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•  Background and Aims  Invasive plants often colonize wide-ranging geographical areas with various local 
microenvironments. The specific roles of epigenetic and genetic variation during such expansion are still unclear. 
Chenopodium ambrosioides is a well-known invasive alien species in China that can thrive in metalliferous habi-
tats. This study aims to comprehensively understand the effects of genetic and epigenetic variation on the suc-
cessful invasion of C. ambrosioides.
•  Methods  We sampled 367 individuals from 21 heavy metal-contaminated and uncontaminated sites with a wide 
geographical distribution in regions of China. We obtained environmental factors of these sampling sites, including 13 
meteorological factors and the contents of four heavy metals in soils. Microsatellite markers were used to investigate 
the demographic history of C. ambrosioides populations in China. We also analysed the effect of epigenetic variation 
on metalliferous microhabitat adaptation using methylation-sensitive amplified polymorphism (MSAP) markers. A 
common garden experiment was conducted to compare heritable phenotypic variations among populations.
•  Key Results  Two distinct genetic clusters that diverged thousands of years ago were identified, suggesting 
that the eastern and south-western C. ambrosioides populations in China may have originated from independent 
introduction events without recombination. Genetic variation was shown to be a dominant determinant of pheno-
typic differentiation relative to epigenetic variation, and further affected the geographical distribution pattern of 
invasive C. ambrosioides. The global DNA unmethylation level was reduced in metalliferous habitats. Dozens of 
methylated loci were significantly associated with the heavy metal accumulation trait of C. ambrosioides and may 
contribute to coping with metalliferous microenvironments.
•  Conclusions  Our study of C. ambrosioides highlighted the dominant roles of genetic variation in large geo-
graphical range expansion and epigenetic variation in local metalliferous habitat adaptation.

Key words: Biological invasion, heavy metals, DNA methylation, epigenetics, Chenopodium ambrosioides, 
phenotypic variation.

INTRODUCTION

Biological invasion has become a severe problem worldwide. 
Exploring the evolutionary processes of alien species during 
establishment and range expansion is critical for understanding 
successful invasion (Banerjee et al., 2019). Genetic diversity 
is commonly thought to play a role in successful invasion by 
facilitating the efficacy of selection (Crawford and Whitney, 
2010; van Kleunen et al., 2015; Vilatersana et al., 2016; van 
Boheemen et al., 2017). However, demographic bottlenecks 
often exist in invasive populations due to loss of a number of 
individuals, and lead to a loss of genetic variation (Estoup et 
al., 2016). Some genetically depleted populations may still 
produce phenotypic variation in response to heterogeneous 
environments and help species to establish in a new environ-
ment (Bossdorf et al., 2008; Hagenblad et al., 2015; Spens and 
Douhovnikoff, 2016; Banerjee et al., 2019). The existence of 

these invasive plants with limited genetic diversity indicates 
that we need to have a deeper understanding of the environ-
mental adaptation mechanism of invasive species (Richards et 
al., 2012; Chen et al., 2015).

Epigenetic modifications have been reported to regulate 
gene expression and phenotypic variations (Niederhuth and 
Schmitz, 2014; Wibowo et al., 2016; Chen et al., 2022). 
Increasing numbers of studies point to the importance of epi-
genetic variation for the successful invasion of plants with 
low genetic diversity (Chwedorzewska and Bednarek, 2012; 
Richards et al., 2012). When casual/introduced aliens or in-
vasive aliens are exposed to environmental stresses, epigen-
etic modifications can be induced, which lead to phenotypic 
plasticity in plant traits independent of genetic variation 
(Banerjee et al., 2019). The studies on epigenetic variation 
conducted to date have mainly focused on invasive spe-
cies with limited genetic diversity. However, some invasive 
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species, especially those that have undergone multiple inva-
sions, possess relatively high genetic diversity (Meimberg 
et al., 2010). A gap remains in the comprehensive under-
standing of the respective effects of genetic and epigenetic 
variation on the invasion success of species undergoing mul-
tiple invasions or introductions. In the process of expansion, 
invasive plants often colonize a wide range of geographical 
areas with different environmental characteristics. Both soil 
and climate factors may affect the phenotypic variation of 
plants (Chen et al., 2020, 2022). Additionally, invasive plants 
are frequently exposed to various biotic and abiotic stresses 
that they encounter in local microenvironments. However, 
the specific roles played by epigenetic and genetic variation 
in large geographical area expansion and local habitat adap-
tation are largely unknown.

Interestingly, many invasive plants, such as Chenopodium 
ambrosioides L. (Zhang et al., 2012) and Phytolacca ameri-
cana L. (Tie et al., 2005; Chen et al., 2015), have been found to 
thrive in metalliferous habitats. Recently, an increasing number 
of studies have highlighted the role of epigenetic modifications 
in response to heavy metal stress (Kumar et al., 2012; Ueda and 
Seki, 2020; Jing et al., 2022). Various genes which have been 
reported to be involved in metal exclusion or detoxification 
are potentially regulated by a reversible epigenetic mechanism 
(Chaudhary et al., 2016; Gallo-Franco et al., 2020). Phenotypic 
plasticity induced by epigenetic variation may promote the 
rapid adaptation of invasive plants to a range of heavy metal-
contaminated environments. However, the heavy metal adapta-
tion mechanisms of invasive plants during expansion into new 
environments have not been completely elucidated.

Chenopodium ambrosioides is a tetraploid perennial herb na-
tive to tropical America (Kolano et al., 2012). At the beginning 
of the 18th century, C. ambrosioides was introduced randomly 
or deliberately to the rest of the world and widely adopted as an 
anthelmintic remedy (Morton, 1981; Kliks, 1985). In China, C. 
ambrosioides is well known as a common invasive alien species 
and distributed in most regions of southern China (Ma, 2013). 
Previous studies have reported that C. ambrosioides is a man-
ganese/lead hyperaccumulator that can flourish in heavy metal-
contaminated habitats and accumulate large amounts of heavy 
metals in its aerial tissues (Zhang et al., 2012; Rivera-Becerril 
et al., 2013). In this study, we assessed the epigenetic and gen-
etic patterns of invasive C. ambrosioides populations distributed 
in a large geographical region of China with different levels 
of heavy metal contamination. By integrating genetic, epigen-
etic and phenotypic data, we investigated (1) the demographic 
history of invasive C. ambrosioides populations in China; (2) 
the role of genetic and epigenetic variation in geographical dis-
tribution pattern; and (3) the effect of epigenetic variation on 
metalliferous microhabitat adaptation. Our study revealed the 
specific roles of genetic variation at large geographic scale and 
epigenetic variation at local metalliferous habitat scale.

