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Abstract

DNA and RNA sequencing technologies have revolutionized biology and biomedical sciences, sequencing full genomes and transcrip-
tomes at very high speeds and reasonably low costs. RNA sequencing (RNA-Seq) enables transcript identification and quantification, but
once sequencing has concluded researchers can be easily overwhelmed with questions such as how to go from raw data to differential
expression (DE), pathway analysis and interpretation. Several pipelines and procedures have been developed to this effect. Even though
there is no unique way to perform RNA-Seq analysis, it usually follows these steps: 1) raw reads quality check, 2) alignment of reads
to a reference genome, 3) aligned reads’ summarization according to an annotation file, 4) DE analysis and 5) gene set analysis and/or
functional enrichment analysis. Each step requires researchers to make decisions, and the wide variety of options and resulting large
volumes of data often lead to interpretation challenges. There also seems to be insufficient guidance on how best to obtain relevant
information and derive actionable knowledge from transcription experiments. In this paper, we explain RNA-Seq steps in detail and
outline differences and similarities of different popular options, as well as advantages and disadvantages. We also discuss non-coding
RNA analysis, multi-omics, meta-transcriptomics and the use of artificial intelligence methods complementing the arsenal of tools
available to researchers. Lastly, we perform a complete analysis from raw reads to DE and functional enrichment analysis, visually
illustrating how results are not absolute truths and how algorithmic decisions can greatly impact results and interpretation.
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Introduction
RNA sequencing (RNA-Seq) is a technique used to determine
the presence and abundance of RNA/transcripts in a biological
sample at a specific time, revealing which genes are expressed and
more generally what genomic regions are transcribed [1]. RNA-
Seq studies, also referred to as massively parallel RNA sequencing
or RNA high-throughput sequencing, typically convert RNA into
cDNA and subsequently use next generation sequencing (NGS),
a cost-effective technology that sequences millions of DNA frag-
ments in parallel, providing high depth sequenced reads at a
relatively quick speed [2]. For NGS purposes, high depth implies
each fragment is sequenced several times to decrease detection
errors, and this resulting increased accuracy has revolutionized
fields such as functional genomics, gene expression profiling and
personalized medicine [3].

The specific workflows for DNA and RNA sequencing are
slightly different (see Supplementary Material S1), and recent

methods have notably been developed for direct RNA sequencing,
where RNA is not converted into cDNA and there is no reliance
on amplification steps [4]. However, the choice of a specific RNA-
Seq pipeline also depends on the research objective and may
include mRNA sequencing, whole transcriptome sequencing [5],
small (non-coding) RNA sequencing including miRNA sequencing
[6], targeted RNA sequencing [7], single-cell RNA sequencing [8],
ribosome profiling or others [9].

There have been many excellent reviews on RNA-Seq tech-
nologies and data analysis [9–12]. However, most reviews stop at
differential expression (DE) analysis and do not include functional
profiling and pathway analysis, a crucial step for translating
biological insights into molecular mechanisms or clinical appli-
cations. Moreover, the rapid development of novel tools and tech-
nologies calls for updated information. For example, Anders et al.
[10] provided a comprehensive RNA-Seq DE analysis protocol with
code and parameters. This protocol, however, employed TopHat2
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[13], which was then popular but now not as much used for reads
mapping. Likewise, with the rapid development of multi-omics
technologies and artificial intelligence, RNA-Seq has integrated
with these latest technologies, which has not been previously
covered.

To address these needs, we explain in detail the common steps
followed in current RNA-Seq and outline differences and similar-
ities of different popular options, including traditional and recent
approaches utilizing machine and deep learning. We additionally
perform a complete analysis from raw reads to DE and functional
enrichment analysis, visually illustrating how different methods
can lead to different results and conclusions, emphasizing the
need to both conduct comprehensive comparative analyses and
justify specific study choices.

RNA-Seq steps
NGS-based RNA-Seq analysis usually follows five steps.

Step 1: Read alignment
The first step in any RNA-Seq analysis pipeline is to align the
reads to a reference genome (see Supplementary S2 for read
format details). Alignment is the process of matching reads to
specific regions of the genome or transcriptome, and a read will
be considered ‘aligned’ if the algorithm could find its position
on the reference genome or it will be ‘unaligned’ otherwise.
The percentage of successfully and uniquely aligned genes will
serve as a quality measure of both the reads and the alignment
algorithm [14]. In ideal circumstances, all reads will be aligned
to one and just one position of the reference genome. However,
sometimes reads cannot be uniquely aligned due to repetitive
sequences within shared domains of paralogous genes [11], and
the aligner algorithm can sometimes simply fail to find matching
positions for some reads.

