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Abstract

Background: Global or untargeted metabolomics is widely used to comprehensively investigate metabolic profiles under various
pathophysiological conditions such as inflammations, infections, responses to exposures or interactions with microbial communities.
However, biological interpretation of global metabolomics data remains a daunting task. Recent years have seen growing applications of
pathway enrichment analysis based on putative annotations of liquid chromatography coupled with mass spectrometry (LC–MS) peaks
for functional interpretation of LC–MS-based global metabolomics data. However, due to intricate peak-metabolite and metabolite-
pathway relationships, considerable variations are observed among results obtained using different approaches. There is an urgent
need to benchmark these approaches to inform the best practices. Results: We have conducted a benchmark study of common peak
annotation approaches and pathway enrichment methods in current metabolomics studies. Representative approaches, including three
peak annotation methods and four enrichment methods, were selected and benchmarked under different scenarios. Based on the
results, we have provided a set of recommendations regarding peak annotation, ranking metrics and feature selection. The overall
better performance was obtained for the mummichog approach. We have observed that a ∼30% annotation rate is sufficient to achieve
high recall (∼90% based on mummichog), and using semi-annotated data improves functional interpretation. Based on the current
platforms and enrichment methods, we further propose an identifiability index to indicate the possibility of a pathway being reliably
identified. Finally, we evaluated all methods using 11 COVID-19 and 8 inflammatory bowel diseases (IBD) global metabolomics datasets.
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Introduction
The metabolome refers to the complete set of small molecules
present in a biological sample and is closely related to an
organism’s phenotype. Metabolomics is increasingly applied
together with other omics to understand biological processes
under various genetic, infectious or environmental influences [1–
4]. Global or untargeted metabolomics aims to comprehensively
study metabolome in an unbiased, high-throughput manner.
Liquid chromatography coupled with mass spectrometry (LC–MS)
is widely used for global metabolomics. However, the associated
downstream data analysis remains a key bottleneck [5].

A typical LC–MS-based global metabolomics data analysis
workflow starts with raw spectra processing. The step will
generate a high-dimensional feature table containing abundance
information for tens of thousands of LC–MS peaks across all
samples. These peaks are characterized by their mass-to-charge
ratios (m/z) and retention times (RT). A variety of statistical or
machine learning methods can be directly applied to identify
significant peaks or patterns of interest. However, further
downstream analysis especially functional interpretation is not
straightforward.

Pathway enrichment analysis is fundamental to integrate
metabolomics data into biological contexts. Comprehensive
databases, such as KEGG [6] or MetaCyc [7], contain manu-
ally curated pathways depicting well-structured functions or
biological processes involving multiple biomolecules. Utilizing
these resources, several enrichment methods, such as over-
representation analysis (ORA) [8] and gene set enrichment analy-
sis (GSEA) [9], which were initially developed for transcriptomics
data analysis, have been adapted to perform enrichment analysis
of data from targeted metabolomics [10, 11]. However, these
methods cannot be directly applied to global metabolomics data,
as pathways are defined by genes/proteins/metabolites, not by
peaks. Reliably assigning peaks to specific metabolites based
on their m/z values is difficult—a single m/z could potentially
match multiple metabolites (redundancy), and one metabolite
often generates multiple peaks (degeneracy). Using RT could
narrow down the potential candidates but is not sufficient in
general. To confidently pinpoint the underlying metabolite for
a peak with a particular m/z, it is often necessary to conduct
time-consuming wet-lab experiments such as MS/MS or using
internal reference standards. In summary, performing accurate
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peaks annotation before enrichment analysis has significantly
limited the throughput of global metabolomics.

One promising strategy is to shift the unit of analysis from
individual compounds (which usually cannot be reliably identi-
fied from their very few MS peaks) to individual pathways (which
can be more reliably identified based on many more peaks con-
tributed by their collective members). In this conceptual frame-
work, all input peaks are mapped to the predefined metabolic
pathways or networks in a multiple-matching manner based on
m/z and/or RT without knowing their true identities. All the
putative annotations are submitted to the next stage for path-
way enrichment analysis. Mummichog [12] is the first algorithm
that leverages this concept and offers an efficient computational
package to enable pathway activity prediction directly from high-
resolution LC–MS peaks. The underlying argument is that if a
list of significant peaks reflect pathway activities, those true hits
should collectively identify those pathways, while falsely matched
metabolites are distributed more randomly.

To narrow the gap between raw LC–MS spectra and functional
insights, we have developed or adapted a series of enrichment
analysis methods that are widely used by the metabolomics
community through MetaboAnalyst [13–15]. Enrichment analy-
sis methods are available for both targeted metabolomics (such
as MSEA [16] and MetPA [17]) and global metabolomics (such
as mummichog, also known as Peak Set Enrichment Analysis
(PSEA) in MetaboAnalystR [18]). According to Google Analytics,
MetaboAnalyst is accessed by ∼2000 users/day, and ∼30% of the
traffic (∼600 users/day) enters the functional analysis modules.
Among them, around one-sixth or ∼100 users/day perform peak
set enrichment analysis. We have recently adapted GSEA to ana-
lyze global metabolomics data [14]. However, the enrichment
results have shown considerable variations depending on the
choices of methods and parameters. Multiple factors involved in
peak annotation or enrichment analysis could have significant
effects on the enrichment results. As most previous comparative
studies were geared toward targeted metabolomics, there is a
lack of general insights into the effectiveness of these different
methods for global metabolomics.

