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Abstract

Medicinal plants are the main source of natural metabolites with specialised pharmacological activities and have been widely examined
by plant researchers. Numerous omics studies of medicinal plants have been performed to identify molecular markers of species and
functional genes controlling key biological traits, as well as to understand biosynthetic pathways of bioactive metabolites and the
regulatory mechanisms of environmental responses. Omics technologies have been widely applied to medicinal plants, including as
taxonomics, transcriptomics, metabolomics, proteomics, genomics, pangenomics, epigenomics and mutagenomics. However, because
of the complex biological regulation network, single omics usually fail to explain the specific biological phenomena. In recent years,
reports of integrated multi-omics studies of medicinal plants have increased. Until now, there have few assessments of recent
developments and upcoming trends in omics studies of medicinal plants. We highlight recent developments in omics research of
medicinal plants, summarise the typical bioinformatics resources available for analysing omics datasets, and discuss related future
directions and challenges. This information facilitates further studies of medicinal plants, refinement of current approaches and leads
to new ideas.
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multi-omics, the integrated multi-omics studies are becoming
abundant and the number of omics-based MPs studies is increas-
ing rapidly (Figure 2). Most omics studies of MPs have focused
on (i) identifying DNA and chemical markers for classifying MPs
[4, 5], (ii) locating functional genes controlling specific agronomic
traits [6-8], (iil) identifying key metabolic pathways involved in
the biosynthesis of active compounds [9-11] and (iv) determining
the molecular mechanisms of stress responses [12-14]. These
studies provide a theoretical basis for obtaining large quantities of
specific compounds through synthetic biology and can enhance
the molecular breeding of MPs.

Here, we comprehensively review recent advances and future
trends in omics studies of MPs to promote the development
of novel ideas and methods related to integrated multi-omics
research.

Introduction

Medicinal plants (MPs) are the main source of natural metabo-
lites such as pigments, condiments, insecticides and medicines.
MPs have been used to treat diverse diseases in China, India
and Egypt for 5000 years and are still used today, despite the
availability of pharmaceuticals [1]. Plant-derived monomers (mor-
phine, artemisinin, taxol, digitali, vinblastine, etc.) are essential
for chemical drug development, and mixed secondary metabo-
lites such as total saponins and tanshinones exert strong ther-
apeutic effects [2]. In addition, various well-known MPs, such
as Panax ginseng and Panax quiquefolium, which enhance physical
function and improve memory, have been widely used as supple-
ments and in healthcare products [3].

Discovering novel and pharmacologically relevant compounds
and determining their biosynthetic pathways in MPs are chal-
lenging. The continuous introduction of novel omics concepts
and rapid development of sequencing technologies has greatly
facilitated the comprehensive dissection of biological processes
occurring in plants at the genetic, transcriptional and metabolic

Phenotypes and DNA markers are used in
taxonomy

levels, leading to the rapid development of omics-based plant
studies over the last two decades (Figure 1). Meanwhile, omics
studies of MPs are gradually transitioning from single- to