Generally, the alignment step is computationally expensive,
requiring major CPU usage and temporary disk storage [15]. Pop-
ular alignment tools such as BLAST [16] and BLAT [17] were
developed for relatively small datasets, and so they are unsuited
to align large NGS data. As a consequence, new methods were
designed for this purpose, such as Bowtie [18], Subread [19] and
STAR [20]. Interested readers can find detailed descriptions in
Supplementary S3, and a comprehensive performance evaluation
of the most common alignment algorithms in [21].

A separate hurdle and consideration is that RNA reads not only
originate from exons, but many actually originate from introns or
exon–intron junctions [22]. Transcripts originating from introns
can be similar in number to those coming from exons, and it
has been noted that large amounts of intronic sequences are not
explained by the fact that intronic regions are larger [23]. In turn,
when a read overlaps an intron–exon boundary, parts of the read
will be mapped to non-contiguous sites in the reference genome,
and so the mapping procedure may fail to successfully assign this
read. This also means splice junctions, namely sites of former
introns in mature mRNA, can be rather problematic to align, and
so it is preferable to detect them ab initio [24].

Finally, the raw reads will be aligned to the reference genome
as a sequence alignment/map (SAM) file or a binary alignmen-
t/map (BAM) file, and the next step in the pipeline is to know
which genes or exons they were matched to. It is important to
note that read alignments without a reference genome may be
performed, but such algorithms usually underperform when com-
pared to reference-guided methods [25]. There could be instances

where alignment-free techniques would be advantageous, how-
ever, such as for long RNAs, but these algorithms typically fail to
accurately quantify expression in low-expressed genes and small
RNAs [26, 27].

Step 2: Reads summarization
Once reads have been aligned to a reference genome or transcrip-
tome, the next step is to map those reads to known genes, exons
or transcripts (annotation) and quantify them in terms of a count
matrix. The process of counting mapped reads is summarization
[28], and there are various computational tools to do this such as
TopHat [22] and featureCounts [28]. Depending on the biological
sample, one will have to choose which features will be used to
summarize the aligned reads, where features refer to continuous
biological sequences (genes, exons or transcripts). Further, for the
summarization step, one needs an annotated reference genome or
annotation file of a reference genome to link to, and then count
the number of reads that were aligned to each feature in the
annotated genome. Typically, a significant number of reads will
not be mapped into any known features, even in the case of well
annotated organisms like a human or mouse [14], because those
reads map to genomic regions outside annotated genes or exons.

The four most common annotation databases are currently
RefSeq, UCSC, Ensembl and GENCODE (see Supplementary S4).
Generally, it is good practice to choose one annotation source
and keep its notation until the end of the analysis. We note
that it has also been proposed to utilize a less complex gene
annotation, such as RefSeq, when conducting an experiment that
focuses on reproducible and robust gene expression estimates,
and using more complex genome annotation, such as Ensembl,
when conducting exploratory research [29].

There are subtleties that make the summarization a little more
complicated than intuited. Firstly, summarization programs must
work with both DNA and RNA sequences. These programs are
required to work with both single and pair-ended reads. Moreover,
the summarization algorithm must accommodate splice variants.
Lastly, indels in aligned fragments can significantly increase the
computational cost of the read counting step, especially when the
number of features is large.

Altogether, there are two common read counting approaches
for RNA-Seq data: 1) reads that match annotated exons are
counted, and 2) counting at the gene level. The first approach
attempts to match reads to exons and count the number of
matches for each exon, typically used to test splice variants
between groups, while the second counts all reads that align
to any exon inside each gene, thus counting reads instead of
exons and requires a gene annotation file. Moreover, as previously
mentioned, one of the main problems when summarizing RNA-
Seq reads is alternative splicing, meaning single genes can
express different transcript isoforms, and reads and subsequent
counts do not distinguish between them [28]. Therefore, programs
and algorithms to specifically summarize RNA-Seq reads are
needed. Two popular tools for counting aligned reads are
featureCounts [28] and HTSeq-count [30] (see Supplementary S5
for details). The output after summarization is a count matrix
indicating the number of aligned reads to each feature in each
sample of the experiment and will be the input data for DE
analysis.