To address this need, we have performed a comprehensive
review of commonly used LC–MS peak annotation approaches
and enrichment methods in current metabolomics studies. We
further evaluated four representative enrichment methods and
three annotation approaches under various scenarios. Based on
the observations, we proposed an identifiability index for each
pathway to inform whether it can be reliably identified using
current platforms and enrichment methods. Finally, we evaluated
all the methods on 11 COVID-19 and 8 inflammatory bowel dis-
eases (IBD) global metabolomics datasets and demonstrated that
using semi-annotated input can significantly improve biological
interpretation. The overview of the workflow is shown in Figure 1.

LC–MS peak annotation strategies in global
metabolomics
LC–MS global metabolomics of human samples can usually gen-
erate more than 10 000 peaks. However, only a small fraction of
metabolic features can be annotated with high confidence [19].
Currently, the gold standard for metabolite identification is to
match at least two physicochemical properties, such as accurate
m/z value, RT and MS/MS (fragmentation pattern), of a mea-
sured feature against the authentic chemical standards measured
through the same instrument following the same sample prepara-
tion protocols such as same chromatographic methods, ionization

modes and collision energies [20–22]. While the chemical stan-
dards are limited by their commercial sources, it is impractical to
generate all possible metabolites in the experiment samples on
the same instruments. Different levels regarding current compu-
tational annotation strategies are proposed [23]. Here, we explore
the common computational approaches for high-throughput LC–
MS peak annotation without relying on comprehensive in-house
spectra databases. In this context, three types of approaches are
summarized for putative annotation in LC–MS data including
(i) accurate mass (AM)-based annotation; (ii) accurate mass and
retention time (AMRT)-based annotation and (iii) probabilistic
peak annotation.

AM-based annotation
The wide accessibilities of high-resolution MS instruments,
such as Orbitrap or quadrupole Time-of-Flight (qTOF), have
significantly increased the precision of measured m/z values and
improved the estimation of elemental composition [5]. There are
two options for assigning putative metabolites to measured m/z
values. For both options, the m/z values need to be converted to
the neutral mass first. Next, we can either calculate the possible
molecular formula(s) matching this neutral mass and search
the formula(s) in the metabolomics database, or directly match
the neutral mass to the accurate mass in chemical databases
within a given mass error. For most medium-to-high resolving
power instruments, the expected errors introduced during data
acquisition in m/z measurements are <5 parts per million
(ppm) [24]. Various open-access metabolomics databases are
currently available for AM-based annotation [25]. Given the easy
accessibility, AM-based annotation, ignoring the step of molecular
formula conversion, has been successfully used for pathway
analysis in global metabolomics data [12].

AMRT-based annotation
Due to the redundancy and degeneracy in LC–MS peaks, peak
annotation purely based on AM will lead to a high number of
false positives. To further improve peak annotation, RT is usually
included to provide orthogonal information. RT describes the time
from the injection of the sample to the time of compound elution,
taking the apex of the peak that belongs to the specific molecular
species [26]. Different from molecular properties such as m/z, RT
is characteristic for a specific compound in a given analytical
system involving chromatographic equipment, mobile and sta-
tionary phases, and separation conditions [27]. Thus, it is difficult
to utilize experimental RT for the annotation of unknown peaks
and for sharing information across laboratories. One strategy is to
build the retention time index, which normalizes the deviations
and allows for comparisons in different experimental conditions
[27–29]. Others predict RT based on the quantitative structure–
property relationships [30, 31]. In our current study, RT is directly
used to cluster m/z values to reduce false positives of AM-based
annotation when matching peaks to a pathway library, assuming
that peaks of similar RT are more likely to belong to the same
compounds.

Probabilistic peak annotation
In addition to m/z and RT, inter-peak relationships, either within
spectra or based on biochemical transformations, can be lever-
aged to improve annotation. For instance, MetAssign [32] com-
bines the information of m/z and RT with a quantitative model
of inter-peak dependency structure to provide more robust anno-
tations by means of sophisticated Bayesian statistics. Integrated
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Figure 1. Literature review and study design. After a comprehensive literature review of approaches involved in peak annotation and enrichment
analysis, selected methods were evaluated under different key parameters using both simulated and real datasets. AM: accurate mass; AMRT: accurate
mass and retention time; ORA: over-representation analysis; FCS: functional class scoring.

