadata variables on the ordination 
(using the Capscale (CAP) function and 
a permutational ANOVA), we found that age 
(CAP, q = 0.01, R2 = 0.005, n = 198), sex (CAP, 
q = 0.01, R2 = 0.009, n = 198), a previous COVID- 
19 infection (CAP, q = 0.02, R2 = 0.0043, n = 198), 
a COVID-19 vaccination (CAP, q = 0.01, R2 = 
0.005, n = 198), the Bristol stool scale (BSS) (CAP, 
q = 0.01, R2 = 0.016, n = 198), ever being diagnosed 
with inflammatory bowel disease [IBD], irritable 
bowel syndrome [IBS], or Celiac disease [CeD] 
(IBD/IBS/CeD) (CAP, q = 0.07, R2 =0.002, n = 
198), a current diagnosis of IBD/IBS/CeD (CAP, q 
= 0.08, R2 =0.002, n = 198), and alcohol intake in 
the last 2 weeks (CAP, q = 0.07, R2 =0.003, n = 198) 
influenced the genus-level fecal community com-
position (Figure 3, orange bars).

We used the ordiR2step function (a stepwise 
model selection using permutation tests) to test 
whether a group of mental health-related 

Figure 1. Sankey diagrams to illustrate the comorbid states in (a) the depressive symptom cohort, (b) state anxiety symptom cohort, (c) 
trait anxiety symptom cohort and (d) the PTSD symptom cohort.
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variables had an effect on the ordination, and 
found that CESD total score (ANOVA, p = 0.02, 
R2 = 0.006) + STAI-S total score (ANOVA, p = 
0.04, R2 = 0.009) and a previous diagnosis of 
depression or bipolar disorder (ANOVA, p = 
0.03, R2 = 0.004) had a significant effect on genus- 
level ordination (Figure 3, blue bars). The follow-
ing group of metadata variables had an effect on 
the genus-level ordination: BSS (ANOVA, p = 
0.002, R2 = 0.02) + sex (ANOVA, p = 0.002, R2 

= 0.02) + age (ANOVA, p = 0.002, R2 = 0.03) + 
COVID positive test (ANOVA, p = 0.002, R2 = 
0.03) + periodontitis (ever) (ANOVA, p = 0.04, R2 

= 0.04) + periodontitis (current) (ANOVA, p = 
0.03, R2 = 0.04) + healthcare worker (ANOVA, 
p = 0.03, R2 = 0.04) (Figure 3, blue bars).

Associations between traumatic experiences, 
mental health outcomes, and relative taxonomic 
abundance

The relative abundance of Fusicatenibacter sacchar-
ivorans (F. saccharivorans) was significantly lower 
in individuals with comorbid PTSD + depression + 
state and trait anxiety symptoms (n = 8) (mdn = 
1.12) compared to those without this comorbid 

(a) (b) 

Figure 2. Simpson’s diversity index was significantly lower in individuals with (a) trait anxiety symptoms (mdn = 0.90) compared to 
those without (mdn = 0.92) (Wilcoxon rank-sum test, p = 0.016, r = 0.19, n = 198) and (b) compared to healthy controls (mdn = 0.92) 
(Wilcoxon rank-sum test, p = 0.02, r = 0.17, n = 198). The solid line indicates the median; the top and bottom of the boxes indicate the 
third and first quartiles, respectively. Whiskers indicate the 1.5 interquartile range (IQR) beyond the upper and lower quartiles and dots 
represent individual data points. Significance * for p ≤ 0.05.

Figure 3. Cumulative effect sizes of variables on microbiome community variation (left blue bars; stepwise distance-based redundancy 
analysis (dbRDA) on genus-level Aitchison distance); individual effect sizes (assuming covariate Independence) (right Orange bars); 
variables with non-significant p-values for individual analyses (right gray bars) and the one variable (COVID-19 vaccination), that did 
not enter the dbRDA model (left gray bar).
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state (mdn = 2.78) (n = 190: depressive symptoms 
n = 24, state anxiety symptoms n = 66, trait anxiety 
symptoms n = 73, PTSD symptoms n = 8, healthy 
controls n = 106) (Wilcoxon rank-sum test q = 0.09, 
r = 0.24, n = 198), and it remained significant after 
correcting for main covariates (age, sex, body mass 
index [BMI], inflammatory bowel disease [IBD], 
irritable bowel syndrome [IBS], Celiac disease 
[CeD], and BSS) using generalized linear models 

(GLMs) (GLM p = 0.0001) (Figure 4a). However, 
correction for additional covariates (current use of 
prescription medication, a previous COVID-19 
infection, a COVID-19 vaccination, and alcohol 
intake in the last 2 weeks) rendered the model 
unreliable, potentially due to the small sample size 
of the comorbidity cohort. In addition, 
F. saccharivorans was also lower in this comorbid 
group (PTSD + depression + state and trait anxiety 

(a) (b) 

(c) (d) 