Step 3: Differential expression analysis
In this step, one needs to define a statistic to measure gene
expression levels. The default choice are counts, which entails the
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number of reads of each feature (i.e. transcript in the context of an
RNA-Seq analysis). Counts are the raw measurement of transcript
abundance, and other measures such as reads per kilobase mil-
lion (RPKMs), fragments per kilobase million (FPKMs), counts per
million reads mapped (CPM) and transcripts per kilobase million
(TPM) normalize according to gene length and/or millions of base
pairs.

The goal of DE analysis is to identify genes whose patterns of
expression significantly differ across phenotypes or conditions of
interest. One simple way to proceed would be to select genes with
the highest log-fold difference in expression level when compar-
ing phenotypes or conditions; however, this would not account for
biological variation, which is different from gene to gene. Common
statistical approaches use parametric tests such as a t-test, or
non-parametric tests like the Mann–Whitney test. These tests
indeed perform reasonably well when analyzing microarray data,
but they perform very poorly with RNA-Seq data [31–33]. There
are several reasons for this, for instance: the t-test assumes a
continuous distribution, appropriate for microarray data where
the raw data are fluorescence intensities on a continuous scale
[34], but RNA-Seq counts are intrinsically discrete; and RNA-Seq
techniques test gene by gene, without using the information from
other genes, thus neglecting variability. Due to these challenges,
new methods were specially created to analyze DE in RNA-Seq
data. Two of the most popular ones are DESeq2 and edgeR (see
Supplementary S6 for details).

The main output of both methods is a table with log-fold
changes for each gene in the list (usually base 2 logarithm), a test
statistic (Wald statistic for DESeq2, different options for edgeR),
and the corresponding P-value. Genes with low P-values will be
considered differentially expressed, users typically define a pre-
fixed cutoff, and the results below such threshold are considered
statistically significant. Individual tests for each gene is straight-
forward, easy to understand and to a certain extent quite popular,
but it has serious drawbacks: first, multiple testing will produce
a large number of false discoveries. This can be resolved by using
multiple test control techniques to adjust for the false discovery
rate (FDR), at the expense of losing sensibility, namely a lower
probability of finding significant results [35]. Second, raw data in
RNA-Seq are feature counts, namely the number of reads aligned
to each genetic feature. A longer genetic feature, for instance a
very long gene, will have more aligned reads and a higher number
of counts by virtue of being long, not because it has a higher
level of expression. Therefore, count variance and gene length
will be inversely proportional, and the power of the test and the
probability of detecting true DE is a function of gene length [36].
Normalizing raw counts to gene lengths, using measures as RPKM
and FPKM, addresses this bias. However, the most serious draw-
back is that the most differentially expressed genes (DEGs), mean-
ing those with the lowest P-values or highest log-fold changes,
may not necessarily be most relevant or explanatory for the
phenotypes or conditions of interest in a study. To address this key
issue, prior knowledge of the phenomenon of interest is essential,
and any such knowledge must be accounted for during analysis.
Finally, alternative splicing allows a gene to encode multiple pro-
teins, called isoforms, in eukaryotes. This occurs when exons are
joined in different combinations due to inclusion or exclusion of
exons, which may affect quantification of gene expression levels
during RNA-Seq analysis [37] (see Supplementary S6).

Step 4: Gene set analysis
Identifying DEGs may not on its own yield meaningful biological
interpretations. Genes do not act in isolation, gene expression

is a very complex coordinated process, and expression levels in
different genes can depend on each other [38]. To account for
this, one must cluster genes according to functionality, similarity,
biological relationships or other relevant classifications. Likewise,
one would want to test DE in these groups of genes, usually called
gene sets, instead of individual genes. Such a large-scale analysis
is typically called gene set analysis (GSA), not to be confused
with gene set enrichment analysis (GSEA), which is a particular
technique for GSA and we will later cover in detail.

Gene sets are groupings of genes deemed related in some
relevant manner, such as simultaneous participation in a signal-
ing pathway, related or dependent expression patterns, similar
biological process, etc. [39]. A collection of gene sets can be
subsequently formed by grouping based on relationships such as
physical proximity, chemical interactions, their contribution to a
certain phenotype or medical condition, or else. Therefore, there
are many possibilities for constructing gene sets and hierarchies,
and the appropriate choice will depend on the study question.
Two popular examples are the Gene Ontology (GO) and the KEGG
pathways (see Supplementary S7 for details).