Probabilistic Annotation (IPA) [33] enhanced the Bayesian annota-
tion model by incorporating RT in the estimation of prior probabil-
ities and considering the connectivity patterns among the peaks
and adducts according to biochemical relationships. Network
analysis has also been increasingly used in metabolomics peak
annotation, as it intuitively capitalizes on peak–peak relation-
ships to increase annotation scope and precision. Several popular
network-based methods, such as GNPS [34] and MetDNA [35],
require MS/MS data as input. A more recent algorithm, NetID [36],
can directly work with LC–MS peak list. By leveraging an integer
linear programming optimization algorithm, NetID optimizes a
network of peak connections based on mass differences corre-
sponding to the gain or loss of relevant chemical moieties while
incorporating literature data on known metabolites and their
retention times within specific metabolic models. NetID high-
lights the usage of all peak annotations simultaneously instead
of sequentially to take full advantage of the entire available
information to improve annotation. Thus, single annotations can
be achieved by solving the global network optimization problem
in a biological context. In this survey, we select NetID to illustrate

the impact of probabilistic peak annotation on the functional
interpretation of global metabolomics data.

Pathway enrichment analysis in global
metabolomics
We have reviewed the available tools for pathway enrichment
analysis in metabolomics data in the last 5 years, including web-
based tools and R/Python packages. A summary of 18 current tools
is listed in Supplementary Table S1. According to Khatri et al. [37],
enrichment methods can be organized to three generations: (i)
ORA-based methods, (ii) functional class scoring (FCS) methods,
and (iii) topology (TP) based methods. ORA is the most widely
used method among the tools in our survey. While mummi-
chog is the only method directly supporting peak list as input
for global metabolomics, all other methods require prior peak
annotation. It is thus of great interest to explore the potential
usage of these methods and to inform the community of the
best practices in analyzing global metabolomics data. Therefore,
we conducted a systematic comparison under the framework
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Table 1. Main characteristics of the selected enrichment methods. Detailed explanations of these equations are provided in the
Supplementary Text S1

Method Class Statistics P value assessment Descriptions

ORA ORA-based Hypergeometric P(X ≥ k ) = 1−∑k−1
i=1

⎛
⎝

(
x
i

)(
N

n−i

)
(

N
n

)
⎞
⎠ Features and pathways are treated equally; only significant

features are used; arbitrary selection for the significant
features

Mummichog ORA-based FET, EASE PM = 1 − 1
�(a)

∫ x
0ta−1e−tdt Same as above; using permutation to address the

dependence assumption

GSEA FCS Kolmogorov–
Smirnov-like
statistic

PM = 1
Nperm

∑Nperm
ρ=1 I{ESρ ≥ ESM} Small changes are included; features and pathways are

treated equally; summarize the differential information to a
rank list

FELLA TP-based Diffusion and
PageRank algorithms

PM = rSperm≥SM +1
Nperm+1 Combined topology information with ORA; built-in weighted

network consisting of genes, enzymes, and metabolites;
dependent on the annotated network relationships

introduced by mummichog, namely putative peak annotation
followed by enrichment analysis.

Four typical methods, including ORA (hypergeometric test),
mummichog, GSEA and FELLA [38], were selected for further
systematic evaluation. They cover the different method categories
and represent the underlying concepts of each type. The input of
all the selected methods is peak lists with differential statistics
(such as P values, t-statistics or fold changes). We hereby briefly
describe these methods. More details on these algorithms can
be found in their original papers. The general features of each
method are summarized in Table 1.

Over-representation analysis
ORA, also known as 2 × 2 table methods [39], divide the features
based on whether they are significantly changed between differ-
ent experimental conditions and whether they are members of
a particular pathway M. The main idea is to determine if there
is a greater overlap between differential features and M than
expected by chance. The classical way to calculate the P-value
for pathway M is using the hypergeometric test (same as the
right-tailed Fisher’s exact test (FET) based on the hypergeometric
distribution).

Mummichog
The mummichog algorithm [12] enhances the classical ORA in
two ways: application to untargeted metabolomics based on puta-
tive identification of metabolites as previously explained, and a
more robust P-value assessment. One of the most critical assump-
tions of the ORA methods is that the pathways can be treated
independently. To enhance the robustness of this independence
assumption, mummichog employs the null model by Berriz et al.
[40], which estimates an adjusted P-value from the results of 1000
permutations. Instead of directly using empirical P-value, mum-
michog models the P-values from null distribution as a Gamma
distribution based on the maximum likelihood estimation and
calculates the cumulative distribution function. In addition, EASE
[41], a more conservative version of ORA, was applied to increase
the precision, which penalizes pathways with fewer hits by taking
out one hit from each pathway. The framework designed by
mummichog can also incorporate other enrichment methods to
interpret global metabolomics data. For instance, MetaboAnalyst
has extended it to include the GSEA approach, which can be easily
achieved using the website and the R package.