MATERIALS AND METHODS

Plant materials

In August 2015, we obtained 21 C. ambrosioides populations 
from heavy metal-contaminated and uncontaminated sites in 

eastern and south-western China (Fig. 1; Supplementary data 
Table S1). At each sampling sites, about 13–18 current-year 
plants at least 15 m apart from each other were selected as a 
population, and their leaves, seeds and soil samples were col-
lected. The longitude and latitude information of the sampling 
sites was recorded. Typical mature leaves at the middle of the 
stem were collected. The leaf tissues were carefully washed in 
tap water and rinsed in deionized water. A portion of the leaf 
tissues was ground in liquid nitrogen, and genomic DNA was 
extracted using DNA Plantzol Reagent (Invitrogen, Carlsbad, 
CA, USA) according to the manufacturer’s protocol. The re-
maining leaf tissues were dried at 80 °C to a constant weight 
for heavy metal analysis. Soil samples were collected within 
5  cm of the rhizosphere of C. ambrosioides in the 0–20  cm 
depth range below the surface. The soil samples were air-dried 
at room temperature and further dried at 105 °C for 6 h before 
heavy metal analysis. Seeds were collected for common garden 
experiments. It should be noted that we failed to collect enough 
seeds from the SS site (Susong County, Anhui Province), thus 
this population was not included in subsequent common garden 
experiments.

Molecular data collection

Potential simple sequence repeats (SSRs) were searched 
in the genome sequences of C. ambrosioides (SRA acces-
sion: SRR8132837) using the MISA tool (http://pgrc.ipk-
gatersleben.de/misa/misa.html), and SSR primer pairs were 
designed to generate PCR products ranging in size from 100 
to 300  bp using Primer3 (https://probes.pw.usda.gov/cgi-bin/
batchprimer3/batchprimer3.cgi). After evaluating the poly-
morphism potential of the designed SSR markers using 12 C. 
ambrosioides individuals, 12 polymorphic SSR loci and 367 
individuals collected from 21 populations were chosen to as-
sess the genetic diversity levels and population structure of C. 
ambrosioides (Supplementary data Table S7). The 5ʹ end of the 
forward primer of each pair was labelled with a fluorescent dye 
(6-FAM, HEX or TAMRA). Fragments were separated on an 
ABI 3730xl DNA Analyzer (Applied Biosystems, Forster City, 
CA, USA) after PCR amplification, and alleles were manu-
ally scored using GeneMaker Software version (ver 2.2.0; 
SoftGenetics, State College, PA, USA) with GeneScan 500 LIZ 
as an internal size standard.

We screened 367 individuals from 21 populations (using the 
same samples employed in SSR analysis) via the methylation-
sensitive AFLP method (MSAP, or MS-AFLP, Reyna-Lo ́pez 
et al., 1997; Chen et al., 2020) to analyse the epigenetic 
variation of C. ambrosioides. Genomic DNA was double di-
gested with EcoRI/MspI or EcoRI/HpaII. MspI and HpaII are 
isoschizomers with different sensitivities to cytosine methy-
lation at the same tetranucleotide restriction site (5ʹ-CCGG). 
Cleavage by HpaII is blocked when the inner or outer cyto-
sine is methylated on both strands, whereas cleavage by 
MspI is blocked when the outer cytosine is hemimethylated 
or fully methylated (Reyna-Lo ́pez et al., 1997). After pre-
amplification, nine fluorescently labelled primer pairs 
were used for selective amplification (Supplementary data 
Table S9). Subsequently, fragments were separated on an 
ABI 3730xl DNA analyser, and fragments with lengths of 
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69–450 bp were identified using GENEMARKER ver. 2.2.0 
(SoftGenetics). We further transformed the epigenetic frag-
ments into a binary character matrix, with ‘0’ indicating ab-
sence and ‘1’ indicating presence. Four types of methylation 
were defined according to whether a fragment was present 
in MspI and HpaII: type 1, no methylation, present in both 
MspI and HpaII (1, 1); type 2, hemimethylation of internal 
or external cytosines, present in HpaII but absent in MspI 
(1, 0); type 3, full methylation of internal cytosines, present 
in MspI but absent in HpaII (0, 1); and type 4, either full 
methylation of cytosines or sequence polymorphism, absent 
in both MspI and HpaII (0, 0) (Schulz et al., 2013). Types 2 
and 3 (type 2 + 3) were treated as total methylation. Then, an 
MSAP profile was constructed to compute epigenetic param-
eters according to two methylation states: unmethylated (type 
1 coded as 0) and methylated (type 2 and type 3 coded as 1), 
and type 4 was treated as missing data (Foust et al., 2016; 
Chen et al., 2020).

Heavy metal analysis

Dried plant samples collected in fields were ground and 
digested with concentrated HNO3 and HClO4 (87:13, v/v). 
Dried soil samples were digested with a mixture of con-
centrated HNO3:HClO4 (4:1, v/v). The total concentrations 
of four types of heavy metals (Mn, Zn, Cd and Pb) in the 

solutions were determined by inductively coupled plasma 
atomic emission spectrometry (ICP-AES; Optima 3300 DV, 
Perkin-Elmer, Waltham, MA, USA) (Supplementary data 
Tables S3 and S4). Unpolluted habitats were defined as soils 
with Cd concentrations <1 mg kg−1 and Zn and Pb concen-
trations <500 mg kg−1 based on environmental quality stand-
ards for soils in China (SEPAC, 1995). Because no equivalent 
Chinese standard exists for Mn, the maximum soil Mn level 
for an unpolluted habitat was defined as 1800  mg kg−1 ac-
cording to soil quality standards for habitat and agriculture in 
Thailand (PCD, 1995). In addition, the Nemerow integrated 
pollution index (NIPI) of toxic elements in soil was deter-
mined to quantify the ecological pollution levels of 21 sites 
(Supplementary data Table S5). We calculated NIPI using the 
following formula: Pi = {[(Piave)

2 + (Pimax)
2]/2}1/2, where Pi is 

the NIPI, Piave is the average pollution index of element i, and 
Pimax is the highest pollution index of element i (Ma et al., 
2016).