Phenotyping is the most intuitive approach for identifying and
classifying plants but is time-consuming, laborious and often
destructive to plants. High-throughput phenotyping platforms
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Figure 1. Timeline for omics technology development and typical omics-based plant studies over the past two decades. The proposal of omics concepts
is shown in yellow, key events related to the development of omics technologies are indicated in green boxes and typical omics-based plant studies
were illustrated by blue. Abbreviations: NGS, next-generation sequencing; SMRT, single molecule real-time; MSI, mass spectrometry imaging; Smart-
seq, switching mechanism at 5" end of the RNA transcript sequencing; ATAC-seq, assay for transposase-accessible chromatin with high-throughput
sequencing; CRISPR/Cas9, clustered regularly interspaced short palindromic repeats/CRISPR-associated9; ONT, Oxford Nanopore Technology.
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Figure 2. Summary of research pattern and bibliometrics of omics studies on medicinal plants. (A) The pattern of omics studies on medicinal plants:
(I) Taxonomics mainly involves identification and classification of medicinal plants based on phenotyping, DNA markers and chemical markers. (II)
Transcriptomics studies contain bulk RNA-seq, single-cell RNA-seq (scRNA-seq), spatial RNA-seq (spRAN-seq), as well as degradome and ncRNAs.
(I1I) Metabolomics mainly involves targeted, widely targeted, untargeted metabolome and spatial metabolome studies on secondary metabolites. (IV)
Proteomics focuses on structures, functions and protein—protein interaction of protein molecules. (V) Genomics can be divided into structural and
functional genomics studies. (VI) Pangenomics lays particular emphasis on the effects of SNPs, indels and SVs. (VII) Epigenomics mainly involves three
aspects: DNA methylation, histone modification and chromatin remodeling. (VII) Mutagenomics aims at gaining desired species by random mutagenesis,
targeted genome modifications and reverse genetics strategy. (B) The number of articles of omics studies on medicinal plants published from 2000 to
2022 from PubMed database. Keywords of medicinal plant taxonomic, transcriptome, metabolomic, proteomic, genomic, pangenome, DNA methylation
and mutagenesis are searched, under the Title/Abstract term in the query box.



with high-resolution, advanced sensors and fully automatic
data collection systems are promising advancements in plant
phenotyping [15]. Bioinformatics tools and image databases
have also been developed for handling the massive amounts
of phenotypic data and plant images collected using high-
throughput phenotyping platforms (Table 1; [16, 17]).

However, delimitation of certain taxa derived from congeneric
species is difficult because of the existence of morphological inter-
mediates. Therefore, many DNA barcodes such as 5S ribosomal
RNA, 18S ribosomal RNA, internal transcribed spacer, matK, rbcL,
trmH-psbA and trmL-F have been widely applied since 2008 for
analysing the taxonomy of MPs [4]. In addition, specific types of
DNA markers, such as single-nucleotide polymorphisms (SNPs)
and simple sequence repeats, can be used to identify MPs. Cur-
rently, an interactive database of DNA barcodes from medicinal
materials is regularly updated to support medicinal material
identification and MP taxonomy studies [18]. Combining DNA bar-
codes with metabolomics data has been recommended for more
accurately taxonomizing MPs and identifying their subspecies or
varieties [12,59].

The availability of bicinformatics resources for taxonomic
studies of MPs remains limited; thus, it is necessary to construct
a standardised taxonomic system that combines phenotypic
images with DNA markers and specific metabolites. Accurate
taxonomic classification of MP species can not only confirm the
authenticity of medicinal raw materials but also ensure the high
quality of medicinal products produced from these materials.

Transcriptomics is the most widely used
approach for studying gene expression

Transcriptomics can be divided into microarrays based on
hybridization and RNA sequencing (RNA-seq) based on sequenc-
ing methods. The major difference between these approaches is
that microarray can only detect the expression levels of known
genes in samples, whereas RNA-seq can detect the expression
information of all genes. In microarray analysis, the roles of
specific mRNAs and microRNAs (miRNAs) can be determined
under given stress conditions and identify molecular markers of
specific compositions in plants [60,61]. RNA-seq can provide a
dynamic genetic map of the spatiotemporal expression patterns
of genesin different parts and developmental stages of plants. The
transcriptomes of MPs with multiple medicinal parts have been
sequenced using next-generation sequencing (NGS) platforms
to investigate the organ- and tissue-specific expression patterns
of genes [62-64]. Dynamic transcriptional changes in MPs under
different stress conditions [65] and at different developmental
stages [66] have been extensively studied. Compared with
NGS, long-read sequencing technologies, such as PacBio and
Oxford Nanopore Technologies, can reveal the complexity of
transcriptomes, including post-transcriptional modifications,
alternative splicing and fusion transcripts; thus, combining
NGS and PacBio platforms can provide a finer transcriptome
landscape of complex gene expression [67]. Two mainstream
methods for transcriptome assembly, the combination of HISAT
and StringTie [19] and Trinity [20], are applicable to the availability
and non-availability of reference genomes, respectively. Currently,
two databases of plant transcriptome data, PPRD and ARS,
have important reference value for studying MP transcriptomes
(Table 1; [21,22]).