Despite their extensive usage, ORA methods have several limi-
tations [37]. Firstly, a subjective threshold is required, which could
lead to variations depending on the chosen cut-offs. Secondly,
only binary information between conditions is considered, and
thus, the features are treated equally. Thirdly, the features and
pathways are presumed to be independent. However, the equal
status and independent assumption cannot be fulfilled in com-
plex biological activities.

Gene set enrichment analysis
As a representative of the FCS methods, GSEA was designed to
address the limitations of ORA in two aspects. It uses all features
without the requirement of a pre-selected feature list and incor-
porates their effect sizes (such as t-scores) between conditions to
indicate coordinated changes among individual features. The key
idea is that in addition to significant features, minor and coordi-
nated alterations of nonsignificant features can also contribute to
pathway activities. GSEA is conducted in three steps. First, values
from all the measurements are used to create a decreasing ranked
list based on the differential statistics of the individual features.
The enrichment score for each pathway is then calculated as
the largest difference in a running-sum statistic corresponding
to a weighted Kolmogorov–Smirnov (KS)-like statistics. Pathway
significance is generated by permuting either the sample labels
or feature labels [42].

Despite eliminating the need to preselect significant features,
FSC still has some limitations. Firstly, summarizing complex bio-
logical information into a rank list may reduce the ability to detect
real changes. Secondly, including weak signals may introduce
noises and reduce the sensitivity in certain cases [43]. Thirdly,
the network structures underlying pathways are not considered,
which is similar to the ORA methods.

FELLA
TP-based methods address the interactions between pathways by
taking topology information into account. While the development
of TP-based methods keeps growing in genomics/transcriptomics,
e.g. SPIA [44] and CePa [45], its application in metabolomics
remains very limited. Recently, several studies have tried to
combine ORA methods with TP information for metabolomics
data enrichment analysis. For instance, FELLA [38] employed
a subnetwork optimization strategy to determine the most
affected subgraphs based on the input significant metabolites.
FELLA retrieves pathways from KEGG as graph objects and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac553#supplementary-data
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Figure 2. Overview of the evaluation workflow. Three steps were involved in the evaluation of current enrichment methods. Both simulated and real
datasets were used to provide comprehensive results. Different input abundance tables were submitted for t-tests and fold change analysis to rank
the features. Input features were putatively annotated based on three methods. Four representative enrichment approaches were selected to identify
significant pathways in different scenarios. The results were evaluated using multiple performance measures.

generates scores for all the nodes through random walks to
assess their importance relative to the metabolites in the input.
The PageRank algorithm and heat diffusion model were used for
calculating the scores. A further permutation step was conducted
to estimate the null distribution of scores for each node. The node
scores are subsequently normalized and ranked using their null
distributions. The final P-value estimation was achieved either
by the normalized score (z-score) or the empirical cumulative
distribution function based on the null models.

Although TP-based methods are inherently limited by the
incomplete knowledge on the pathways or networks, it has been
reported to give better performance in detecting significant path-
ways over non-TP methods in certain cases. More investigations
are needed to inform metabolomics-related pathway enrichment
analysis.

Evaluation design
Overview of the evaluation process
We evaluated the performance and robustness of these selected
methods under different scenarios based on the key parameters
of each step (Figure 2). Our evaluation aims to assess the per-
formance of each method under (i) different input conditions,
e.g. magnitude of change (compound level), direction of change
(compound level) and percentage of change (pathway level); (ii)
different ranking metrics and significant feature selection and (iii)
different parameters for peak annotation. The detailed parame-
ters for each scenario are provided in Supplementary Table S2.

Datasets
Both simulated and real datasets were used to illustrate the
performance of different methods.

Simulated datasets
The main advantage of using simulated data is that the features
can be tuned with a fully known data generating process and
ground truth. To maintain the characteristics of the real data as
much as possible, we employed a strategy to generate simulated
datasets by transforming multiple real datasets [46, 47]. The sim-
ulation was achieved in five steps, including background cleaning,
random metabolite label assignment, signal simulation, m/z and
RT label generating and sampling. Three datasets of different
lengths and study types (see details in Supplementary Table S3)

were selected as initial datasets for simulation. After the imputa-
tion of missing values, quantile normalization was used to remove
the differences across the samples, followed by log transformation
and centering. Thus, the original signals of individual dataset
were erased, while the underlying distributions and inherent
correlations among the features were preserved. The class labels
were randomly swapped to nullify the covariances between the
phenotypes.For the simulation, we consider both the percentage
of the differential features within a dataset and a pathway. In
particular, the percentage of differential features for each dataset
was set to 5–25%, and a percentage of 30–100% features within
a specific pathway was picked to be perturbed in different sce-
narios. We manipulated the signal x of a targeted metabolite by
interfering sd with an index a termed the magnitude of change.
To avoid the exponential increase in the original space without

log transformation, we calculated the simulated value
∼
x, by

∼
x = ln

(
ex + a · sd

)
.