Meteorological data

We collected meteorological data of counties covering all 
21 sampling sites for the whole of 2015 from the National 
Climate Centre of China (http://ncc-cma.net/cn/). The obtained 
parameters were as follows: altitude (ALT, m), 20–20 time 
precipitation (PRE_Time, mm), average wind speed in 2 min 
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Fig. 1.  Sampling locations of Chenopodium ambrosioides populations. Orange and blue represent groups 1 and 2, respectively. The circles and triangles represent 
populations collected from heavy metal-polluted and unpolluted areas, respectively. The detailed information of locality, habitat, longitude and latitude of each 

population is shown in Supplementary data Table S1.
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(WS_2  min, m s–1), average annual wind speed (AAWS, m 
s–1), maximum wind speed (MWS, m s–1), annual gale days 
(GD_Ann, d), sunshine hours (SSH, h), average air pressure 
(AP_Avg, hpa), average temperature (TEM_Avg, °C), average 
ground surface temperature (GST_Avg, °C), accumulated 
temperature (ATEM, d·°C), average relative humidity (RH_
Avg, %) and minimum average humidity (HRMin_Avg, %) 
(Supplementary data Table S6).

Phenotypic analysis

The common garden experiment was conducted to com-
pare heritable phenotypic variations among populations. The 
seeds were collected from 4–5 individuals of 20 populations 
of C. ambrosioides (except for SS). The common garden ex-
periment was conducted in a greenhouse operated by Nanjing 
Agricultural University [average temperature 30/25 °C (day/
night); relative humidity 60–80 %; photoperiod 14/10 h (day/
night)]. The seeds were germinated in a mixture of perlite and 
vermiculite on plastic plates. After germination, the seedlings 
were transplanted to plastic buckets containing 1/8 strength 
Hoagland nutrient solution and cultivated for 14 d. Thereafter, 
the seedlings were cultivated in full-strength Hoagland nutrient 
solution. We renewed the Hoagland nutrient solution every other 
day. After 30 d, the seedlings were harvested. We measured 
root and shoot lengths (RL and SL) and root and shoot fresh 
weights (RFW and SFW), and counted blade numbers (BN) 
and lateral branch numbers (LBN). Leaf area (LA) was meas-
ured with an LI-3000C leaf area meter (LI-COR, Lincoln, NE, 
USA). The relative chlorophyll content (Chl) was determined 
by measuring the transmittance of leaves in two wavelength 
regions (650 and 940  nm) with a SPAD-502 meter (Konica 
Minolta, Osaka, Japan). The net photosynthetic rate (Pn), tran-
spiration rate (Tr), stomatal conductance (Gs), and intercellular 
carbon dioxide (Ci) were measured with an LI-6400 portable 
photosynthesis system (LI-COR) (Schories and Mehlig, 2000). 
The light intensity was 1000 μmol m–2 s–1, and the area of the 
leaf chamber was 3 × 2  cm2 (Supplementary data Table S2). 
Principal co-ordinate analysis (PCoA) based on the phenotypic 
data was performed using the ‘vegan’ function in R. PCoA can 
visually display the similarity or difference of plant samples 
based on phenotypic traits. In this study, a Euclidean distance 
matrix was constructed based on the value of all 12 phenotypic 
traits, and a series of eigenvalues were sorted. The most im-
portant eigenvalues in the top two (PCo1 and PCo2) which in-
terpreted 69.42 % total variability were selected and displayed 
in the co-ordinate system.

Genetic variation analysis 

The number of alleles (NA), observed heterozygosity (HO), 
expected heterozygosity (HE) and polymorphism informa-
tion content (PIC) were calculated for each SSR locus using 
CERVUS (ver. 3.0.7, Kalinowski et al., 2007) (Supplementary 
data Table S8). Deviations from Hardy–Weinberg equilibrium 
were analysed using GENEPOP (ver. 4.7.5, Rousset, 2008). 
Null allele frequencies were estimated using the software 
FreeNa (Chapuis and Estoup, 2007) with the number of repli-
cates fixed to 25 000. Chenopodium ambrosioides is a tetraploid 
species (Kolano et al., 2012). The null allele is often suggested 

to be included as an estimator of allele frequencies in polyploid 
organisms (De Silva et al., 2005; Dufresne et al., 2014). In this 
study, we removed the locus of CHAM96, whose null allele 
frequency was particularly high (0.246), from our subsequent 
analysis (Supplementary data Table S8). For each population of 
C. ambrosioides, Shannon’s diversity index (Hʹ) was calculated 
with GenAlEx software (ver. 6.5).

We performed Bayesian clustering to characterize popula-
tion structure using STRUCTURE software (ver. 2.3.4). The 
admixture model with independent allele frequencies was used; 
ten replications were performed for each K (range: K = 1–21) 
and the optimal K was estimated based on the parameter ΔK 
(Evanno, 2005). We also inferred population structure including 
the spatial information (longitude and latitude) by GENELAND 
(ver. 4.9.2) (Guillot et al., 2005). The spatial and correlated al-
lele frequencies model was used; ten replications were simu-
lated and the optimal number of population was chosen by 
the simulation with the highest average posterior probability. 
Subsequently, we estimated genetic structure via PCoA based 
on Nei’s distance matrix using GenAlEx software. Neighbor–
Joining (NJ) analysis (bootstraps = 1000) was conducted in 
PHYLIP software (ver. 3.69; Felsenstein, 1993) based on Nei’s 
distance calculated by PowerMarker (ver. 3.25) (Liu and Muse, 
2005) to reveal the genetic relationships among populations. 
Then, analysis of molecular variance (AMOVA) was performed 
to assess the overall genetic differences among C. ambrosioides 
populations (ARLEQUIN software ver. 3.5). We also con-
ducted a hierarchical AMOVA of C. ambrosioides based on the 
optimum genetic cluster of populations in STRUCTURE.

Contemporary migration rate (past few generations; <5 gener-
ations) was estimated using a Bayesian approach in BAYESASS 
(ver. 3.04; Wilson and Rannala, 2003). The BAYESASS program 
estimates contemporary migration rates (mc, fraction of immi-
grant individuals) according to the proportion of individuals in 
each population sample that are assigned to other populations 
with high probability. This method relaxes some equilibrium as-
sumptions, which allows deviation from Hardy–Weinberg equi-
librium but assumes linkage disequilibrium. Each Markov chain 
Monte Carlo (MCMC) run was performed with a burn-in of the 
first 1 000 000 steps of 10 000 000 total iterations. Model con-
vergence was assessed via the comparison of the posterior prob-
ability densities of inbreeding coefficients and allele frequencies 
across 100 replicate runs, each with a different initial seed. We 
adjusted the mixing parameters to ensure that the posterior ac-
ceptance rates for each parameter were between 20 % and 60 % 
according to Wilson and Rannala (2003). The mean value and  
95 % confidence intervals of mc are reported in the Results. 
Historical gene flow (much longer period of time, approx. 4Ne 
generations in the past) was estimated with Migrate-n (ver. 3.7.2, 
Beerli and Felsenstein, 2001). The Migrate-n program estimates 
the parameters θ (θ = 4 Neμ, where μ is the mutation rate per gen-
eration and is estimated for nSSRs as 10–3; Udupa and Baum, 
2001) and M (mutation-scaled rates of migration, M = mh/μ, 
where mh is the historical migration rate per generation). The 
Migrate-n was conducted with the Brownian motion microsat-
ellite model to estimate the parameters using either a Bayesian 
inference or maximum likelihood framework. We ran Migrate-n 
with a full migration matrix model between 21 populations of 
C. ambrosioides. An exponential prior distribution was set for 
both M (0–1000, mean = 500, delta = 100) and θ (0.0–0.10, 
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mean = 0.05, delta = 0.01) with the historical migration model. 
The prior distribution of the parameters was set for both M 
(0–1000, mean = 500, delta = 100) and θ (0.0–0.10, mean = 0.05, 
delta = 0.01). Following a burn-in of 10 000 iterations, each run 
visited a total of 500 000 parameter values and recorded 5000 ge-
nealogies at a sampling increment of 100. We used a static heating 
scheme at four temperatures (1, 1.5, 3 and 6 °C) to efficiently 
search the genealogy space. We present the mean and 95 % con-
fidence intervals for mh in the Results. We further estimated the 
gene flow value (Nm) as follows: Nm = θ × M/4, and θ and M 
were calculated with Migrate-n (Beerli and Felsenstein, 1999).