Novel advancements in technology have improved the reso-
lution of transcriptomic research from bulk RNA-seq to single-
cell RNA-seq (scRNA-seq). Although limited by reference genomes
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and current technologies, scRNA-seq has been applied in plants
such as Zea mays, Oryza sativa, Solanum lycopersicum and Arabidopsis
thaliana, and a single-nucleus transcriptome atlas of S. lycoper-
sicum and A. thaliana was reported [68]. Application of scRNA-
seq and target genome-editing techniques has been proposed for
supporting precise crop breeding, as clustered regularly inter-
spaced short palindromic repeat droplet sequencing (CRISPR-
seq) depends on a guide RNA vector with a unique barcode that
can be detected using scRNA-seq [69]. Moreover, sScCRNA-seq can
be combined with transposase-accessible chromatin with high-
throughput sequencing (ATAC-seq) for multi-omics co-labelling,
which can simultaneously capture information on transcripts
and open chromatin from each cell. A pre-trained deep learning-
based method, scDeepSort, can be used to annotate cell types in
single-cell transcriptomic datasets [23]. The online tool Plant Sin-
gle Cell Transcriptome Hub and continuously updated PlantscR-
NAdb were developed for plant scRNA-seq research [24,25]. These
resources promoted scRNA-seq studies on MPs and pave the way
for the combined application of scRNA-seq with other omics or
techniques.

Spatial transcriptome sequencing (spRNA-seq) can compen-
sate for the loss of spatial location information of cells eval-
uating using scRNA-seq. The first spatially resolved transcrip-
tome profile of plant fields was obtained from A. thaliana in
2017 to determine the processes involved in plant development
and evolution [70]. Subsequent spatial transcriptome studies of
peanut tissue suggested that the spatial information of cells, inde-
pendent of marker genes, is more useful for non-model species
[71]. A spatiotemporal atlas of organogenesis of orchid flow-
ers revealed that floral organ development is co-regulated by
numerous specialised genes that function in different tissues and
developmental stages [72]. Two spRNA-seq platforms (10X Visium,
10X Genomics, Pleasanton, CA, USA; and GeoMx DSP, NanoString
Technologies, Seattle, WA, USA) have been commercially available
since 2019; however, these platforms cannot achieve single-cell
resolution. Subsequently, an excellent computational method,
CellTrek, was developed that combines two datasets to perform
single-cell spatial mapping [26]. Thus, a combination of spRNA-
seq and scRNA-seq can accurately depict the spatiotemporal
developmental trajectory and biological functions of certain cells
of interest in MPs. In addition, a database for spatially resolved
transcriptomes, SpatialDB, provides a repository for researchers
studying the spatial cellular structure of tissues and the cellular
microenvironment [27].

Degradome and non-coding RNAs (ncRNAs) sequencing,
another direction for transcriptome data research, provides
abundant information on RNA degradation, miRNAs and long
ncRNAs and contributes to the identification of miRNA-mediated
cleavage of target genes and functional studies of ncRNAs [73].
Combined analysis of degradome sequencing and miRNA profiles
has been widely applied in MP research [14,74]. Corresponding
bioinformatics tools and databases, such as psRNATarget,
PLncPRO, PcircRNA_finder, PAREameters and MepmiRDB, have
been developed to identify and determine the functions of novel
ncRNAs in plants (Table 1; [28-32]).