0.0

2.5

5.0
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Figure 4. (a) F. saccharivorans was significantly lower in individuals with comorbid symptoms of PTSD + depression + state and trait 
anxiety (mdn = 1.12) (after correcting for main covariates) compared to individuals without these comorbid symptoms (mdn = 2.78) (GLM, 
p = 0.0001, r = 0.24, n = 198) and (b) compared to healthy controls (mdn = 2.82) (correction for confounding variables not possible) 
(Wilcoxon rank-sum tests, q = 0.1, n = 114). (c) Proteobacteria was higher in individuals with depressive symptoms (mdn = 3.42) (GLM, p = 
0.02, n = 198) compared to those without (mdn = 3.02) whilst (d) Synergistetes were lower in those with depressive symptoms (mdn = 
−2.98) (GLM, p = 0.004, n = 198) compared to those without (mdn = −2.80). Sample sizes: PTSD + depression, state- and trait-anxiety 
symptoms Yes n = 8, PTSD + depression, state- and trait-anxiety symptoms No n = 190. Depressive symptoms Yes n = 32, Depressive 
symptoms No n = 166, Healthy controls n = 106. Solid lines indicate the median; the tops and bottoms of boxes indicate the third and first 
quartiles, respectively. Whiskers indicate the 1.5 IQR beyond the upper and lower quartiles. Dots represent individual data points. 
Abbreviations: clr – centered log-ratio, r = effect size. Significance * for p ≤ 0.05, ** for p ≤ 0.005, *** for p ≤ 0.0001, # for q ≤ 0.1. 
Fusicatenibacter saccharivorans – F. saccharivorans, posttraumatic stress disorder – PTSD, generalized linear model – GLM.
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symptoms) compared to healthy controls (n = 106) 
(mdn = 2.82) (Wilcoxon rank-sum test q = 0.1, r = 
0.3, n = 114) (Figure 4b), but also, in this case, 
correction for covariates rendered the model unre-
liable. Individuals with depressive symptoms had 
higher levels of the phyla Proteobacteria (mdn = 
3.42) (GLM, p = 0.02, r = 0.16, n = 198) and lower 
levels of Synergistetes (mdn = −2.98) (GLM, p = 
0.004, r = 0.17, n = 198) (Figure 4c,d), compared to 
those without depressive symptoms 
(Proteobacteria mdn = 3.02; Synergistetes mdn = 
−2.80), and it remained significant following cor-
rection for main and additional microbiome cov-
ariates. Since all individuals with depressive 
symptoms also experienced trait anxiety, trait anxi-
ety total score was also corrected for in the GLM in 
addition to the additional covariates, and the asso-
ciations remained significant (p = 0.03, p = 0.04 
respectively), suggesting that the levels of 
Synergistetes could have been influenced by trait 
anxiety symptoms in those with depressive 
symptoms.

The relative abundance of the Anaerostipes 
genus was positively associated with the 
Childhood Trauma Questionnaire (CTQ) total 
score (Spearman rs = 0.23; q ≤ 0.1, n = 198) 
(Figure 5a); thus, higher levels were present in 
those who experienced more severe childhood 
trauma. This association remained significant after 
correcting for main and additional microbiome 
covariates (GLM, p ≤ 0.01, n = 198). Individuals 
who experienced life-threatening traumas (n = 36) 
had a significantly higher relative abundance of the 
Turicibacter sanguinis (T. sanguinis) species (mdn = 
−0.65) and significantly lower levels of the phylum 
Lentisphaerae (mdn = −2.52) compared to those 
who have not had such an experience (n = 162) 
(T. sanguinis mdn = −2.37; Lentisphaerae mdn = 
−2.09); these associations remained significant fol-
lowing correction for main and additional covari-
ates (GLM, p = 0.0008, r = 0.24, and GLM, p = 
0.002, r = 0.20 respectively, n = 198) (Figure 5b,c).

We also investigated whether there were differ-
ences in the relative taxonomic abundance between 
individuals with self-reported clinical diagnoses and 
those with symptoms of depression and anxiety. 
There were no statistically significant differences in 
taxonomic abundance between individuals with 

a self-reported current diagnosis of depression or 
bipolar disorder (n = 10) and individuals with high 
CESD scores (25 – 55) (n = 32). Furthermore, no 
differences were noted between individuals with 
a self-reported current diagnosis of an anxiety disor-
der (n = 27) and individuals with high STAI-T scores 
(≥ 60) (n = 14), or those with high STAI-S scores (≥ 
55) (n = 16). For the PTSD symptom cohort, we could 
not compare those with a current diagnosis to those 
with symptoms, because data pertaining to previous 
diagnoses of PTSD were not available.

Associations between COVID-19-related variables 
and relative taxonomic abundance

Following correction for the main microbiome cov-
ariates and additional covariates (COVID-19 vacci-
nation, current use of prescription medication, and 
alcohol intake), individuals with a previous, con-
firmed COVID-19 infection (henceforth referred to 
as previous COVID-19 infection), had 
a significantly higher relative abundance of the 
genera Escherichia-Shigella (mdn = 0.15) (GLM, 
p = 0.004, r = 0.23, n = 198) and Holdemania 
(mdn = −0.60) (GLM, p = 0.0003, r = 0.24, n = 
198) and the species Parasutterella excrementiho-
minis (P. excrementihominis) (mdn = 2.85) (GLM, 
p = 0.0003, r = 0.25, n = 198) and Flavonifractor 
plautii (F. plautii) (mdn = 1.52) (GLM, p = 0.002, 
r = 0.21, n = 198) (Figure 6a), compared to those 
without a previous COVID-19 infection 
(Escherichia-Shigella mdn = −1.36, Holdemania 
mdn = −1.29, P. excrementihominis mdn = 0.48, 
F. plautii mdn = 0.43). Following correction for 
main and additional microbiome covariates (pre-
vious COVID-19 infection, current use of prescrip-
tion medication, and alcohol intake), individuals 
who received a COVID-19 vaccination had 
a higher relative abundance of the Clostridiales 
order (mdn = 4.61 versus mdn = 3.77) (GLM, p = 
0.01, r = 0.25, n = 198), and lower levels of the 
genera Romboutsia (mdn = −0.48 versus mdn = 
0.22) (GLM, p = 0.01, r = 0.22, n = 198), 
Clostridium sensu stricto (mdn = −0.79 versus 
mdn = 0.65) (GLM, p = 0.005, r = 0.22, n = 198), 
and the Intestinibacter bartlettii species (mdn = 
−1.58 versus mdn = −1.33) (GLM, p = 0.002, r = 
0.3, n = 198) (Figure 6b) compared to unvaccinated 
individuals.
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Associations between health, well-being, and 
lifestyle-related variables and relative taxonomic 
abundance

The relative abundance of the Monoglobus genus was 
positively associated with the World Health 
Organization Quality Of Life questionnaire 
(WHOQOL) domain 1 scores (physical health), and 
it remained significant following correction for addi-
tional covariates (Spearman rs = 0.26; GLM p = 0.01, 
n = 198) (Figure 7a). The relative abundance of the 
genus Gemmiger was lower in individuals who 

reported current prescription medication use (mdn 
= 4.54 versus mdn = 5.04), and it remained significant 
following correction for main microbiome covariates 
(GLM, p = 0.02, r = 0.24, n = 198), but when correct-
ing for additional covariates, no significant difference 
was noted. Individuals reporting alcohol consump-
tion (in the last two weeks prior to the study) had 
a lower relative abundance of Barnesiella (mdn = 2.32) 
compared to those who did not report alcohol use 
(mdn = 2.8) (GLM, p = 0.03, r = 0.2, n = 198), and it 
remained significant following correction for 