The direction of change for each compound can be either up
or down according to different scenarios. An additional step is
needed for global metabolomics data to access the peak labels.
As the peaks cannot be fully annotated to metabolites, we first
replaced the feature labels (m/z value of the peaks) with known
compound identifiers and shuffled the labels to make them
randomly correlated. This may not fulfill the methods requiring
correlation information among features. However, those methods
are hardly used in untargeted metabolomics and are not included
in this study. After this step, we changed the metabolite ID back
to its m/z value, and the retention time was estimated based on a
deep-learning model by Xavier et al. [31]. A sampling procedure
was performed to generate 1000 simulation datasets to allow
more robust results.

Real datasets
Since the ground truth is unavailable for real metabolomics data,
we chose to evaluate the consistency of enrichment analysis
results using datasets from studies on the same phenotype.
Global metabolomics datasets, including 11 datasets from COVID-
19 studies and 8 datasets from IBD studies, were selected
for evaluation. All the datasets were generated through LC–
MS. The COVID-19 datasets were downloaded from COVID-19

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac553#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac553#supplementary-data
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Metabolomics Data Center in MetaboAnalyst, and the IBD
dataset was downloaded from the Metabolomics Workbench
(https://www.metabolomicsworkbench.org/) with the accession
number of ST001000. For evaluation purposes, we focused on
the comparison between the samples from patients diagnosed
as COVID-19 positive or with Crohn’s disease (CD) versus the
samples from healthy controls in each corresponding studies.
More detailed descriptions are listed in Supplementary Tables S4
and S5. To obtain the input lists for enrichment analysis, t-tests
were performed for all the datasets after log transformation.

Pathway library
Metabolic pathways of Homo sapiens from the KEGG database
were used in our study. The KEGGREST package [48] was used
to obtain the latest KEGG pathways. A recent study has shown
that pathways of smaller size provide more precision information
and are more meaningful for enrichment analyses [49]. High-level
metabolic pathways at levels ‘A’ and ‘B’ based on BRITE hierarchy
[50] were removed as they contain several hundred metabolites
and do not provide specific functional insights. The remaining
library consisted of 81 pathways, with sizes ranging from 5 to 85.

Result assessment
Following the evaluation metrics employed by Tarca et al. [51], we
used recall (Rc, also known as sensitivity) and precision (Pc) in our
simulation studies. For each method, several performance mea-
sures were calculated: true positives (TP), namely the significant
pathways accessed and truly observed in the simulated dataset;
false positives (FP), the significant pathways accessed but not
observed; false negatives (FN), the significant pathways observed
while not been accessed. Thus, Rc can be represented as TP /
(TP + FN), and Pc can be calculated as TP/ (TP + FP). The overall
performance was measured by F1 score, denoted by (2∗Rc∗Pc) /
(Rc + Pc). We also evaluated the prioritization and reproducibility
of the methods. Prioritization provides the ratio of N perturbed
pathways during simulation that can be ranked in the top N
pathways reported by each method.

To compare the consistency among the real datasets that study
the same phenotype, we employed a score based on the Simpson
index, which has been widely used to measure the stability of dif-
ferent methods. For each method, the consistency score is defined
as the mean value of the Simpson index of the enumerated paired
datasets tested given by

∑ d(j)∩d(j)
min(d(j))(

D
2.

) ,

where d(i) represents the significant pathways accessed in the ith
dataset and D is the total number of the datasets in the test.

Results
In this section, we first compared the performance of the selected
methods using 1000 simulated datasets. The effect of exact
metabolite annotation was surveyed among all the methods,
followed by evaluating semi-annotated inputs. An identifiability
index was proposed to evaluate the reliability of a pathway to be
identified as significant by the current methods. We also investi-
gated the potential of these pathways to be reported as false pos-
itives or hard to detect in real experiments. Finally, 11 COVID-19
and 8 IBD metabolomics datasets were used to assess the useful-
ness of each method on real complex untargeted metabolomics
data.

Comparative results using simulation data
Effect of different simulation parameters
We first evaluated the influence of different parameters on the
performance of the methods. A few notable trends are shown
in Figure 3. The performance of all the methods (except GSEA)
increased along with the increasing magnitude of changes as
they focused on the significant differential features. The two
groups can be totally separated when a = 2 based on PCA plots
(Supplementary Figure S1). A turning point was observed when
a = 2, followed by slight changes when a increased above 2
(Figure 3A). The performance of GSEA dropped obviously when
a reached 10. A possible reason could be the enlarged signals of
overlapping metabolites among the pathways, which prioritized
the rank scores of irrelevant pathways leading to lower recall of
the perturbed pathways.

A consistent trend was observed for the effect of the percentage
of change within pathways (Figure 3B). It is evident that the larger
the percentage of differential features within pathways, the better
outcomes were achieved by each method. Mummichog yielded
high recall/sensitivity, reaching 65% at the percentage of change
of 30%, while its precision significantly dropped when all the
metabolites within a pathway becoming differential. In this case,
the permutation step in mummichog led to very high recall of
over 90%; it also introduced more false positives compared to the
basic ORA. Both ORA and FELLA showed a sharp increase with
increasing percentage of differential features within pathways,
while the performance of GSEA was largely improved when more
than 80% of metabolites within pathways were changed.