We used Wilcoxon’s signed rank test vs. the mode-shift test 
implemented in BOTTLENECK 1.2.1 (Piry et al., 1999) to de-
tect population declines over historical vs. contemporary time 
scales (approx. 4Ne generations in the past vs. the past few gen-
erations; Luikart and Cornuet, 1998). We performed 10  000 
simulations under the SMM (strict stepwise mutation model) 
and TPM (the two-phase model with 95 % single-step muta-
tions and 5 % multiple-step mutations), with a variance of 12 as 
recommended by Piry et al. (1999). Significant P-values were 
taken as evidence of bottlenecks.

We assessed the demographic history of divergence between 
populations by approximate Bayesian computation (ABC) im-
plemented in DIYABC (ver. 2.1; Cornuet et al., 2008, 2014). We 
conceptualized two ABC models, which were used to estimate 
the divergence time (ABC1) and changes in the effective popu-
lation size (ABC2) separately. In the ABC1 model, our analysis 
divided the 21 populations into two groups based on genetic 
clustering analysis conducted in STRUCTURE, and constructed 
a total of three scenarios to estimate the divergence time be-
tween the two population groups. Scenario 1 considered group 
1 as the first invasive population, with colonization via eastern 
China, followed by the divergence of group 2 from group 1 at 
time t; scenario 2 considered group 2 as the first invasive popu-
lation, with colonization via south-eastern China, followed by 
the divergence of group 1 from group 2; and scenario 3 con-
sidered both groups to have split simultaneously from one an-
cestral population at time t. The training sets included a total of 
1 500 000 simulated datasets. In the ABC2 model, three simple 
population demographic scenarios were tested to examine the 
changes in effective population size for different groups based on 
STRUCTURE clustering (group 1, group 2 and total). Scenario 
1 was a bottleneck model (Na > N; the effective population size 
changed from Na to N at time t); scenario 2 was an expansion 
model (Na < N; the effective population size changed from Na 
to N at time t); and scenario 3 was conceptualized as a constant 
model (Na = N; the effective population size was constant at N 
from the present to the past). The parameters t, N1, N2 and Na 
were set to 30 000, 20 000, 20 000 and 80 000, respectively. 
Default values were used for the remaining parameters. To test 
the best scenario for ABC1, we applied both logistic regression 
and a direct method to the 1 % of the simulated datasets closest 
to the observed datasets to estimate the relative posterior prob-
ability of the scenarios. For ABC2, we predicted the best scen-
ario by estimating its posterior probability through ABC.

Epigenetic variation analysis

  The frequency of each methylation type was calculated using 
the msap package in R (Schulz et al., 2013). Hʹ for epigenetic 

data was evaluated with GenAlEx software (ver. 6.5; Peakall and 
Smouse, 2006). NJ analysis (bootstraps = 1000) was performed 
based on epigenetic Nei’s distance using PHYLIP software (ver. 
3.69; Felsenstein, 1993). Nei’s distance for epigenetic data was 
calculated with AFLPsurv software (ver. 1.0; Vekemans, 2002). 
We further estimated epigenetic structure based on the PCoA 
performed in GenAlEx software. Subsequently, both AMOVA 
and hierarchical AMOVA were used to assess the epigenetic 
differences among C. ambrosioides populations (ARLEQUIN 
ver. 3.5; Excoffier and Lischer, 2010). The grouping in hier-
archical AMOVA was based on the best genetic cluster of popu-
lations in STRUCTURE.

The pairwise epigenetic and genetic differentiation coeffi-
cient (FST) was calculated with GenAlEx software. Then, we 
detected the correlations between the FST values of genetic 
and epigenetic differentiation using Mantel test in GenAlEx. 
A simple linear regression model was used to explore patterns 
of spatial autocorrelation with genetic or epigenetic variation 
by calculating the correlations between geographic distance 
(log-transformed) and genetic or epigenetic differentiation 
(FST/1 – FST) (Diniz-Filho et al., 2013). These analyses were 
performed separately on the populations belonging to groups 1 
and 2 (based on cluster results obtained in STRUCTURE) and 
among all populations. The simple linear regression of pairwise 
comparisons was performed with the ‘lm’ function in R.

We used distance-based redundancy analysis (dbRDA) to fur-
ther evaluate the correlation between epigenetic and genetic vari-
ation. The dbRDA was performed with the ‘capscale’ function of 
the vegan package in R (Oksanen et al., 2019) using the following 
formula: capscale (x~y), where x = the Euclidean distance ma-
trix for MSAP as the dependent variable, and y = the data of 11 
microsatellite fragments, which were normalized with min–max 
standardization as predictors of epigenetic variation. Additionally, 
we used dbRDA to explore the effect of environmental factors on 
phenotypic, genetic and epigenetic variation. Two types of envir-
onmental factors were considered, namely 13 meteorological fac-
tors and the contents of four metals in soils, which were analysed 
separately. The relationships between phenotypic variation and 
genetic or epigenetic variation were also analysed using dbRDA. 
The phenotypic factors used in dbRDA were determined in 
common garden experiments and included RL, SL, RFW, SFW, 
BN, LBN, LA, Chl, Pn, Tr, Gs and Ci.