Metabolomics defines end-products of gene
expression

The metabolome is a direct determinant of the authenticity and
quality of MPs. Currently, studies based on metabolomics are
focused in targeted, widely targeted and untargeted directions.
The targeted metabolome is a suitable choice for distinguishing
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crude medicinal materials from congeneric species in compound
preparations of traditional Chinese medicines [75]. A widely tar-
geted metabolome study of Pueraria lobata and its varieties sug-
gested that differences in the nutritional value among these
species can be explained by changes in nutrient abundance,
whereas medicinal quality can be assessed according to the con-
tents of secondary metabolites [76]. Sixteen key metabolites use-
ful for distinguishing different Ficus deltoidea varieties were iden-
tified in untargeted metabolome analysis and were stable regard-
less of the growth environment and geographical origin [77].
Therefore, chemical markers are important factors for MP authen-
tication, whereas the contents of specific metabolites can be used
to evaluate the quality of medicinal raw materials. Metabolite
profiling of mutagenic lines with loss- or gain-of-function genes
reveal specific metabolites that are synthesized under the control
of target genes, thereby bridging the gap between genes and
metabolites. In addition, a metabolomics-oriented reverse genetic
approach can be used to further explore the genes responsible
for the chemical structure diversity of secondary metabolites [78].
Therefore, analysis of biosynthetic regulation cascades involved
in active metabolite production in MPs, as the first step toward
molecular breeding and synthetic biology, has been largely driven
by metabolomics-based analyses.

A deep learning framework, CRISP, was developed to identify,
simulate and analyse contour regions of interest in metabolomic
maps [33]. MAPPS is useful for metabolic network analysis
and pathway prediction, whereas MetaboAnalyst 5.0 is a user-
friendly platform for analysing raw metabolomics data and
exploring metabolite functions [34,35]. The enormous structural
diversity of plant-derived compounds suggests that medicinally
relevant compounds can still be discovered in plants. METLIN,
a highly annotated database containing over 850 000 molec-
ular standards, is useful for screening plant-derived bioactive
compounds [36].

Spatial metabolomics overcomes the limitations of bulk
metabolomics and can accurately determine the types, contents
and spatial distributions of metabolites, and then characterise the
chemical makeup of a tissue or organ at spatial resolution [79].
Thus, spatial metabolomics can provide abundant spatial distri-
bution albums of metabolites and achieve ‘real-time reporting’
of the metabolome in organisms. The in situ presentation and
spatiotemporal transformation of metabolites can simplify
various biological problems in MPs, such as the biosynthetic
pathways of natural metabolites [80] and fruit development [81].
Combining spatial metabolomics with spRNA-seq is an exciting
approach for investigating biological processes in specialised cell
types of MPs.

Proteomics: a hub linking the transcriptome
and metabolome

As proteins are directly involved in performing and controlling
almost all biological processes, proteomics is essential for under-
standing the regulatory mechanisms responsible for the devel-
opment and secondary metabolism of MPs [82]. iITRAQ quantita-
tive proteomics of Rehmannia glutinosa roots revealed that many
prenyltransferase present higher expression level at the expan-
sion and maturation stage than the elongation stage [83]. Label-
free quantitative proteomic study on P. ginseng leaves under heat
revealed the molecular mechanism of stress and the influences of
ginsenoside production at proteins level [84]. Proteins expressed
in Chrysobalanus icaco, Bauhinia variegata and Bauhinia forficata
have also been characterised and differentiated to determine the
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differences in their medicinal properties [85]. Notably, a recent
study suggested that plant odorant-binding proteins bind specific
metabolites, leading to changes in transcription activation, gene
expression, protein function and metabolism, and play important
roles in plant communication and defensive responses, which
inspires researchers to further think about that whether the pro-
duction and accumulation of desired metabolites can be induced
by changing the expression and function of specific odourant-
binding proteins [86]. The biological functions of a protein depend
not only on the linear arrangement of the amino acid sequence
but also on its spatial structure; post-translational modifications
also have diverse effects on the activity and function of protein
molecules [87].

Prosit is a proteome-wide prediction network based on deep
learning that can enable larger numbers of identifications at >10x
lower false discovery rates [37]. PINET—a versatile web platform—
is used for downstream analysis of proteomic data and visual-
isation of the results [38]. To date, there is no protein database
specific for MPs; however, comprehensive protein databases, such
as the continuously updated PRIDE and PPDB, are available for
functional studies of proteins in MPs (Table 1; [39,40]). A break-
through in protein-structure prediction, the AlphaFold protein-
structure database, an artificial intelligence (AlI) system devel-
oped by DeepMind, enables state-of-the-art predictions of pro-
tein structures based on their amino acid sequences, allowing
biomedical researchers to obtain 3D structural models for almost
any protein sequence [41]. In addition, protein-protein interac-
tion networks are useful for functional studies of proteins, in
which protein functions can be inferred based on interactions
between known and unknown proteins [88]. Information on pro-
tein—protein interactions in plants has been deposited in the
STRING and BioGRID databases, which are open to the public for
MP investigations (Table 1; [42,43]).