Over-representation analysis
Over-representation analysis consists of a hypergeometric test,
defined to investigate the over-representation of different GO sets
or pathways in a group of DEGs. This test is separated into two
analyses, up and down regulated DEGs, and a gene set or pathway
will be considered significantly over-represented if the chances
of observing at least as many of them in the DE set is too low,
assuming random sampling.

For over-representation analysis, one needs to first define a
threshold to filter out all genes that are not DE (see an example
in Supplementary S8). Other than such threshold being rather
arbitrary, it is important to keep in mind that in an RNA-Seq
experiment the messenger RNA (mRNA) and non-coding RNA
(ncRNA) molecules are cut into millions of small pieces, each
one producing a read when successfully aligned and mapped to
a feature. Assuming all reads have similar length, longer genes
will have more counts than shorter ones, simply because the
number of reads is the number of fragments successfully aligned
to each genetic feature. With counts being the statistic used to
perform DE analysis, the probability of detecting real expression
differences is higher in longer genes than in shorter ones, lead-
ing to the bias towards longer genes previously discussed. This
is one example showing how a statistical procedure originally
developed for microarray data is not well suited for RNA-Seq data
but is still commonly used. Method adaptations to address this
have been proposed, with one of the simplest approaches being
weighting the t-statistic in DE analysis by gene length to try to
correct for it [40]. GOseq [41] quantifies the likelihood of DE as
a function of gene or transcript length and subsequently incor-
porating this function into the statistical test of each feature’s
significance. Yet another method is SeqGSA [42], where gene test
statistics are re-standardized according to a special value called
the maxmean statistic using a randomization process. In this
approach, gene length is considered by weighting each gene’s con-
tribution by its length during the randomized re-standardization
process.

Lastly, one of the drawbacks of over-representation analysis is
the need to introduce a somewhat artificial cutoff to filter out
genes that are not considered DE. One popular method that does
not require such a threshold but rather focuses on a summary
statistic for all gene expression levels is GSEA.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac529#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac529#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac529#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac529#supplementary-data


4 | Chen et al.

Gene set enrichment analysis
GSEA is a computational method that determines whether an a
priori defined set of genes shows statistically significant consis-
tent differences between two study groups, biological states or
phenotypes. It is different to over-representation analysis and a
technically more complex manner to investigate differences in
the expression patterns of gene sets and pathways [43]. The main
goal of GSEA is to create a ranked list of genes according to DE
levels and then test for overrepresentation of different gene sets
at the top or at the bottom of that ranked gene list. The general
idea is that a gene set overrepresented at the top of the ranked
list will have a certain degree of up-regulation, while a gene
set overrepresented at the bottom of the list will exhibit down-
regulation. More specifically, up-regulated at the positive position
can be said to happen when most, if not all, of the genes of a given
set appear at the beginning of the ranked list, and up-regulated at
the negative position when most of those appear at the end of the
list. Note that, although GSEA does not support gene sets with up-
and down- regulated genes, there are approaches to perform this
type of analysis. See for instance [44].

In both versions, pre-ranked and not, GSEA will produce a
normalized enrichment score (NES) for every gene set or pathway
in the collection. Upon FDR specification, GSEA will output a
list of gene sets with positive enrichment scores, meaning over-
represented at the beginning of the ranked list, and a list of gene
sets with negative enrichment scores, which are correspondingly
over-represented at the end of the ranked list. In this case, how-
ever, a positive enrichment score indicates a correlation between
the gene set and the first phenotype, while a negative enrichment
score represents correlation with the second phenotype. We refer
readers to Supplementary S9 for details and examples.

Lastly, the GSEA algorithm has been adapted and extended to
specifically work with RNA-Seq data [45, 46]. Other additional
methodologies have been developed to use it alongside linear
regression models [47].

Step 5: Functional enrichment analysis
DAVID functional classification tool
One possible drawback of enrichment analyses such as over-
representation and GSEA is that gene sets or pathways may
not capture complex relationships between genes and so-called
terms, namely elements of gene ontologies that represent gene
product properties. Also, relationships between genes and anno-
tated terms are not one-to-one: one term is associated with many
different genes, and each gene is included in many different gene
sets and pathways. Accordingly, it is assumed genes will have
many annotations in common if there is a subset of genes with
similar functionalities in a list, namely that they are together
in various gene sets and pathways. Conversely, one could say
gene sets and pathways have features in common, since they
share many common genes. Overall, there is a complex ‘many-to-
many-genes-to-terms’ relationship between genes, gene sets and
pathways, and GSA methods can fail to capture it in full.