To investigate the association between leaf heavy metal con-
tents and methylated loci (unmethylated loci and total methy-
lated loci), we performed epigenome-wide association analysis 
(EWAS) using a mixed linear model (MLM) in TASSEL (ver. 
5.2.52) (Bradbury et al., 2007). Both the kinship matrix and 
P-matrix were generated in TASSEL to fit the MLM using 
unmethylated loci or total methylated loci to account for mul-
tiple levels of relatedness (Zhao et al., 2007). Here, we used 
a P-matrix based on principal component analysis (PCA) ra-
ther than a Q-matrix based on the STRUCTURE algorithm 
to summarize genome-wide patterns of relatedness because 
the STRUCTURE algorithm was not suitable for estimating 
population epigenetic structure. The heavy metal content was 
determined as the sum of the contents of four heavy metals 
(Cd, Mn, Pb and Zn) after normalization with min–max stand-
ardization. The significance of locus–trait associations was 
defined according to P < 0.05 or 0.01. Manhattan plots were 
generated using the qqman package in R (Turner, 2018).
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Statistical analysis

Data were statistically analysed using the software SPSS 
22.0. The Student’s t-test was used to compare the datasets 
(i.e. phenotypic traits, Shannon’s diversity and methylation fre-
quency) between two groups, and significant differences among 
means were determined at P < 0.05.

RESULTS

Phenotypic variations of invasive C. ambrosioides populations

We compared heritable phenotypic variations among invasive 
C. ambrosioides populations by a common garden experiment. 
The PCoA showed that the first two principal co-ordinates 
(PCo1 and PCo2) explained 69.42 % of the overall phenotypic 
variation, which could divided the invasive C. ambrosioides 
population in China into two distinct groups (Fig. 2A). Group 1 
included four populations mainly distributed in eastern China, 

whereas group 2 included the remaining 16 populations dis-
tributed in south-western China (Figs 1 and 2A). The values 
of fresh weights of shoot and root (SFW and RFW), lengths of 
shoot and root (SL and RL), leaf area (LA) and blade and lateral 
branch numbers (BN and LBN) were significantly higher in 
group 2 than in group 1(P < 0.001, Fig. 2B–H). Both the rela-
tive chlorophyll content (Chl) and the net photosynthetic rate 
(Pn) were significantly higher in group2 (P < 0.001), and the 
values of stomatal conductance (Gs) and intercellular carbon 
dioxide (Ci) were significantly higher in group 1 (P < 0.001, 
Fig. 2I–M; Supplementary data Table S2).

Genetic and epigenetic structure and diversity of invasive C. 
ambrosioides populations

We further analysed the genetic and epigenetic structures 
of invasive C. ambrosioides. In the STRUCTURE analysis, 
the 21 populations of C. ambrosioides could be optimally 
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Fig. 2.  Phenotypic index of C. ambrosioides in the common garden. (A) Principal co-ordinate analysis (PCoA) of C. ambrosioides based on phenotypic data. 
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n.s., P > 0.05; ***P < 0.001.
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clustered into two distinct genetic groups based on the ΔK 
criterion (Fig. 3A). The grouping of populations based on 
genetic variation was consistent with that of phenotypic 
variation. Group 1 (orange) included five populations dis-
tributed in eastern China (including SS), whereas group 
2 (blue) included the remaining 16 populations distributed 
in south-western China (Figs 1 and 3B). When we inferred 
population structure including the spatial information using 
GENELAND analysis, the populations were grouped under 
four optimum clusters. Sixteen populations distributed in 
south-western China belong to a cluster which was the same 
as group 2 in the STRUCTURE analysis, whereas the five 
populations in eastern China were divided into three clus-
ters (Supplementary data Fig. S1). The PCoA showed that 

the first two principal co-ordinates accounted for 85.39 % 
of the genetic variation in the C. ambrosioides populations, 
which indicated a deep genetic division between the eastern 
(group 1) and south-western (group 2) populations (Fig. 
3C). In the NJ tree based on genetic data, the eastern and 
south-western populations were grouped into two distinct 
clades (Fig. 3D). Similarly, PCoA and NJ analysis based on 
epigenetic data grouped the eastern and south-western popu-
lations into two clusters (group 1 and group 2, Fig. 3E, F). It 
is worth noting that the first two principal co-ordinates in the 
epigenetic PCoA accounted for only 23.81 % of the epigen-
etic variation observed in the C. ambrosioides populations, 
which was much lower than that in the genetic PCoA (85.39 
%). The results indicated that the genetic division between 

1000

A B

C D

E F

800

600

400

200

0 0
YX WH SS TL QX GP XC MY YL KM CS JN LJ XT DN HY JS JJ YS

WH
53

55

80

79
75

1.0

98
100

100

74

81
85

55

1.0

100

Group

Type of pollution

1

2

Unpolluted

Polluted

TL
SS
YX
QX
JJ
YS
JS
DN
HY
JN
GJ
HL
LJ
XT
KM
GP
CS
XC
MY
YL

TL
QX
WH
YX
SS
YL
GP
XT
MY
JJ
HY
GJ
DN
LJ
JS
YS
HL
KM
XC
CS
JN

HL GJ

0.20

0.40

0.60

0.80

1.00

5

–0.25

–0.20

–0.10

0

LJ

XT

QX TL

SS WH

JJ
DN

HYLJ

HL
XT
JS

GJ

GP XC

MY

KM

CSYL

JN

YS

YX

GJHL
CS
DNYL
KM
GP

MY YS

QX
TL

YX

SS WH

JNHY
JJ

JS

P
C

o2
 (

7.
26

 %
)

G
en

et
ic

 ∆
K

0.10

0.20

0.30

0 0.25
PCo1 (78.13 %)

0.50 0.75 1.00

–0.15–0.20

–0.10

–0.05

0

P
C

o2
 (

8.
19

 %
) 0.05

0.10

–0.10 –0.05

PCo1 (15.62 %)
0 0.05 0.10

10
K

15 20

Fig. 3,  Population structure of C. ambrosioides-based genetic and epigenetic data. (A) ΔK plot in STRUCTURE analysis. (B) Individual assignment to each 
STRUCTURE cluster for K = 2 based on genetic data. Each individual is represented by a thin vertical line. (C–F) PCoA and NJ analysis of C. ambrosioides based 
on the SSR profile (C, D) and MSAP profile (E, F). PCo1 and PCo2 represent the first two principal co-ordinates of the dataset, which explain 85.39 % of total 

genetic variation and 23.81 % of total epigenetic variation.

http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac139#supplementary-data


Zhang et al. — Roles of genetic and epigenetic variation in C. ambrosioides invasions1048

the eastern and south-western populations was much deeper 
than the epigenetic division. Accordingly, the AMOVA re-
sults showed that more genetic variation (44.31 %) than epi-
genetic variation (16.67 %) was explained by the differences 
among populations (Table 1). Hierarchical AMOVA showed 
that 50.14 % of the genetic variation was distributed between 
the eastern and south-western groups (group 1 and group 2), 
whereas only 12.34 % of the epigenetic variation was distrib-
uted between groups (Table 1). Unlike the genetic variation, 
most of the epigenetic variation (76.83 %) could be attributed 
to the variation within populations.