(a) (b) 

(c) 

Figure 5. Positive relationship between the relative abundance of the Anaerostipes genus and CTQ total score (Spearman rs = 0.23; p ≤ 
0.01, n = 198). (b) The relative abundance of T. sanguinis was higher in individuals who experienced life-threatening traumas (mdn = 
−0.65 versus mdn = −2.37) (GLM, p ≤ 0.001, r = 0.24, n = 198), and the relative abundance of Lentisphaerae was lower (GLM, p = 0.002, 
r = 0.20, n = 198) (mdn = −2.52 versus mdn = −2.09) compared to individuals unexposed to such traumas. Y-axes show the clr- 
transformed relative abundances of the taxa. For box plots, solid lines indicate the median; the top and bottom of boxes indicate the 
third and first quartiles, respectively. Whiskers indicate the 1.5 IQR beyond the upper and lower quartiles. Dots represent individual 
data points. Significance * for p ≤ 0.05, ** for p ≤ 0.005. Abbreviations: centered log-ratio – clr, Childhood Trauma Questionnaire – CTQ, 
Turicibacter sanguinis – T. sanguinis, effect size – r.
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additional microbiome covariates (a previous 
COVID-19 infection, COVID-19 vaccine, and current 
use of prescription medication) (Figure 7b).

Individuals with a diagnosis of periodontitis 
(previous or current, based on self-report medical 
questionnaire) had a significantly lower relative 
abundance of Dysosmobacter (mdn = 1.13) com-
pared to those without a diagnosis (mdn = 2.06), 
and it remained significant following correction for 
additional covariates (GLM, p = 0.002, r = 0.3, n = 
198) (Figure 7c). Finally, individuals with a current/ 
prior diagnosis of IBD/IBS/CeD (based on self- 
report medical questionnaire) had a higher relative 
abundance of the Verrucomicrobia phyla (mdn = 
1.75) compared to those without a diagnosis (mdn 
= −0.23), and it remained significant following cor-
rection for main and additional covariates (GLM, 
p = 0.03, r = 0.2, n = 198) (Figure 7d).

Discussion

This study identified associations between the gut 
microbiome and mental health symptoms, traumatic 
experiences, well-being, and health-related 

symptoms in a naturalistic Spanish cohort in the 
aftermath of the COVID-19 pandemic. A recent 
study reported a steep global rise in the prevalence 
of anxiety and depression following the COVID-19 
pandemic,26 further emphasizing the importance to 
prioritize mental health research and investigations 
into factors that play a role in these disorders. We, 
therefore, anticipate that there could be many 
undiagnosed cases in the general public and that 
measuring self-report symptoms could provide valu-
able insights into the mental health status of the 
population. Although our participants did not 
undergo a clinical assessment to formally diagnose 
anxiety, depression, or PTSD, validated question-
naires were used to assess these symptoms. Mental 
health disorders are characterized by the heteroge-
neity and complexity of symptoms; patients diag-
nosed with the same psychiatric disorder may 
present with different sets of symptoms in their 
clinical presentation,27 and it is important to study 
these disorders in this context. It is worth noting that 
symptoms inform diagnoses and treatment 
strategies,28 and oftentimes associations with biolo-
gical markers correlate more strongly with 

(a) (b) 

Figure 6. (a) Associations between a previous COVID-19 infection and the relative abundance of Escherichia-Shigella (mdn = 0.15 versus 
mdn = −1.36) (GLM, p = 0.004, r = 0.23, n = 198), Parasutterella excrementihominis (mdn = 2.85 versus mdn = 0.48) (GLM, p = 0.0003, r = 
0.25, n = 198), Flavonifractor plautii (mdn = 1.52 versus mdn = 0.43) (GLM, p = 0.002, r = 0.21, n = 198) and Holdemania (mdn = −0.60 
versus mdn = −1.29) (GLM, p = 0.0003, r = 0.24, n = 198). (b.) Associations between COVID-19 vaccine administration and the relative 
abundances of Clostridium sensu stricto (mdn = −0.79 versus mdn = 0.65) (GLM, p = 0.005, r = 0.22, n = 198), Intestinibacter bartlettii 
(mdn = −1.58 versus mdn = −1.33) (GLM, p ≤ 0.002, r = 0.3, n = 198), Romboutsia (mdn = −0.48 versus mdn = 0.22) (GLM, p = 0.01, r = 
0.22, n = 198) and the Clostridiales order (mdn = 4.61 versus mdn = 3.77) (GLM, p = 0.01, r = 0.25, n = 198). Y-axes show the clr- 
transformed relative abundances of the taxa. The solid line indicates the median, lower and upper bounds of boxes indicate the first 
and third quartiles, respectively; whiskers indicate the 1.5 IQR beyond the upper and lower quartiles. Dots represent outlier data points. 
Sample sizes: previous COVID-19 infection YES n = 42, previous COVID-19 infection NO n = 156. COVID-19 vaccine administered YES n = 
90, COVID-19 vaccine administered NO n = 108. Significance * for p ≤ 0.05, ** for p ≤ 0.005.
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symptoms and symptom dimensions as opposed to 
rigid diagnostic criteria.29

Simpson’s diversity index characterizes the number 
(species richness) and distribution (evenness) of taxa 
in a community. Our results showed that individuals 
with trait anxiety symptoms had lower diversity, how-
ever, the effect size was relatively small. Although 
several studies did not detect differences in alpha 
diversity measures in patients with self-reported gen-
eralized anxiety disorder (GAD) 30,31 or anxiety 

symptoms,32,33 our results correlate with findings of 
lower alpha diversity in patients with GAD compared 
to healthy controls 31 and in participants with IBS and 
high anxiety/depressive symptoms compared to con-
trols and IBS-only cohorts.34 Lower alpha diversity 
has been reported in several disease cohorts relative to 
controls, including certain mental health 
disorders.35,36 Higher diversity is generally believed 
to signify microbial functionality and stability and 
was regarded to be more favorable for the host,37 

(a) (b) 