Structural and functional genomics

Structural genomics relies on molecular markers that are
available for tagging and mapping of candidate genes related to
species traits. Currently, quantitative trait locus (QTLs) mapping
and genome-wide association studies (GWAS) are the two most
important approaches for studying traits in plants. QTLs has been
widely applied in MPs to link complex phenotypes of interest
to specific regions on chromosomes and then identifying the
number, locations, interactions and functions of these regions
[7,89]. GWAS focus on detecting genetic variations in multiple
individuals from a population to determine genotypes, followed
by statistical analyses between genotypes and phenotypes at
the population level to screen genetic variations most likely
to affect traits of interest. This method has been applied to
evaluate the genes controlling the stem thickness and dry root
weight of P. notogensing [8], amorpha-4,11-diene synthase gene
expansion and ultimately results in higher artemisinin content
[90] and high «-linolenic acid content in the seed oil of Perilla [91].
Studies of the relationship between the traits and genotypes of
MPs based on GWAS and QTLs have contributed to subsequent
utilisation of functional genomics in molecular breeding and
genetic improvement.

After plant genome resources became available, a combination
of genomics and breeding techniques resulted in development
of the novel concept of ‘genomics-assisted breeding’ for crop
improvement in 2005 [92]. The advent of NGS has greatly
improved the throughput of genome sequencing, and the
introduction of long-read sequencing and Hi-C has enabled
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chromosome-level genome assembly and research. The genome
of Cannabis sativa was sequenced on Roche/454 (Basel, Switzer-
land) and Hlumina (San Diego, CA, USA) platforms in 2011 [93],
and that of Dendrobium officinale was sequenced on Illumina and
PacBio (Menlo Park, CA, USA) platforms in 2015 [94]. Specifically,
the number of chromosome-level genomes from various MPs,
such as P. notoginseng [9], Artemisia annua [90], Opium poppy [95],
Medicago sativa [96] and Bletilla striata [97], has sharply increased
in the last few years. These studies suggest that chromosome-
level genomes are important for delineating biological processes
occurring in MPs, as they can be used to reduce the negative
effects caused by false and incomplete genome assembly. Notably,
gene duplication, rearrangement, introgression and fusion events
may have directly relationship with the specialised secondary
metabolites [95]. Thus, functional genomics is a prerequisite for
the precise molecular breeding of MPs to improve their medicinal
traits [97]. In addition, some pivotal transcription factors are
indispensable for regulating the biosynthesis of active compounds
in MPs [98].

SVision was developed to resolve complex structural varia-
tions (SVs) in the genome [44], and online bioinformatics tools
and continually updated genome databases [45,46] have provided
important support for genomic studies of MPs (Table 1).

Pangenomics focuses on the dynamic
genome

With the increasing of genomic studies, researchers realized that
a single reference genome is insufficient to represent the genetic
diversity of a species. Notably, a comparative genomic study of
four Panax species illustrated how reshuffling of the ancestral
core-eudicot genome results in a highly dynamic genome and
causes metabolic diversification of extant eudicot plants [99].
Thus, a new era of pangenomic studies of MPs has emerged.
The concept of the pangenome was initially proposed in 2005
and applied to bacteria to account for intraspecific variability.
Pangenome refers to collection of all genes in a specific species,
these genes can be divided into the core genes shared by all
individuals and the dispensable genes present in a specific indi-
vidual. Currently, pangenome studies of crops such as rice, maize,
tomato, cucumber, wheat and soybean have demonstrated that
dispensable genes are vital for maintaining the genetic diversity
of species, because dispensable genes exhibit higher variability
compared with core genes and contain higher-density SNPs and
indels [100,101]. Large-scale structural variations (SVs), including
copy number variants and presence/absence variants (PAVs) at
the population level, are currently the most important focus of
crop pangenome studies [102]. SVs directly affect dispensable
genes in the pangenome of a species; these genes tend to be
responsible for specific plant traits such as fruit traits, flowering
time and seed size, environmental adaptation and disease resis-
tance [103]. Moreover, SVs can be used to study gene expression
divergence and quantitative trait variations, whereas PAVs can
be used as markers in GWAS studies. Bioinformatics tools have
also been developed for pangenome analysis (Table 1; [47,48]). In
addition, a comparative pangenomics database, GreenPhyIDB V5,
was constructed for investigating gene families and homologous
relationships among plant genomes [49].