We also evaluated the responses of each method to the direc-
tion of change at the metabolite level (Figure 3C). The standard
method of GSEA considers the up- and down-regulated features
separately when calculating the pathway scores, thus informing
the direction of change for the significant pathways accessed,
while other methods only count the differential features/path-
ways as yes or no. The performance of GSEA decreased when
the affected pathways contained both up- and down-regulated
metabolites. However, this occurs in real experiments due to
dynamic regulation of metabolic flux. Thus, calculating the effect
of direction separately negatively impacts its performance within
our evaluation schema. More studies are required to get a com-
mon definition for affected pathways in this context.

Effect of parameters for peak annotation
Many common enrichment methods are used for targeted
metabolomics data analysis. Here we leveraged the mummichog
peak annotation framework to other methods, including AM-
based annotation (version 1), AMRT-based annotation (version
2) as well as the NetID method. The results are summarized in
Figure 4A. The overall performance of all the methods was shown
to be slightly improved by grouping m/z values by RT. However,
the recall and precision of most methods were greatly increased
using the NetID annotation, which is supposed to provide a single
match for each peak with an annotation ratio of ∼40% [36]. With
annotation increase, mummichog achieved high recall (up to
92%), while the precision decreased.

The effect of mass tolerance varied between the annotation
approaches. In general, 1 ppm and 3 ppm are recommended for
AM and AMRT-based mapping to obtain better outcomes. For both
methods, the recall started to decrease at 5 ppm and showed an
apparent fall at 10 ppm (Figure 4B). The NetID approach showed
similar performance when the tolerance increased from 5 to
10 ppm, and its recall started to decrease at 12 ppm (Figure 4C).
The default distance tolerance for NetID is 10 ppm, which is

https://www.metabolomicsworkbench.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac553#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac553#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac553#supplementary-data
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Figure 3. (A) Performance evaluations under different magnitude of changes at the compound level. (B) Performance evaluations under different
percentages of differential features within pathways. (C) Performance evaluations with regard to the direction of changes at the compound level.

useful for most methods. Specifically, mummichog was ranked
at the top in terms of recall among the methods. The relatively
lower F1 score was caused by the increasing false positives. Mum-
michog showed a similar trade-off between recall and precision
since NetID could potentially increase both the true and false
annotations.

We further investigated how accurate metabolite annotations
could affect performance. The potential matched metabolites
based AMRT were replaced by a certain percentage of real
annotation. Most methods reached their performance plateau

at around 30% (Figure 5), indicating that accurate biological
interpretation can be achieved without requiring fully annotated
metabolomics data. At this level, mummichog reached a recall
ratio of >90%. The performance of GSEA was also significantly
improved by a 30% accurate annotation, reaching ∼60%. With
the advances in the development of tools and methodologies
for compound annotation, we envision that using a semi-
annotated input would greatly enhance data interpretation.
Further explanation is presented in the section based on the
results obtained from the real datasets.
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Figure 4. Performance evaluations based on: (A) peak annotation approaches, (B) ppm selection using AMRT- based annotation, and (C) ppm selection
using NetID annotation.

Effect of parameters for peak ranking and
selecting differential peaks
For ranking peak lists, we focused on two widely used statis-
tics: t-tests and fold changes (Figure 6A). Better performance was
obtained for GSEA and ORA by leveraging the absolute value of

fold changes. FELLA was the most robust method to the different
metrics as its recall and precision remained at a similar level.
Different from FELLA, the similarity of F1 scores obtained by
mummichog was the result of a trade-off between rising recall
and decreasing precision. GSEA performed better with absolute
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Figure 5. Performance evaluations under different percentages of accurate peak annotation. Different percentages of real annotations were used to
replace the putative annotations obtained based on AMRT method.

Table 2. Performance summary of different enrichment methods. The top performer in each category is highlighted in bold

Recall Precision F1 score Prioritization Reproducibility

FELLA 0.41 ± 0.0158 0.58 ± 0.0121 0.48 ± 0.0109 0.44 ± 0.0195 0.36 ± 0.0181
GSEA 0.24 ± 0.0129 0.37 ± 0.0158 0.29 ± 0.0112 0.57 ± 0.0204 0.45 ± 0.0164
Mummichog 0.85 ± 0.0143 0.44 ± 0.0164 0.58 ± 0.0135 0.72 ± 0.0153 0.69 ± 0.0144
ORA 0.52 ± 0.0165 0.49 ± 0.0197 0.50 ± 0.0154 0.60 ± 0.0115 0.54 ± 0.0223

values, which is consistent with the observation of the direction
effect in the previous section.