(c) (d) 
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Figure 7. (a) Positive correlation between Monoglobus abundance and WHOQOL domain 1 scores (Spearman rs = 0.26; GLM p = 0.01, 
n = 198). (b) Negative associations between recent alcohol use and the relative abundance of Barnesiella (mdn = 2.32 versus mdn = 2.8) 
(GLM, p = 0.03, r = 0.2, n = 198), and (c) between periodontitis diagnosis (current and/or previous) and the relative abundances of 
Dysosmobacter (mdn = 1.13 versus mdn = 2.06) (GLM, p = 0.002, r = 0.3, n = 198). (d) Lower relative abundance of Verrucomicrobia in 
individuals with a current/prior diagnosis of IBD/IBS/CeD (mdn = 1.75 versus mdn = 0.23) (GLM, p = 0.03, r = 0.2, n = 198). Y-axes show 
the clr-transformed relative abundances of the taxa. The solid line indicates the median, lower and upper bounds of boxes indicate the 
first and third quartiles, respectively; whiskers indicate the 1.5 interquartile range IQR beyond the upper and lower quartiles. Dots 
represent individual data points. Sample sizes: Alcohol intake YES n = 146, Alcohol intake NO n = 52, Periodontitis diagnosis YES n = 44, 
Periodontitis diagnosis NO n = 154. IBD/IBS/CeD YES n = 33, IBD/IBS/CeD NO n = 165. Significance * for p ≤ 0.05. Celiac disease – CeD, 
inflammatory bowel disease – IBD, irritable bowel syndrome – IBS, World Health Organization Quality Of Life scores for domain 1 
(physical health) – WHOQOL_DOM1.
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which suggests that the participants with trait anxiety 
symptoms had a less favorable microbial profile com-
pared to those without, and healthy controls. 
However, researchers have warned that this assump-
tion oversimplifies complex mechanisms involved in 
community diversity and that the diversity measures 
should rather serve as a starting point for further 
investigations of ecological mechanisms.38

In our cohort, none of the mental health vari-
ables independently influenced the overall genus- 
level microbial composition (beta-diversity), which 
correlates with previous findings in MDD,39 

PTSD,20,40 and anxiety.30 Our analysis of the possi-
ble effect of several mental health variables on 
microbial composition (assuming covariate depen-
dence) revealed that CESD total score + STAI-S 
total score + a previous diagnosis of depression or 
bipolar disorder had a significant effect on genus- 
level ordination. Independent variables that influ-
enced the overall genus-level microbial composi-
tion included age, sex, BSS, a previous COVID-19 
infection, and a COVID-19 vaccination, ever being 
diagnosed with periodontitis, being a healthcare 
worker, having a diagnosis of IBD/IBS/CeD (ever/ 
current), and recent alcohol intake. The following 
group of variables influenced the genus-level ordi-
nation (assuming covariate dependence), namely 
BSS + sex + age + previous COVID-19 infection + 
periodontitis diagnosis (current/ever) + being 
a healthcare worker. Other researchers also noted 
that some of these variables affected overall micro-
bial diversity, including age,41 sex,42 BSS,43 IBD/ 
IBS/CeD diagnosis,44 alcohol consumption,45 and 
COVID-19 infection.46 Limited human gut micro-
biome data in periodontitis patients are currently 
available, however, a rodent study showed that 
P. gingivalis infection was associated with differ-
ences in community structure. As hypothesized by 
these authors, P. gingivalis infection, the main cause 
of periodontitis, may have encouraged the growth 
of a particular set of taxa in the gut.

Although there were no associations between 
mental health symptoms and the global microbiome 
composition (in terms of beta diversity metrics), we 
detected associations between mental health symp-
toms and the relative abundance of particular taxa. 
Individuals with comorbid symptoms of state and 
trait anxiety, depression and PTSD had decreased 
levels of F. saccharivorans, which correlated with 

studies reporting a negative correlation between the 
abundance of F. saccharivorans and depressive 
symptoms.47,48 Fusicatenibacter produces lactate, 
formate, acetate, and succinate as fermentation end 
products from glucose 47 as well as the anti- 
inflammatory short-chain fatty acid (SCFA), 
butyrate.49 Butyrate is an important regulator of 
transepithelial fluid transport; it reduces mucosal 
inflammation and oxidative stress; strengthens the 
epithelial defense barrier, and moderates intestinal 
motility and visceral sensitivity (as reviewed by 
Canani et al.) .50 Furthermore, the abundance of 
Fusicatenibacter was found to be negatively corre-
lated with serum levels of pro-inflammatory cyto-
kines (including IL-6, TNF-α, and IL-1β) 51 and 
positively associated with serum levels of acetylcar-
nitine – an acetylated form of L-carnitine, synthe-
sized in vivo and supplemented by diet, which has 
antidepressant properties and regulates sleep rhythm 
and quality.52

We, therefore, hypothesize that decreased levels of 
F. saccharivorans in individuals with comorbid anxi-
ety, depressive and PTSD symptoms, may result in 
reduced levels of butyrate, which could compromise 
the epithelial gut lining and result in mucosal 
inflammation and increased circulating pro- 
inflammatory cytokines (due to bacteria and toxins 
that enter systemic circulation via a compromised 
gut epithelial lining). Furthermore, in individuals 
with these comorbid symptoms, it is possible that 
reduced F. saccharivorans correlated with lower 
levels of the antidepressant acetylcarnitine, which 
may have facilitated and/or exacerbated anxiety 
symptoms (since most antidepressants also have 
anti-anxiety effects) .53 These hypotheses however 
need to be tested in future studies and additional 
research is needed to determine whether the deple-
tion of F. saccharivorans plays a causative role in the 
presentation of these symptoms. F. saccharivorans 
can easily be modulated by the addition of resistant 
maltodextrin 54 to the diet, and could therefore 
provide a safe, easy, and cost-effective means of 
improving anxiety as well as comorbid symptoms.

A higher relative abundance of Proteobacteria 
and a lower relative abundance of Synergistetes 
phyla were observed in individuals with depressive 
symptoms. A previous study also reported higher 
levels of Proteobacteria in active and responded 
MDD patients 55 and preclinical findings showed 
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that exposure to chronic unpredictable mild 
stress,56 chronic subordinate colony housing 57 

and immobilization stress 58,59 resulted, not only 
in depressive behaviors but also higher levels of 
Proteobacteria. This suggests that the higher abun-
dance of Proteobacteria we observed, could be 
a direct consequence of stress exposure. 
Furthermore, a higher abundance of 
Proteobacteria is generally associated with pro- 
inflammatory states,60 which is often observed in 
individuals with mental health conditions.61 It is 
therefore plausible that previous exposures to 
stressful conditions promoted the expansion of 
Proteobacteria with subsequent pro-inflammatory 
consequences, and that this may have contributed 
to the later presentation of depressive symptoms in 
this cohort. Campo and colleagues discovered that 
a probiotic preparation of Lactobacillus reuteri 
improved the digestive health of cystic fibrosis 
patients by reducing proteobacterial populations 
in the gut,62 therefore, future studies could investi-
gate how reducing the levels of Proteobacteria 
might influence depressive symptoms.