Assembly of the plant genome and pangenome is challenging
because of the occurrence of general polyploidization and
presence of large number of repetitive sequences. However,
long-read sequencing technologies are powerful for pangenome
construction in plants with large genome sizes and can span

complex repetitive regions in the genome to identify large-
scale SVs. Notably, by combining differential gene identifica-
tion and CRIPSR/Cas9, enables gene functions can be com-
prehensively dissected and validated. Pangenomic studies of
crops have provided valuable references for constructing MP
pangenomes. Pangenomes are expected to gradually replace
single reference genomes and become a new standard for
studying evolutionary clades and genetic variations in plants
and MPs.

Epigenomics is an important supplement to
genomics

Epigenetics involves changes in heritable traits caused by DNA
methylation, histone modification and chromatin remodeling.
Studies of epigenetic phenomena can be carried out on a genome-
wide scale; thus, a new omics, epigenomics, combining epigenet-
ics with genomics, has been developed [104]. Epigenomic stud-
ies have been performed to analyse epigenetic events occurring
during the growth and development of plants, and to evaluate
abnormalities caused by stress [105]. In addition, divergence in
epigenetic regulation during polyploidization has led to high bio-
chemical diversity among secondary metabolites in the Panax
genus [99]. Since the DNA methylation pattern of the A. thaliana
genome was reported in 2008 [106], DNA methylation studies have
gradually become universally conducted to evaluate MPs. The
pleiotropic roles of DNA methylation in MPs have been reviewed
in detail [107]. Chromatin immunoprecipitation sequencing (ChIP-
seq) can reveal information on histone modifications in studies of
plant development and environmental memory [108], and ATAC-
seq can be used to analyse genome-wide chromatin accessibil-
ity to explore the possible mechanisms of plant environmental
adaptability [109]. Therefore, ChIP-seq and ATAC-seq are com-
plementary methods that show highly consistent results [110].
Furthermore, ATAC-seq and RNA-seq can be combined to study
differentially regulated transcription factors in key biological pro-
cesses in plants [111]. The machine learning-based method chro-
matin interaction neural network (ChINN) is useful for predicting
chromatin interactions based on DNA sequences, and PlantPan3.0
can be used to analyse the results of ChIP-seq experiments on MPs
[50,51].

Currently, epigenomics is widely used to study epigenetic phe-
nomena and the underlying epigenetic modification events in
MPs. Several studies suggested that epigenetic modifications are
closely related to the phenotypic traits of MPs and biosynthetic
processes of secondary metabolites. These findings are expected
to be applied in epigenetic engineering.

Mutagenomics for obtaining plant species
with desired variations

Mutagenesis is one of the most effective approaches for obtain-
ing species with desired variations and primarily involves ran-
dom mutagenesis and targeted genome modifications. Random
mutagenesis can produce many mutant individuals with diverse
traits but requires large-scale screening, which is typically time-
consuming and laborious because of the randomness of muta-
tions. In the last two decades, several breakthroughs have been
made in the genome-editing field, particularly in the CRISPR/-
Cas9 system, which is a site-directed mutagenesis technology
for introducing targeted genome modifications. Using this sys-
tem, targeted genome modifications were made in rice, tobacco