The Database for Annotation, Visualization and Integrated Dis-
covery (DAVID) provides an algorithm to identify overlaps between
user-suppled list of genes and curated databases, condensing the
list of genes or associated biological terms into organized classes
called biological modules (see Supplementary S10 for details).
It also catalogs groups of genes sharing common biology and
groups of gene sets and pathways sharing common genes [48–50].
This method replaces gene sets and pathways for more complex,
broader biological modules that reduce redundant results, aiming

for easier understanding while still providing meaningful infor-
mation about complex biological networks. DAVID uses Fisher’s
exact test [49, 50] to processes information in a manner similar to
other tools such as GOToolBox and ingenuity pathway analysis
(IPA) [51–54]. One key is its clustering algorithm, which allows
genes and terms to simultaneously be in different clusters, unlike
traditional techniques such as hierarchical or K-means clustering.
Nevertheless, the selection of a cutoff for significance values
remains arbitrary and, like other methods, modifications will alter
enrichment results.

Ingenuity analysis
IPA is a commercial bioinformatics software that allows canonical
pathway analysis of RNA-Seq data against a manually curated
pathway database [51]. Similar to DAVID, IPA identifies the over-
represented pathways by using Fisher’s exact test to measure
any significant overlaps of a user-provided gene list and pre-
defined gene sets. Additionally, IPA uses the z-score to assess
the consistency between the observed gene expression pattern
and the expected gene sets [51]. Compared with KEGG, which
consisted of 551 pathways at the time this article was written, the
number of available pathways in IPA was 734. We also note that
although some pathways can be found in both databases, their
definition in terms of gene contents can be largely different and
contains only a small portion of overlapped genes [55]. It is thus
expected nonidentical enriched pathways will be obtained, since
different pathway databases (e.g. hallmark gene sets, KEGG and
IPA) and/or over-representation analyses are applied. Important
biological signatures can still be captured using these different yet
well-curated databases and sophisticated approaches, however.
For example, researchers demonstrated that IL-2 signaling plays
a crucial role in regulating Treg cell homeostasis and function,
which was consistent with their GSEA analysis, showing that IL-
2-STAT5 signaling was the most enriched hallmark pathway [56].
Using the same RNA-Seq data, IPA also identified IL-2 as one
of the most important upstream regulators, albeit IL-2 signaling
pathway was only ranked 52 (−log(P-value) = 5.67) out of the 299
statistically significant canonical pathways (P-value < 0.05) (see
Supplementary Data – Enriched Pathways).

Sequencing and analysis of non-coding
RNAs
Recent advances in high-throughput sequencing technology have
provided an impressive platform for profiling ncRNAs in the
transcriptome. This has led to the development of a plethora
of ncRNA sub-class specific computational tools and databases
for their identification and characterization. These techniques
and tools have helped uncover the significance of ncRNAs in
various physiological mechanisms and regulations during disease
pathogenesis.

Long non-coding RNAs
Long non-coding RNAs (lncRNAs) are defined as ncRNAs longer
than 200 nucleotides [57]. The functions of lncRNAs include mod-
ulating gene expression [58–60] and regulating chromosomal as
well as epigenetic modifications [61]. LncRNAs are profiled by
sequencing transcriptomes using polyA-selected or stranded ribo-
somal RNA (rRNA)-depleted libraries from total RNA samples with
high sequencing depth (≥30 million) [62–65].

Throughout the years, several machine-learning tools [66],
utilizing gold-standard datasets from GENCODE and RefSeq
as training sets, have been developed for the characterization
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of lncRNAs [67] using classifiers including support vector
machine (SVM), logistic regression, Random Forest and Deep-
Learning. These algorithms have employed both alignment-based
features (e.g. sequence conservation, phylogenetic analysis) and
alignment-free features (e.g. physiochemical properties, Open
reading frame-related and secondary structure related) [66]. Two
notable lncRNA detection tools include lncRScan-SVM [68], which
uses SVM to distinguish lncRNAs from mRNAs, and LncFinder
[69], which accurately identifies lncRNAs by employing 5 different
classifiers. Specific tools like iSeeRNA [70] and linc-SF [71] were
also developed for the identification of long intergenic non-coding
RNAs (lincRNAs).