We found that the genetic FST values were significantly re-
lated to the epigenetic FST values among all 21 populations 
of C. ambrosioides (total: r = 0.589, P = 0.010) or within 
south-western populations (group 2: r = 0.207, P = 0.040), but 
no such relationship was detected within the eastern popula-
tions (group 1, Fig. 4A–C). We further analysed the correlations 
between geographic differentiation and genetic/epigenetic dif-
ferentiation. Positive spatial autocorrelation patterns were 
found for both the genetic (r = 0.472, P < 0.001) and epigen-
etic (r = 0.509, P < 0.001) variation among the 21 populations 
(Fig. 4D, G). However, we did not detect such a linear positive 
correlation for either genetic or epigenetic variation when the 
populations within group 1 or 2 were analysed separately (Fig. 
4E, F, H, I).

We then analysed genetic and epigenetic diversity. The 
analysis of Shannon’s diversity showed that the epigenetic di-
versity was generally lower than the genetic diversity in both 
the eastern and south-western populations (Supplementary 
data Table S1). Interestingly, the mean epigenetic diver-
sity was slightly lower in the eastern populations than in 
the south-western populations (HʹMSAP: 0.2446 ± 0.0192 
compared with 0.2711 ± 0.0090; Supplementary data Table 

S1; Fig. 5A), while genetic diversity was higher in the 
eastern populations than in the south-western populations 
(HʹSSR: 0.6906 ± 0.0694 compared with 0.5277 ± 0.0460; 
Supplementary data Table S1; Fig. 5A). No significant dif-
ference in either epigenetic or genetic diversity was detected 
between the heavy metal-polluted and unpolluted populations 
(Fig. 5B). We also analysed the frequency of each methylation 
type in both eastern and south-western populations. The fre-
quency of unmethylated loci (type 1) was significantly higher 
in the south-western populations than in the eastern popula-
tions (Fig. 5C; Supplementary data Table S10). Considering 
that the eastern populations were mainly unpolluted (except 
for QX), we also compared the frequency of each methyla-
tion type between the heavy metal-polluted and unpolluted 
populations. We found that the frequency of unmethylated 
loci (type 1) was higher in the metal-polluted populations than 
in the unpolluted populations (Fig. 5D; Supplementary data 
Table S10).

Demographic history of invasive C. ambrosioides populations

Both the Migrate-n and BAYESASS results showed ex-
tremely low levels of migration rates between groups 1 and 
2 (mh or mc < 0.05, and their 95 % confidence intervals over-
lapped zero; Fig. 6A, B; Supplementary data Table S11). The 
Migrate-n results showed low levels of historical migration rates 
(mh) among most populations within group 1 or 2 (mh < 0.1), 
except a moderate migration rate (mh = 0.215) from population 
HL to XT within group 2 (Fig. 6A; Supplementary data Table 
S11). The BAYESASS results also showed extremely low levels 
of contemporary migration rates (mc < 0.05) among almost all 
populations within group 1, while a moderate migration rate 

Table 1.  (A) Genetic and epigenetic AMOVA for 21 populations of C. ambrosioides analysed. (B) Three-level hierarchical analysis of 
epigenetic and genetic molecular variation (AMOVA) for C. ambrosioides, and the groups divided based on the best genetic cluster of 

populations in STRUCTURE

Source of variation d.f. Variance components Percentage of variation F-statistics 

(A) AMOVA

 � Genetic variation

  �  Among populations 20 1.43 44.31 FST = 0.443

  �  Within populations 713 1.80 55.69

 � Epigenetic variation

  �  Among populations 20 47.72 16.67 FST = 0.167

  �  Within populations 346 238.52 83.33

(B) Hierarchical AMOVA

 � Genetic variation

  �  Between group 1 and group 2 1 2.37 50.14 FCT = 0.501

  �  Among populations within group 19 0.56 11.83 FSC = 0.237

  �  Within populations 713 1.80 38.04 FST = 0.620

 � Epigenetic variation

  �  Between group 1 and group 2 1 38.31 12.34 FCT = 0.123

  �  Among populations within group 19 33.63 10.83 FSC = 0.124

  �  Within populations 346 238.52 76.83 FST = 0.232

http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac139#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac139#supplementary-data
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(0.1 < mc < 0.2) was detected among some populations within 
group 2 (Fig. 6B; Supplementary data Table S11). Limited gene 
flow values (almost all Nm < 1) was observed between groups 
1 and 2 and among populations within group 1, while rela-
tively high Nm values (Nm > 1) were observed among some 
populations within group 2 (Fig. 6C). Wilcoxon’s test revealed 
that five populations in group 2 (MY, XT, HY, JS and JJ) had 
a historical bottleneck either in the SMM or the TPM model 
(P < 0.05; Supplementary data Table S12), while none of the 
populations in group 1 experienced a historical bottleneck. 
In the mode-shift test, all populations except population HL 
showed an L-shaped distribution of alleles, providing no evi-
dence of a recent bottleneck (Supplementary data Table S12).

The DIYABC analyses performed to estimate the timing of 
the divergence between the two cluster groups (ABC1) indi-
cated that scenario 3 (Fig. 6D; Supplementary data Table S13) 
showed the highest posterior probabilities in both the direct 
(0.4400, 95 % CI = 0.0049–0.8751) and logistic regression 
comparisons (0.3861, 95 % CI = 0.3448–0.4274). In scenario 3, 
we hypothesized the simultaneous divergence of the two groups 
from one ancestral population 9010 (95 % CI = 1530–27 800) 
generations ago (Supplementary data Table S14). Based on an 
estimate of the generation time of C. ambrosioides of approx. 