and sorghum as early as 2013 [112]. Subsequently, this system
was implemented in MPs (S. miltiorrhiza, O. poppy, Camelina sativa
and Dioscorea zingiberensis) to produce pharmacologically bioac-
tive metabolites through fine-scale targeted mutagenesis [113].
Transgenic herbal raw materials cannot be commercialised at
present because of the specific nature of MPs (transgene intro-
gression may lead to unpredictable changes in components and
properties of herbal materials); thus, transgene-free genome edit-
ing may be important for avoiding transgene incorporation [114].
Transgene-free genome editing based on CRISPR/cas9 may be an
optimal choice for improving the quality and yield of valuable MPs
and achieving commercialisation. Notably, a machine learning-
based approach, CRISPRidentify, can detect and differentiate true
from false CRISPR arrays, greatly facilitating the application of
CRISPR/Cas9 [52].

For genes with known functions, targeted genome modification
is an excellent approach for rapidly and accurately obtaining a
desired species. For genes with unknown or uncertain functions
produced using genome sequencing and random mutagenesis,
reverse genetics technologies can reveal associations between the
differential genes and their functions and subsequently verify the
functions of candidate genes. Integrated application of functional
genomics and mutagenomics is currently the best approaches for
improving species traits. Although mutagenomics has not been as
widely used in MPs as in crops, its use in MP species is expected to
increase with continuous improvements in MP genome resources
and rapid development of suitable transformation and regenera-
tion approaches.

Multi-omics studies of medicinal plants are
the future development trend

Rapid development of omics technologies is a prerequisite
for successfully performing advanced omics studies. However,
each omics technology, such as transcriptomics (including
microarray technology, bulk RNA-seq, scRNA-seq and spRNA-
seq), metabolomics (including bulk metabolomics and spatial
metabolomics), proteomics (including iTRAQ quantitative and
label-free quantitative technology) and genomics (including NGS
and long-read sequencing technologies) has inherent advantages
and disadvantages (Table 2). Therefore, integrated analysis of
multi-omics datasets, such as the integration of scRNA-seq and
spRNA-seq, spRNA-seq and spatial metabolomics, bulk RNA-seq
and metabolomics, and RNA-seq and proteomics, can compensate
for the limitations of other methods when comprehensively
studying biological processes. Currently, omics studies of MPs are
gradually transitioning from single- to multi-omics, which has
provided more comprehensive insights into biological processes
of interest. Integrated multi-omics studies of MPs have mainly
focused on four factors (Figure 3). First, combined analysis of
phenotypes, DNA markers and metabolomic data enables the
accurate identification of MPs and processed medicinal materials
[59,115]. Second, functional genes controlling the key agronomic
traits of MPs can be located by linking extrinsic phenotypes
to intrinsic genotype control [6,7,116]. Combining GWAS with
other omics techniques may contribute to the identification of
functional genes regulating complex traits [117]. Third, multi-
omics integration can reveal the biosynthetic pathways of
secondary metabolites in MPs [9-11,65]. Notably, integration of
omics with gene editing tools is useful for the development of
precision plant breeding [117]. Finally, multi-omics integration
can explain the regulatory mechanisms involved in the responses
of MPs to stress [12,13,118]. With the increasing diversity of
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omics technologies, researchers often obtain different types of
omics datasets derived from the same or different samples,
providing highly scientific and reliable access to specific biological
processes in MPs. However, these findings also create challenges
for the integrated and associated analysis of multiple omics data
types.

Several bioinformatics tools for integrating and analysing multi-
omics datasets were recently developed [53-56]. MPOD and 1 K-
MPGD are specific for multi-omics studies of MPs, and will be
continuously updated to provide long-term support for combined
analysis of multi-omics datasets (Table 1) [57,58]. Furthermore,
data obtained using integrated multi-omics approaches can com-
plement and validate each other when investigating changes in
certain biological processes, making the analytical results more
comprehensive and credible. Integrated multi-omics approaches
will be widely applied in MP research to understand specific
biological processes.