Data on Synergistetes in mental health condi-
tions are relatively scarce. Lower levels of 
Synergistetes have been noted in older adults with 
insomnia,63 which is highly comorbid with 
depression.64 In addition, lower levels of 
Synergistetes have been detected in patients with 
IBS + high anxiety versus IBS + low anxiety.14 

A better taxonomic resolution on genus- or species- 
level might enable stronger conclusions.

Trauma exposure, especially during develop-
mental stages, is a strong risk factor for the devel-
opment of mental health disorders.65 Living 
conditions and environmental exposures during 
childhood have also been shown to have long- 
lasting effects on the adult gut microbiome.17 

Higher levels of childhood trauma were reported 
by all symptom groups in our cohort. Higher levels 
of childhood trauma were associated with an 
increased relative abundance of Anaerostipes. This 
finding correlates with data from rodent models; 
one model of early-life stress (ELS) 66 also detected 
higher levels of Anaerostipes following ELS expo-
sure 67 and another detected higher levels of 
Anaerostipes in response to chronic restrained 
stress,68 suggesting a causal effect of trauma on 
the abundance of Anaerostipes. Furthermore, 

a higher abundance of Anaerostipes has been 
observed in MDD patients 69 and individuals with 
low mood.70 Anaerostipes is a butyrate-producing 
taxon;71 increased butyrate production is generally 
associated with improved intestinal epithelial func-
tion and immune profiles. However, Anaerostipes 
belongs to the Firmicutes phylum, and increased 
levels have previously been linked to inflammatory 
processes.72 It is possible that particular 
Anaerostipes species and strains could have differ-
ent roles in and associations with stress exposure, 
immune reactivity, and intestinal integrity. Future 
studies should elucidate the mechanisms whereby 
stress exposure facilitates the expansion of 
Anaerostipes and the subsequent functional 
consequences.

Individuals who experienced a life-threatening 
traumatic event had a higher relative abundance 
of T. sanguinis, which strongly corresponds with 
results from a preclinical study that used an aggres-
sor-exposed social stress mouse model that mimics 
warzone conflicts, where random life-threatening 
interactions occur between aggressive resident 
mice and naïve intruder mice. This study also 
reported higher levels of Turicibacter in naïve 
intruder mice shortly after threatening aggressor 
exposure.73 T. sanguinis is a common gut microbe 
that has the ability to signal to nearby intestinal 
cells to release serotonin, which subsequently pro-
motes the expression of growth- and survival- 
related genes, enabling the microbe to colonize 
the host’s gut.74 Treating mice with a serotonin 
reuptake inhibitor (SSRI) (one of the main treat-
ments for trauma-related disorders, such as PTSD) 
blocks the serotonergic uptake, and impedes the 
colonization of T. sanguinis. Up to 90% of the 
body’s serotonin originates from gut cells, and 
50% of this production is regulated by 
a metabolite from T. sanguinis.74 It is, therefore, 
possible that higher levels of T. sanguinis result in 
altered serotonin levels in the gut, which may con-
tribute to the gastrointestinal (GI) symptoms often 
experienced by patients using SSRIs. Under normal 
conditions, peripheral serotonin cannot cross the 
blood-brain barrier (BBB), however, altered levels 
in the gut could influence the tryptophan metabo-
lism via serotonin synthesis and kynurenine degra-
dation pathways,75 which could ultimately 
influence central nervous system functions. The 
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data suggest that threatening and stressful expo-
sures result in altered levels of serotonin via HPA 
axis activation (in the case of PTSD, HPA axis 
dysregulation), which in turn, influences the abun-
dance of T. sanguinis. However, future studies 
should investigate this in more detail, to unravel 
the true cause and consequence.

We also detected lower levels of the 
Lentisphaerae phyla in individuals who experi-
enced a life-threatening traumatic event, which is 
in line with an earlier study that reported a lower 
relative abundance of a consortium of three phyla 
in PTSD patients compared to trauma-exposed 
controls, where Lentisphaerae was part of this con-
sortium. A lower abundance of Lentisphaerae has 
also been associated with global sleep 
dysfunction,76 which is highly prevalent in indivi-
duals exposed to stress.77

All of our symptom cohorts had significantly 
lower quality of life scores compared to control 
groups, as would be expected. We observed 
a positive correlation between Monoglobus and 
physical quality of life. The only species character-
ized to date is Monoglobus pectinilyticus 
(M. pectinilyticus), which possesses a specialized 
glycobiome for degrading pectin, a major polysac-
charide that forms part of the plant cell wall.78 

A study that employed a six-day, lifestyle-based 
immersion intervention program (consisting of 
daily nutrition education; 100% plant-based, 
whole food meals with minimal sugar, salt, and 
oil; cardiopulmonary exercise; and stress manage-
ment classes) in individuals with high atherosclero-
tic cardiovascular disease risk, found that 
individuals with the greatest decreases in BMI, 
exhibited an increase in Monoglobus levels, and 
this genus was also positively correlated with 
changes in diastolic blood pressure and glucose 
and negatively associated with changes in total: 
HDL ratio.79 It is possible that the positive correla-
tion we observed between physical quality of life 
and Monoglobus was driven by plant-rich diets, 
which promoted the growth of pectin-degrading 
species such as M. pectinilyticus, with subsequent 
beneficial effects, especially cardiometabolic health. 
However, the exact mechanisms and pathways of 
this relationship need to be investigated, and could 
once again offer interesting avenues to explore in 
order to promote general health and well-being.