1 year based on our field observations, the divergence times of 
C. ambrosioides were converted into an absolute time of 9010 
years. The analyses for changes in the effective population size 
(ABC2) indicated that scenario 2 (expansion model) showed 
the highest posterior probability value both across all 21 popu-
lations and in group 2 alone (Fig. 6E; Supplementary data Table 
S15). However, the best model of scenario 1 (bottleneck model) 
was detected across the populations of group 1. The median 
values of t (time scale measured in the number of generations) 
were 1490 (95 % CI = 40.1–21 800; for the total), 564 (95 % 
CI = 19.9–15 200; for group 2) and 14 200 (95 % CI = 2770–28 
900; for group 1) generations ago (Supplementary data Table 
S13), corresponding to 1490, 564 and 14 200 years, respectively

Relationships among epigenetic, genetic, phenotypic and 
environmental variation

We analysed the relationships between epigenetic and gen-
etic variation by dbRDA, which showed that the genetic vari-
ation based on 11 polymorphic SSR loci could explain 8.43 % 
of the epigenetic variation observed in C. ambrosioides (Fig. 
7A). Epigenetic variation was significantly correlated with all 
11 SSR loci (Supplementary data Table S16).
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We compared meteorological factors between the eastern and 
south-western populations, and found that the south-western 
region showed a higher ALT and a lower WS_2  min, GD_
Ann and AP_Avg (Supplementary data Table S6). Then, 
we further analysed the effects of meteorological factors on 
genetic or epigenetic variation by dbRDA. The 13 meteoro-
logical descriptors explained 41.33 % of the genetic variation 
but only explained 12.66 % of the epigenetic variation in the 
C. ambrosioides populations (Fig. 7B, C). In addition, these 

meteorological descriptors explained 70.56 % of the pheno-
typic variation (Fig. 7D). Most meteorological factors were sig-
nificantly correlated with phenotypic, genetic and epigenetic 
variation (Supplementary data Table S16). Among these me-
teorological factors, ALT, WS_2 min, GD_Ann and AP_Avg 
were significantly different in the eastern and south-western 
regions (Supplementary data Table S6). We also analysed the 
effects of heavy metal in soils on genetic or epigenetic vari-
ation by dbRDA. Compared with meteorological factors, soil 
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heavy metal content had less influence on the overall genetic 
and epigenetic variation (Fig. 7G, H). The determination co-
efficient between the contents of Mn, Zn and Cd in soil and 
epigenetic variation (0.3184, 0.3872 and 0.3207) was greater 
than that of genetic variation (0.1097, 0.0104 and 0.0350) 
(Supplementary data Table S16).

Then, we analysed the relationship between phenotypic vari-
ation and genetic or epigenetic variation by dbRDA. Similar to 
meteorological descriptors, the 12 phenotypic factors explained 
36.29 % of the genetic variation but only 18.72 % of the epigen-
etic variation in the C. ambrosioides populations (Fig. 7E, F). 
Most phenotypic factors were significantly different between 
the eastern and south-western regions (Supplementary data 
Table S2).

Finally, we performed EWAS to examine the association 
between leaf heavy metal contents and methylated loci, as we 
found that the frequency of unmethylated loci (type 1) was sig-
nificantly higher in the heavy metal-polluted populations. A 
total of 79 methylated loci (type 2 + 3) and 60 unmethylated 
loci (type 1) were associated with the heavy metal contents of 
leaves (P < 0.05, Fig. 8A, B).

DISCUSSION

Demographic history of invasive C. ambrosioides populations in 
China

Multiple introductions play important roles in the success of 
biological invasions, as they are likely to include independent 
genotypes and provide sufficient variation for local adaptation 
(Kolbe et al., 2004; Lavergne and Molofsky, 2007; Meimberg et 
al., 2010). Here, we assessed the genetic structure and patterns 
of introduction among 21 invasive C. ambrosioides populations 
in China. The occurrence of two independent introductions into 
China was detected. First, two distinguishable genotype lin-
eages were identified among the C. ambrosioides populations 
in China by STRUCTURE analysis (Fig. 3B). According to 
DIYABC analyses, the approximate divergence time between 
the two different lineages was estimated to be 9010 years ago 

(Supplementary data Table S14). However, C. ambrosioides 
is native to tropical America and was exported to the rest of 
the world at the beginning of the 18th century (Morton, 1981); 
the first record of C. ambrosioides in China comes from 
1919 (Herbarium of Biology, Peking University; Voucher: 
PEY0008776). Thus, the polymorphisms distinguishing the 
lineages of C. ambrosioides in China evolved independently in 
its native range, prior to its recorded introduction into China. 
Furthermore, we found a geographic pattern of the occurrence 
of the two different lineages (Figs 1 and 3B). One genotype lin-
eage was predominantly distributed in eastern China (group 1), 
and the other was found in south-western China (group 2). No 
admixture genotype shared between the populations of groups 
1 and 2 was detected. The earliest records of C. ambrosioides 
occurrence in both eastern and south-western China come from 
the 1930s (Herbarium, Institute of Botany, Chinese Academy 
of Sciences; Vouchers: 00510268 and 00510368). This ob-
vious east–south-west split of genotypes indicates independent 
C. ambrosioides invasion events in China. Since we did not 
sample populations from tropical America, the sources of these 
two Chinese lineages in their native areas are not known. In fu-
ture studies, more native populations of C. ambrosioides should 
be sampled to further elucidate their sources and pathways of 
introduction.

According to our contemporary and historical migration ana-
lyses, gene flow between the eastern and south-western groups 
of C. ambrosioides is limited (Fig. 6A–C). In addition, limited 
gene flow was also observed among populations within group 
1. Consistent with the results of gene flow, GENELAND ana-
lysis showed that the populations in eastern China were fur-
ther divided into three clusters (Supplementary data Fig. S1). 
Previous studies have reported that the introduction of multiple 
genotypes could increase the likelihood of establishment in the 
introduced range, and further genetic admixture among dif-
ferent introductions could increase the efficacy of selection in a 
new range (Roman and Darling, 2007; Rius and Darling, 2014; 
van Kleunen et al., 2015). The geographical splitting of distinct 
genotypes in multiple introductions of C. ambrosioides could 
be regarded as an early stage in range expansion. Subsequent 
recombination between different genotypes might be expected 
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to facilitate invasion in the future (Meimberg et al., 2010; van 
Boheemen et al., 2017).

Roles of genetic and epigenetic variation in C. ambrosioides 
invasion

We found phenotypic variations between the eastern and 
south-western groups of C. ambrosioides (Fig. 2A). Phenotypic 
variation plays a key role in the successful invasion of exotic 
plant species (Hagenblad et al., 2015). Both genetic and epigen-
etic variation can contribute to phenotypic variation (Scoville et 
al., 2011; Herrera and Bazaga, 2013; Vilatersana et al., 2016; 
van Boheemen et al., 2017). In this study, the roles of genetic 
and epigenetic variation in C. ambrosioides invasion were com-
prehensively evaluated.