For selecting significant or differential peaks from the ranked
peak list, the original paper of mummichog recommended the
number of differential peaks to be top 10% of the input list. We
evaluated this parameter among the tested methods. The real
significant signals were set between 5% and 25%. We confirmed
that 10% selection is applicable for all the methods and can be
used as the selection criteria for other ranking metrics such as
fold changes (Figure 6B). We also investigated the effects of input
peak list length (i.e. the number of original input peaks), and
observed that longer input peak lists gave better results, which
can be explained by the improved metabolome coverage by high-
resolution MS.

The overall performance of each tested method is summarized
in Table 2. Mummichog obtained a high recall of 0.85 while suf-
fering from a relatively low precision. ORA showed a moderate
performance with both recall and precision at around 50%, while
the highest precision was observed for FELLA, up to 58%. GSEA
showed the lowest overall performance, confirming the previous
findings [52, 53].

Pathway identifiability index
We further investigated whether different pathways have the
same levels of identifiability when they are truly enriched across
the tested methods. Figure 7 shows the detailed result regarding
the distribution of pathways that can be correctly identified
as significant during 1000 simulations. The best performance
was achieved by mummichog, while FELLA showed the lowest
power failing to identify more than half of the pathways. The
patterns are similar among these methods against different
pathways. Pathways of larger size are more likely to be identified
with better reproducibility by all the methods. GSEA is highly
sensitive to the pathway size, possibly due to the fact that
all features are considered in the ranking score calculation.
This may partially explain its low recall in metabolomics data
analysis. The lowest outcome for all methods appears in the
pathways of small size (containing less than 10 metabolites).
Given this, we hypothesize that the reliability of a pathway
to be identified by the current methods is correlated with its
size. According to our observation and the previous study [54],
overlaps among pathways also have a significant impact on the
enrichment results. To describe the correlation, we propose an
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Figure 6. Performance evaluations under different: (A) ranking metrics, and (B) cut-offs for significant feature selection.

identifiability index. Firstly, a uniqueness score Suqwas defined
for each pathway. For a pathway of the size of l, we calculate its
Suq by

Suq =
l∑

i=1

N (Fi)

1 + √
N (l)

,

where Fi denotes the number of pathways containing the ith
metabolite within the given pathway and N is the range normal-
ization function. We then calculated the identifiability index by
dividing the Suq of each pathway by the maximum uniqueness
score obtained among the evaluated pathways. As shown on
the right side of the heatmap in Figure 7, the index generally
represents the reliability of a given pathway being correctly iden-
tified by most current methods.

Effect of metabolome coverage in pathway
enrichment analysis
Since metabolites are not equally measured in global metabolomics,
we further investigated whether the enrichment methods tend
to report specific pathways as false positives across different
experimental conditions. The three data tables collected from
different studies and platforms were used to generate simulation
datasets. All the background signals were removed, while no
additional signals were added. The sample labels and original
peak labels were permuted 1000 times. In this case, any significant
pathways reported by any methods would be considered false
positives. As shown in Supplementary Figure S2, mummichog
reported the largest number of pathways as positives, while
GSEA covered almost all the pathways but with a lower rate than
mummichog. It is important to point out that most false positive
pathways tend to be study specific rather than method specific.

Several exceptions were observed. For instance, arachidonic acid
metabolism and starch and sucrose metabolism were not reported by
mummichog but were marked as false positive with a relatively
high rate by the other three methods. On the other hand, tyrosine
metabolism was reported by mummichog in every dataset with
a very high ratio of around 50%, while the rate was much
lower by other methods. These pathways are more likely to
be false positives during functional interpretations. Similar
observations can also be used to investigate if some pathways
are never reported by using specific mass spectral platforms.
As our study was limited to these three studies, further inves-
tigations are warranted to include more datasets from specific
platforms.

Results from real datasets
We applied all the methods to 11 COVID-19 and 8 IBD global
metabolomics datasets. Both the distance-based annotation of
the input peak list (Figure 8A and Supplementary Figure S3A)
and the semi-annotated metabolite/peak list (Figure 8B and
Supplementary Figure S3B) were tested. The prior annotation
was achieved through an enhanced version of NetID using
OmicsNetR [55]. According to the heatmaps, an overall higher
number of changed pathways were reported when using the
semi-annotated input. We then calculated the consistency scores
across the results obtained for each method. Prior annotation
increased the consistency score by 9% on average, suggesting
the additional pathways detected using semi-annotated data
are likely to be real active pathways rather than false positives.
For instance, tryptophan metabolism, which has been reported
as a participant in COVID-19 process [56, 57], was reported
by all the methods except for GSEA using the semi-annotated

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac553#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac553#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac553#supplementary-data
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Figure 7. Pathway identifiability across the tested methods. The heatmap shows the rate of each pathway to be correctly identified by different methods
across 1000 permutations. The size indicates pathway length, and the index shows identifiability for each pathway.

input. A similar case is retinol metabolism, a newfound player
during COVID-19 process [58, 59]. Other pathways reported
to be involved in COVID-19 with high consistency across the
datasets include primary bile acid biosynthesis [36], steroid hormone
biosynthesis [60], glycerolipid metabolism [61], caffeine metabolism
[62] and vitamin B6 metabolism [63]. For the IBD datasets, the
original study [64] showed that tryptophan metabolism genes
were decreased in CD patients based on microbiome samples,
while the metabolomics data indicated enrichment of primary

bile acid biosynthesis. Here, tryptophan metabolism was reported by
mummichog with high consistency using semi-annotated data;
primary bile acid biosynthesis was detected by mummichog and ORA
in both annotation approaches, while only captured by FELLA and
GSEA using semi-annotated data.