Recent research suggests a role for the oral-gut- 
brain axis in mental health conditions. 
Comorbidity of periodontitis and mental health 
conditions have been observed, where mental 
health conditions, as well as periodontitis, were 
characterized by a pro-inflammatory state. 
Periodontitis may therefore be a risk factor for the 
later development of anxiety, mood, and stress- 
related disorders,80 and vice versa (as reviewed by 
Martínez et al. 81). Furthermore, a recent preclinical 
study confirmed that P. gingivalis affects brain areas 
related to anxiety, by inducing 
neuroinflammation.81 Although we did not see 
a higher prevalence of periodontitis diagnoses in 
the individuals with mental health symptoms, it is 
possible that undiagnosed cases were present in our 
cohort. Our results did show that a previous or 
current diagnosis of periodontitis influenced the 
overall genus-level composition, and that diagnosis 
of periodontitis (previous and/or current) was asso-
ciated with a lower relative abundance of 
Dysosmobacter – a novel butyrate-producing bac-
terium from the Ruminococcaceae family. The spe-
cies Dysosmobacter welbionis (D. welbionis) is 
present in about 70% of the general population 
and its abundance was inversely correlated with 
BMI, glycemia, and glycated hemoglobin in over-
weight and obese participants with a metabolic 
syndrome.82 A mouse model showed that daily 
oral gavage of live D. welbionis J115T resulted in 
a partially protective effect against fat mass gain and 
diet-induced obesity, with improved glucose toler-
ance and lower insulin resistance.82

Although no literature is available regarding the 
role of Dysosmobacter in periodontitis, periodontitis 
has been associated with and implicated in the etiol-
ogy and pathophysiology of diseases like diabetes 
mellitus and cardiovascular disease.83,84 Higher 
levels of D. welbionis, possibly originating from the 
oral cavity, may have protected obese individuals 
with metabolic syndrome against certain metabolic 
derangements, by improving glucose tolerance, low-
ering insulin resistance, and reducing white adipose 
tissue hypertrophy and inflammation.82 In our 
cohort, lower levels of Dysosmobacter were present 
in the gut microbiome of individuals with period-
ontitis, and this may have correlated with increased 
levels of inflammation, which is also typical in per-
iodontitis. Future studies should investigate the 
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levels of Dysosmobacter in the gut and oral cavity of 
individuals with periodontitis. In addition, studies 
that investigate the oral-gut-brain axis in anxiety and 
depression are warranted.

We also detected a lower relative abundance of 
Verrucomicrobia in individuals with a current/ 
prior diagnosis of IBD/IBS/CeD, which is consis-
tent with previous findings in IBS.85 Anxiety and 
depressive symptoms are common in patients with 
IBD/IBS/CeD.86 When these mental health symp-
toms are not addressed, intestinal symptoms are 
further exacerbated. Patients with mental health 
symptoms also commonly present with GI symp-
toms, however, few clinical studies have disen-
tangled the complex relationship between these 
comorbidities. One study reported that 70% of 
adults with IBD and a lifetime history of an anxiety 
or mood disorder had a first episode of an anxiety 
disorder that preceded the IBD diagnosis by 10 
years or more and 8% developed anxiety two or 
more years after the onset of IBD, suggesting anxi-
ety symptoms likely predate IBD. In terms of 
depression, 54% of individuals with IBD and 
a lifetime history of an anxiety or mood disorder 
had an onset of depression two or more years 
before the onset of IBD, while 23% developed 
depression two or more years following IBD 
onset, suggesting a risk of depressive symptoms 
before and after GI disease onset.86 Improving GI 
symptoms might therefore also improve symptoms 
of anxiety and depression and more studies are 
needed to determine how the microbiome can be 
targeted to improve comorbid symptoms of anxiety 
and/or depression and IBD/IBS/CeD.

COVID-19 had a significant effect on the gut 
microbiomes of participants; COVID-19 infection 
and vaccination influenced beta diversity and were 
also associated with the abundance of particular 
taxa. Interestingly, however, infection and vaccina-
tion were associated with distinct sets of taxa. 
A previous COVID-19 infection was associated 
with higher relative abundances of Escherichia- 
Shigella, P. excrementihominis, F. plautii, and 
Holdemania. Another study also reported elevated 
levels of Escherichia-Shigella in COVID-19 patients, 
which was associated with increased pro- 
inflammatory cytokines 87 and Zhou and colleagues 
detected elevated levels of the inflammation-related 
F. plautii in recovered COVID-19 patients 

compared to uninfected controls.88 Individuals 
who received a COVID-19 vaccine had higher 
levels of the Clostridiales order, and lower levels 
of Romboutsia, Clostridium sensu stricto, 
Acidaminococcus, and I. bartlettii. Another study 
did report lower levels of Romboutsia in COVID- 
19 patients compared to healthy controls,89 how-
ever, additional correlations with previous research 
are hampered by the lack of data on gut micro-
biome alterations associated with COVID-19 vac-
cinations. In our cohort, participants received 
different types of vaccines, some also received boos-
ters of a different kind, which impeded stratifica-
tion according to vaccination type. Infection with 
SARS-CoV2 has been associated with changes in 
the gut microbiome, especially the abundance of 
taxa associated with inflammatory processes. It is 
plausible that the pro-inflammatory state induced 
by a SARS-CoV2 infection could be further com-
pounded by an altered gut microbiome, and this 
together with the stress during the time of the 
pandemic, may have created a perfect storm for 
the promotion of symptoms such as anxiety and 
depression.

Amongst the other metadata variables that were 
associated with gut microbiome composition, we 
found that alcohol consumption affected the genus- 
level ordination and was also associated with lower 
relative abundances of Barnesiella. Findings from 
Leclercq also revealed negative correlations 
between ethanol levels and the relative abundances 
of Barnesiella.90

Our findings should be interpreted in the context 
of particular limitations. Our study had a cross- 
sectional, naturalistic design, and participants were 
recruited from the general population. All data 
(except the microbiome data) is self-reported and 
is therefore susceptible to self-report bias, inaccura-
cies in recall, or misunderstanding of questions. 
Numerous factors can influence the composition of 
the gut microbiome (including dietary, lifestyle, 
genetic, environmental, and other health-related 
variables), all of which cannot be corrected as cov-
ariates in the analyses. Although GLMs enable us to 
correct for microbiome covariates, an excess of cov-
ariates results in a loss of statistical power and may 
cause overfitting of the data.91 We did however 
correct for main microbiome covariates identified 
by large-scale population-based studies 23 (age, sex, 
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BMI, previous diagnosis of IBD/IBS/CeD, BSS) as 
well as additional microbiome covariates which had 
an effect in our cohort, namely current use of pre-
scription medication, a previous COVID-19 infec-
tion, a COVID-19 vaccination, and alcohol intake in 
the last 2 weeks. Furthermore, study participants are 
only assessed at a single time point and therefore 
conclusions regarding longitudinal microbial com-
position and its impact on and associations with 
symptoms of anxiety and depression cannot be 
inferred.