Roles of genetic and epigenetic variation in the geographical dis-
tribution pattern of invasive C. ambrosioides  Although a spatial 
autocorrelation pattern was detected for both genetic and epigen-
etic variation throughout the range of the invasive populations 
(Fig. 4B, C), a higher proportion of genetic variation than epi-
genetic variation was found between eastern and south-western 
populations. Meanwhile, we found that even though the genetic 
and epigenetic pairwise FST values were significantly related 
(Fig. 4A), genetic variation had a greater effect on phenotypic 
variation than epigenetic variation (Fig. 7E, F). Thus, we de-
duced that the obvious geographical split of the two independent 
introductions is mainly due to phenotypic differentiation, which 
has a greater genetic basis than an epigenetic basis.

In invasive C. ambrosioides populations, climatic vari-
ation significantly contributed to the observed phenotypic 
differentiation (Fig. 7D). One possible explanation for this 
finding is that different phenotypic traits of the eastern and 
south-western populations may improve their ability to adapt 
to the different climates of their distinct distribution regions. 
Although both genetic and epigenetic variation were found 
to be significantly affected by climatic factors, climatic fac-
tors showed a stronger effect on genetic differentiation (Fig. 
7B, C). Therefore, genetic variation is a more dominant de-
terminant of the expansion of C. ambrosioides into geograph-
ically and meteorologically different regions than epigenetic 
variation. Genetic variation facilitating range expansion by 
improving the fitness of invasive populations has also been 
reported in other invasive plants, such as Senecio pterophorus 
and Ambrosia artemisiifolia (Vilatersana et al., 2016; van 
Boheemen et al., 2017).

Effect of epigenetic variation on metalliferous microhabitat 
adaptation  Chenopodium ambrosioides has been reported to 
be a manganese/lead hyperaccumulator that thrives in heavy 
metal-contaminated habitats (Zhang et al., 2012; Rivera-
Becerril et al., 2013). Here, we used a series of invasive popula-
tions from both metalliferous and non-metalliferous habitats to 
investigate the molecular basis of C. ambrosioides adaptation to 
heavy metal stresses in local microhabitats. Our comparison of 
genetic diversity between heavy metal-polluted and unpolluted 
populations of C. ambrosioides did not reveal any significant 
differences (Supplementary data Table S1; Fig. 4E). In add-
ition, no evidence of an intralineage genotype associated with 

either metalliferous or non-metalliferous habitats was found 
(Fig. 3B). Although several studies have indicated the relation-
ship between population genetic variation and heavy metal tol-
erance in hyperaccumulators (Verbruggen et al., 2009; Wójcik 
et al., 2013), the characterization of the genetic variation of C. 
ambrosioides from metalliferous and non-metalliferous habi-
tats failed to reveal adaptive variation, so we further performed 
an epigenome-wide analysis. Epigenetic modifications in gene 
expression have been recognized as an important mechanism 
underlying the plastic responses of plant traits to heteroge-
neous environments (Herrera and Bazaga, 2013; Chen et al., 
2022). Our hierarchical AMOVAs showed that the proportion 
of epigenetic variation within the C. ambrosioides popula-
tions (76.83 %) was much greater than the proportion of gen-
etic variation (38.04 %) (Table 1). Furthermore, the correlation 
between genetic and epigenetic variation disappeared within 
the eastern lineages (Fig. 4B). Thus, the potential for each lin-
eage of C. ambrosioides to adapt to complicated microenvir-
onments through specific epigenetic modifications should be 
considered. We found that the determination coefficient of soil 
heavy metal content on epigenetic variation was greater than 
that of genetic variation (Supplementary data Table S16). The 
frequency of unmethylated loci was much higher in the heavy 
metal-polluted populations than in the unpolluted populations 
(Supplementary data Table S10; Fig. 4G). Changes in global 
DNA methylation levels under heavy metal stress have simi-
larly been detected in other species (Ou et al., 2012; Feng et 
al., 2016; Fan et al., 2020). In addition, recent studies have 
reported that specific methylation changes can be induced by 
heavy metal stress and display transgenerational inheritance 
over many generations (Cong et al., 2019; Fan et al., 2020; Jing 
et al., 2022). For example, Feng et al. (2016) identified specific 
differentially methylated regions induced by heavy metal stress 
in rice, which were closely associated with transcriptional dif-
ferences in stress-response genes involved in metal transport, 
metabolic processes and transcriptional regulation. Our EWAS 
identified dozens of total methylated and unmethylated loci that 
were significantly associated with heavy metal contents in the 
leaves of C. ambrosioides (Fig. 7). Together, our results suggest 
that epigenetic variation plays an important role in the metal 
accumulation trait of C. ambrosioides, which allows it to cope 
with high heavy metal concentrations in the microenvironment.

Conclusion

In this study, we found that the eastern and south-western 
populations of C. ambrosioides in China may have origin-
ated from independent invasion events without recombination. 
Genetic variation is a more dominant determinant of the pheno-
typic differentiation and geographical distribution pattern of in-
vasive C. ambrosioides than epigenetic variation. Additionally, 
the global DNA methylation level and specific methylated loci 
contribute to the adaptation of invasive C. ambrosioides to local 
metalliferous habitats.

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.
oup.com/aob and consist of the following. Figure S1: results 
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of GENELAND analysis of 21 populations of Chenopodium 
ambrosioides. Table S1: the locality, habitat, longitude and 
latitude, sample size, genetic and epigenetic diversity index of 
the 21 populations of Chenopodium ambrosioides. Table S2: 
phenotypic data of C. ambrosioides populations in the common 
garden experiment. Table S3: heavy metal content in soil of C. 
ambrosioides sampling sites. Table S4: heavy metal content in 
leaves of C. ambrosioides populations. Table S5: Nemerow in-
tegrated pollution index of C. ambrosioides populations. Table 
S6: meteorological data across C. ambrosioides sampling 
sites. Table S7: characterization of 12 polymorphic genomic 
SSR markers for C. ambrosioides populations. Table S8: poly-
morphism information of SSR loci. Table S9: adapters and pri-
mers used for MSAP epigenotyping. Table S10: methylation 
frequency of 21 wild populations of C. ambrosioides. Table S11: 
mean contemporary migration rate estimated from BAYEASS 
and historical migration rate estimated from Migrate-n across 
the 21 C. ambrosioides populations. Table S12: bottleneck ana-
lysis for 21 populations of C. ambrosioides. Table S13: posterior 
probability of each of the three scenarios for C. ambrosioides, 
and their 95 % confidence interval based on the logistic and 
direct estimate. Table S14: estimated divergence parameters 
for the population groups of C. ambrosioides. Table S15: pos-
terior probability and their 95 % confidence interval of each of 
three scenarios for C. ambrosioides, and the population groups 
to evaluate effective population size changes. Table S16: the 
results of correlating predictor factor variation to epigenetic, 
genetic and phenotypic variation in dbRDA analysis.
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