Overall, the highest consistency score was obtained for mum-
michog in both annotation approaches, but it risks a relatively
high false positive ratio. Despite different patterns, FELLA and
ORA showed a similar level of consistency, which was improved
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Figure 8. Consistency of enrichment results obtained using different enrichment methods obtained based on 11 COVID-19 datasets. For each method,
its consistency score is indicated at the top inside the round brackets. (A) Results generated using peak list as input. (B) Results generated using the
semi-annotated metabolite/peak list as input.

by using the semi-annotated data. However, a generally poor
performance was observed for GSEA, consistent with our previous
evaluations using simulated datasets.

Discussions and future directions
Global metabolomics has been widely used for biomarker
discovery with applications to disease diagnosis, treatment
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monitoring as well as personalized medicine [65–67]. There is a
growing interest in the application of global metabolomics to gain
mechanistic and functional insights of diseases and biological
processes [68, 69]. Pathway enrichment analysis plays a critical
role in the biological interpretation of metabolomics data. Thus,
a general guideline is both timely and necessary to inform the
best practices of enrichment analysis for global metabolomics.
In this manuscript, we have systematically reviewed three peak
annotation approaches combined with four enrichment methods
under various scenarios for global metabolomics.

A key challenge facing the design of a comparative study on
pathway enrichment methods is that the underlying biological
processes involved in the experimental conditions is far from
fully understood. Therefore, we have no ground truth to compare
the enrichment results, which makes it very difficult to evaluate
performance across different methods. One solution is to leverage
benchmark datasets. In gene enrichment analysis, some well-
studied datasets can serve this purpose [45, 54, 70, 71]. Unfortu-
nately, no such dataset has been made available for metabolomics
in the current stage. Using simulated datasets can be a good
alternative, which has been successfully employed in several
studies [53, 72]. Another strategy is to evaluate the consistency
among the real datasets measuring the same phenotype. Both
strategies were employed in our current study.

Mummichog shows the highest recall/sensitivity in detecting
significant pathways across all the scenarios tested at the
sacrifice of precision. FELLA was found to have an edge on
precision, indicating that incorporating topology information
may help reduce false positives. GSEA, which is extensively
used in gene expression profiling, was found to lack strength
in metabolomics data with low recall and precision. This can be
potentially explained by the relatively smaller size of metabolic
pathways and their limited coverage by the current metabolomics
platforms. The performance of GSEA can be enhanced by
increasing the metabolite annotation and using the absolute
values as ranking metrics.

In addition to the methods, the properties of pathway them-
selves can also greatly influence the enrichment results. For
instance, overlaps among pathways have been found to signifi-
cantly impact the enrichment results [54]. We proposed an iden-
tifiability index to indicate whether a pathway can be reliably
reported as enriched.

According to our study, up to more than 90% of significant
pathways can be captured by mummichog when accurate anno-
tation arrives at ∼30%, suggesting semi-annotated input without
full annotation is sufficient for biological interpretation. Using
NetID annotation to generate semi-annotated lists could enhance
the performance of the enrichment methods, which was also
confirmed using real datasets from COVID-19 and IBD studies
based on better consistency scores across all methods. Multiple
active pathways have been confirmed with high consistency, indi-
cating the usage of semi-annotated data in finding new biological
insights.

Our studies have some limitations. Firstly, only three datasets
were selected as initial datasets for simulation which may lead
to the potential bias towards the specific type of samples. More
standardized benchmark datasets are necessary for future stud-
ies. Secondly, our simulation did not have a specific design to
accommodate feature correlations, although none of the methods
we have evaluated can deal with the correlation information.
Moreover, some other factors, such as the choice of pathway
databases, are also important in pathway analysis, which were
not included in our study and need further investigations. Finally,

some new methods leveraging machine learning, multi-omics
integration for metabolite annotation and pathway enrichment
were not considered in this study [73].

Key Points

• Comprehensive review and benchmarking were per-
formed to assess the effects of key parameters used in
peak annotation approaches and pathway enrichment
methods for LC–MS-based global metabolomics.

• Mummichog combined with NetID was found to give the
overall best performance.

• Semi-annotation enables more accurate and consistent
functional interpretation.

• An identifiability index was proposed to indicate the
probability of a pathway being reliably identified
by different enrichment methods on current global
metabolomics data.

Supplementary Data
Supplementary data are available online at https://academic.oup.
com/bib.
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