Conclusion

Recent developments in diverse omics technologies have provided
an unprecedented opportunity for plant researchers to obtain
considerable biological knowledge through integrated analysis of
multiple omics datasets. Genomes, transcriptomes, proteomes,
metabolomes and other omics datasets derived from various MPs
have been reported, and corresponding bioinformatic tools and
databases have been developed. Integrated analysis of multi-
omics datasets is highly comprehensive for investigating MPs.
Results based on multi-omics datasets not only provide a foun-
dation for obtaining MP species with high yield, good quality
and disease resistance through molecular breeding but also pro-
vide a theoretical basis for achieving steady biotransformation of
desired secondary metabolites through synthetic biology. Notably,
it is now feasible to identify functional genes controlling key
biological traits and determine the catalytic mechanisms of key
enzymes involved in biosynthetic pathways of active compounds
by performing multi-omics and bioinformatic studies. However,
there are many unsettled issues in genome editing and the knock-
out or overexpression of functional genes for MPs because of
the lack of suitable transformation and regeneration approaches.
Synthetic biology involves strain improvement, microbial system
development and reconstruction and optimisation of metabolic
models suitable for specific metabolite types, which are very
challenging.

Although MPs have been widely examined in omics studies,
further detailed examination is required. There have been
few scRNA-seq and spRNA-seq studies of MPs because of the
limitations of reference genomes and technologies. Furthermore,
transgene-free genome modifications based on the CRISPR/Cas9
system have not been widely applied to MPs, as suitable trans-
formation and regeneration approaches are lacking. Increasing
evidence has shown that epigenetic modifications have non-
negligible effects on gene expression; however, there are fewer
epigenomic studies of MPs than of crops. In addition, ncRNAs
play important roles in regulating gene expression; however, there
is only one miRNA database specific for MPs, and no database
exists for circRNAs and long ncRNAs in MPs. Finally, it remains
challenging to integrate different results from multiple omics
research, establish correlations between results and provide
reasonable explanations for causalities because of differences
in the representation of different omics datasets, particularly
for more than three omics data types. The lack of bioinformatic
tools and omics databases limits the interpretation of specific
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Figure 3. The application summary of integrated multi-omics approaches in medicinal plants. It is mainly involved in four aspects: (i) identifying
medicinal plants species by integration of phenotype and DNA markers or chemical markers (purple box); (ii) locating function genes by combination of
transcriptomics with degradome and ncRNAs, function genomics with mutagenomics, phenotype with structural genomics (green box); (iii) unearthing
metabolic pathways by the integration of transcriptomics and genomics, proteomics, metabolomics, as well as the combination of genomics with
transcriptomics and epigenomics (blue box) and (iv) unveiling regulation mechanisms response to stress by integration of transcriptomics and

metabolomics, and physiological indices (red box).

phenomena, inhibiting the understanding of certain biological
processes. Therefore, more comprehensive bioinformatics sources
for integrated analysis and visualisation of different omics
datasets are urgently needed. Although a wide range of integrative
bioinformatics tools have been proposed for analysing multi-
omics datasets, biological interpretation is difficult because of the
limitations of the tools themselves. Notably, machine learning and
artificial intelligence are promising approaches for integrating
and analysing multi-omics datasets based on their predictive
performance, flexibility and capability to capture hierarchical
and nonlinear features [119].

An increasing number of studies of MPs will lead to further
omics databases and bioinformatics tools, enabling research to
progress from single- to multi-omics. Integrated multi-omics
studies on MPs are expected to expand and facilitate the
development of molecular breeding of MPs as well as synthetic
biology approaches.

Key Points

e We summarise research advances and future trends in
current mainstream omics approaches in medicinal
plants, including taxonomics, transcriptomics,
metabolomics, proteomics, genomics, pangenomics,
epigenomics and mutagenomics.

e We review typical bioinformatics tools and databases
available for omics dataset analysis of medicinal plants.

e We highlight the integrated patterns of multi-omics
studies of medicinal plants and discuss associated
prospects and challenges.

¢ Omics studies of medicinal plants are gradually tran-
sitioning from single to multi-omics because of large
advantages in integrated multi-omics.
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