Although the gut microbiota is amenable to 
change, especially during different life stages, after 
infections or antibiotic use, and in response to 
significant dietary interventions,92 the human gut 
microbiota is relatively stable over time:92–95 up to 
60% of strains are reported to remain stable for up 
to five years, and several are possibly stable for 
decades.96 We, therefore, anticipate that within 
this short space of time (maximum four days 
between stool sample collection and questionnaire 
completion), the bacterial taxa we report on were 
indeed correlated to the mental health outcomes of 
the participants at that particular time. Additional 
investigations are required to determine how long-
itudinal changes in the gut microbiome could influ-
ence symptom presentation and vice versa.

Conclusion

This investigation into the fecal microbiome of 
a Spanish cohort identified taxa that are associated 
with symptoms of depression as well as comorbid 
states of PTSD, depression, and anxiety. In addi-
tion, we identified taxa that were associated with 
trauma exposure, a known risk factor for the later 
development of mental health conditions. The rela-
tive abundance of certain gut microbial taxa was 
associated with well-being and health-related vari-
ables that could impact mental health, such as phy-
sical quality of life and diagnoses of IBD/IBS/CeD. 
Although the causality and directionality of these 
interactions cannot be inferred, our analyses took 
into consideration the compositionality of micro-
biome data and potential confounding effects. Since 
the abundance of F. saccharivorans (associated with 
comorbid symptoms of PTSD, depression, and 
anxiety), Proteobacteria (associated with depressive 
symptoms), and Monoglobus (associated with 

physical quality of life) can easily be modulated, 
these findings can contribute to future intervention 
studies to improve anxiety and depressive symp-
toms and promote general health and well-being.

Materials and Methods

Study participant recruitment, evaluation, and 
enrollment

The PsicoBioma research study has been carried 
out in accordance with The Code of Ethics of the 
World Medical Association (Declaration of 
Helsinki) for experiments involving humans and 
the data obtained was processed in accordance 
with the Spanish Organic Law 3/2018, on the 
Protection of Personal Data and the guarantee of 
digital rights (BOE 16673 of 6 Dec 2018) and its 
17th Additional Provision. The study was approved 
by the Ethics Committee of Hospital Clínico San 
Carlos (Madrid) (C.P. PSQ-19-2 – C.I. 19/474-E). 
The study was conducted at a time when certain 
COVID-19 restrictions were still in place in Spain 
and hospital staff was inundated. A naturalistic, 
online study design was therefore implemented 
that utilized validated, self-report questionnaires. 
Purposive recruitment was used in the general 
population in Spain, using social media, web, and 
print advertisements. Recruitment criteria focused 
on: (1) Individuals who have previously been diag-
nosed with depression and/or an anxiety disorder 
and/or PTSD; (2) individuals who experienced 
symptoms of depression and/or anxiety and/or 
PTSD (these might include possible undiagnosed 
individuals with significant symptoms, especially in 
light of the increased prevalence of mental health 
disorders following the pandemic) as well as (3) 
healthy controls (described as individuals who, at 
the current time, did not experience the aforemen-
tioned mental health symptoms and have a sense of 
mental and general well-being).

Online, written informed consent was obtained 
from all research participants. Inclusion criteria: 
individuals had to reside in Spain, be at least 18 
years of age, be able to read and understand 
Spanish, and meet the aforementioned recruitment 
criteria. Exclusion criteria: a prior or current diag-
nosis of any other major psychiatric disorder, other 
than anxiety, depression, and PTSD (including 
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psychotic disorders, personality disorders, and neu-
rodegenerative disorders); diarrhea within the past 
week (before stool sampling) or antibiotic use 
within the previous 6 months.

Demographic and clinical data

Demographic and clinical data were collected using 
a secure online questionnaire that included struc-
tured demographic and medical history question-
naires designed for the PsicoBioma study 
(March 2021 – Jan 2022) (all data are therefore self- 
reported). Psychological assessments were all based 
on standardized self-report questionnaires vali-
dated for the Spanish population. As the question-
naires were not clinician-administered, the present 
study reports on symptoms rather than diagnoses. 
Depressive symptoms were evaluated using the 
CESD scale and state and trait anxiety symptoms 
using the STAI. Trauma exposure was evaluated 
with the PCL-5 as well as the CTQ-Short Form. 
Finally, quality of life was measured using the 
WHOQOL. The following criteria were used to 
determine the presence of psychiatric symptoms:

PTSD symptoms: PCL-5 score > 33 and the pre-
sence of more than 3 symptom clusters. ;97 state 
anxiety symptoms: STAI-S scores > 41; trait anxiety 
symptoms: STAI-T scores > 45; depressive symp-
toms: CESD scores ≤ 15 indicated no/low, 16 – 24 
mild and 25 – 55 significant depressive 
symptoms.98 The total score and specific sub- 
scores of the CTQ Short Form 99 were used to 
evaluate the severity of childhood maltreatment. 
Individuals who did not meet the cutoff criteria 
described above for a particular mental health out-
come were classified as a control for that particular 
symptom (therefore depressive controls, state- and 
trait anxiety controls, and PTSD controls, however, 
they may have been classified as having one/more 
of the other mental health symptoms). Individuals 
who did not meet the cutoff criteria for all the 
mental health outcomes were classified as healthy 
controls.

Bacterial DNA extraction and generation of 16S 
rRNA gene V3-4 amplicons

Stool samples were collected by participants within 
four days of completing the online questionnaire, to 

ensure clinical and microbial data are comparable. 
Microbial DNA was extracted from stool samples 
homogenized in stool DNA-stabilizing buffer, using 
the PSP Spin Stool DNA Plus Kit (STRATEC 
Molecular, Birkenfeld, Germany) according to the 
manufacturer’s instructions (Protocol 2). 
Amplicons derived from the bacterial 16S rRNA 
gene V3-4 amplicons were generated using the 341 
forward (5’- CCTACGGGNGGCWGCAG-3’) and 
805 reverse (5’-GACTACHVGGGTATCTAATCC 
-3’) primer pair, as previously described.100

16S rRNA gene sequence and data preparation

Pooled 16S rRNA V3-4 gene amplicons were nor-
malized and sequenced by Laragen, Inc. (California, 
USA) using the Illumina MiSeq® platform. Briefly, 
the 16S rRNA gene library concentration was mea-
sured using the Qubit 4 Fluorometer 
(Theromofisher, USA). The 16S rRNA gene library 
was sequenced with 300-bp paired-end reads on an 
Illumina MiSeq® sequencing system using a Nextera 
XT Index Kit v2 (600 cycles; Cat. No. TG-31-1096, 
Illumina Inc., San Diego, CA, USA), generating 
about 85 000 reads per sample. FASTQ files for 
forward and reverse reads and the index (barcode) 
read were generated.

Quality control of the FASTQ sequencing files 
was performed using fastqc (source code: https:// 
github.com/s-andrews/FastQC) and multiqc 
(source code: https://github.com/ewels/MultiQC). 
Raw sequence reads were filtered using the 
Divisive Amplicon Denoising Algorithm 2 analysis 
package in R 101 (dada2 version 1.12.1) with default 
parameters:102 expected error threshold of 2, trim-
ming 17 nucleotides from the start of the forward 
reads to remove the 341F primer, and trimming 21 
nucleotides from the start of the reverse reads to 
remove the 785R primer. Filtered reads were sub-
sequently de-replicated and de-noised using dada2 
default parameters to combine identical reads into 
amplicon sequence variants (ASVs) and construct 
consensus quality profiles for each combined set of 
sequences. The consensus quality profiles informed 
the de-noising algorithm, which infers error rates 
from samples and removes identified sequencing 
errors from the samples. Following the removal of 
chimeras, a consensus paired-end read file was 
generated for feature construction and downstream 
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analysis. After feature table construction, taxo-
nomic binning of classified sequences was built 
using a local copy of the Ribosomal Database 
Project (RDP) Classifier (Train Set 18, release 
11.5),103 and normalized data were produced from 
the relative abundance of taxa present in each sam-
ple. A feature table of 13 458 unique ASVs with an 
average read length of 402 nucleotides in 198 sam-
ples was consequently constructed (after pre- 
processing, the minimum number of reads per 
sample was 26 623, and the average number of 
reads per sample was 46 768).

Statistical analyses

Sequencing data were analyzed using bioinfor-
matics and statistical analysis packages in R,101 

including the packages dada2 (version 1.12.1 102), 
vegan (version 2.5.6), 104 phyloseq (version 1.28.0), 
105 ggplot2 (version 3.3.2), 106 and CoDaSeq (ver-
sion 0.99.4) .107,108 For clinical and demographic 
data analysis, continuous variables were summar-
ized as means (M) and standard deviations (SD) if 
normally distributed, or as medians (mdn) and 
interquartile ranges (IQRs) if non-normally distrib-
uted. Student’s t-tests and Mann-Whitney U tests 
were used to assess differences between normally 
and non-normally distributed data (normality 
tested using Shapiro-Wilk Normality Test), respec-
tively. Categorical data were summarized as counts 
(n) and percentages, and χ2 or Fisher exact tests 
were used to assess differences between groups, 
where appropriate (for categories with only a few 
counts, Fisher exact tests were used). Significance 
was defined as p < 0.05.

Simpson’s index (using the estimate_richness 
function from the phyloseq package 105 in R), was 
used to evaluate α-diversity, as this measure is best 
suited for compositional data.109 Differences in α- 
diversity between different groups were evaluated 
using Wilcoxon rank-sum tests. Thereafter, taxa 
were agglomerated to species- genus- and phylum- 
level and abundance matrices were centered log- 
ratio (clr)-transformed (using codaSeq.clr in the 
CoDaSeq package), 107 using the minimum propor-
tional abundance detected for each taxon for the 
imputation of zeros. The ordination of community 
variation was visualized using multidimensional 
scaling (MDS) of genus-level Aitchison distances 

(a beta diversity measure that evaluates sample dis-
similarity and quantifies differences in the overall 
taxonomic composition between groups). The 
capscale function (from the vegan package, which 
performs a permutational ANOVA) was used to 
determine the contribution of metadata variables 
to microbiome community variation.104 To test 
whether a group of variables affected the ordina-
tion, the ordiR2step function (from the vegan pack-
age, which performs a forward stepwise model 
selection using permutation tests) was used. 
Statistical significance was defined as a false discov-
ery rate- (FDR) corrected q ≤ 0.1, following correc-
tion for multiple testing (Benjamini–Hochberg 
procedure).

The ASV table was filtered to retain taxa that 
were observed in at least 15% of participants (to 
eliminate taxa with very low abundance/preva-
lence). This was followed by an exploratory 
approach, where variables of interest were tested 
for possible associations with relative taxonomic 
abundance on genus- and phylum-level. 
Associations between microbial composition data 
and categorical variables were analyzed with 
Wilcoxon rank-sum tests, while associations with 
continuous variables were tested using Spearman’s 
non-parametric correlation tests. The Benjamini– 
Hochberg procedure was applied for false discov-
ery rate (FDR) correction for multiple testing (for 
the multiple taxa tested during each association 
test), and significance was defined as q ≤ 0.1.

Variables that were significantly associated with 
microbial composition were further investigated 
by fitting GLMs on clr-transformed data, after 
partialling out the effect of main microbiome cov-
ariates previously identified in a large Flemish 
cohort 23 and as described in literature 110 (age, 
sex, BMI, previous diagnosis (based on self-report 
medical questionnaire) of IBD/IBS/CeD, and the 
BSS). For associations that remained significant, 
additional variables that had a significant effect on 
the microbial composition in this study (hence-
forth referred to as additional microbiome covari-
ates), namely current use of prescription 
medication, a previous COVID-19 infection, 
a COVID-19 vaccination, and alcohol intake in 
the last 2 weeks, were also included as potential 
covariates in the GLM. Significance was defined as 
p < 0.05.
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