Increased interest in lncRNA research and innovations allow-
ing their accurate characterization have helped identify thou-
sands of lncRNAs. This has led to the development of several
lncRNA databases. Comprehensive databases like LNCipedia [72]
and LNCBook [73] have been created using experimentally veri-
fied lncRNAs from several pre-existing databases. There are also
specialized databases (LncRNADisease 2.0 [74], Lnc2Cancer 3.0
[75], etc.) and predictors (NNLDA [76], IDLDA [77], gGATLDA [78],
etc.) available that have been curated for lncRNAs and disease
association.

Circular RNAs
Circular RNAs (circRNAs) are a sub-class of RNAs that are usually
grouped under lncRNAs. CircRNAs are characterized as cova-
lently closed and non-polyadenylated circular transcripts that are
formed by either exon or protein driven back-splicing mecha-
nisms [79–83]. The lack of 5′ and 3′ terminals in circRNAs pro-
motes their stability in comparison to linear RNAs and makes
them more resistant to exonuclease degradation [84]. Hence,
circRNA sequencing usually involves the extra step of treating the
samples with RNase R for circRNA enrichment by degrading the
linear RNAs in the sample, in addition to the rRNA depleted library
preparation protocol, but with high sequencing depth, circRNAs
can also be identified in samples without RNase R treatment [85,
86]. CircRNAs can also be sequenced utilizing Nanopore long-read
sequencing with a modified RNA-Seq sample preparation protocol
with rRNA depletion and additional polyA tailing prior to RNase R
treatment [87].

With the rediscovery of circRNAs and its several key functions
including regulation of miRNA expressions [88–90], interaction
with RNA-binding proteins [91, 92], transcription regulation [93]
and more, tools were developed for identification, characteriza-
tion and molecular network interaction analysis of circRNAs. In
its initial phase, most circRNA detection software (CIRCExplorer2
[94], CIRI2 [95], KNIFE [96], find_circ [84]) employed alignment-
based approaches. The latter was achieved by splitting unmapped
junctions/back-spliced junctions (BSJ) and aligning them to the
reference genome in reverse, by local alignment, or by construct-
ing a pseudo-reference of potential BSJs for read alignment [97].
In addition, specific tools like CIRIquant [98] and CirComPara [99]
offer a comprehensive pipeline for the quantification of circRNAs
incorporating above-mentioned identification tools. With the con-
struction of robust circRNA databases (circBase [100], CIRCpedia
[94], CircRNADb [101] and circFunBase [102]), recently several
machine-learning (PredcircRNA [103], PredicircRNATool [104]) and
deep-learning algorithms (DeepCirCode [105], JEDI [106]) were
also introduced. Using sequence- and structure-specific features,
these tools predict back-splicing events and thus circRNA.

Specialized tools and databases are available for the down-
stream functions and interaction networks of circRNAs. For

instance, CIRCInteractome [107] provides information on poten-
tial miRNA targets and RNA-binding proteins of any given
circRNAs. Databases like Circ2Disease [108], circRNADisease
[109] and Circ2Traits [110] contain experimentally validated
information on disease associated circRNAs. CIRI-AS [104]
performs alternative splicing analysis for circRNAs.

MicroRNAs
MicroRNAs (miRNAs) are small ncRNAs that are ∼20–23 nt long
[111] and play crucial regulatory roles in gene silencing [112, 113]
and translation repression [112, 114, 115]. Small RNA sequenc-
ing technology has advanced significantly in the recent years,
gradually gaining traction as a preferred approach for profil-
ing miRNAs and other small ncRNAs (See Supplementary S11).
The standard workflow of small RNA-Seq library construction
includes reverse transcription of small RNA, which has been
isolated using size exclusion gel or size selection magnetic beads,
to cDNA, extension of the cDNA fragments by ligation of two
adaptors or polyadenylation, and PCR amplification [116] followed
by sequencing (depth ≥ 5 million reads) [117]. In efforts to reduce
possible PCR amplification biases during sequencing, some small
RNA library preparation kits include unique molecular identifiers
(UMIs), which enables the distinction of molecules that have been
amplified [118].

Many computational tools are available for the detection
and characterization of miRNAs. Currently, among over 60
miRNA databases, miRBase [119] is widely used for miRNA
read alignment. Also, several web-based and locally available
algorithms have been developed for the identification of known
miRNAs as well as novel miRNAs (miRMaster 2.0 [120], CAP-
miRSeq [121], mirTools2.0 [122], miRNAkey [123], etc.) and
isomiRs (isomiR2Function [124], miRge [125], etc.), which are
miRNA variations with respect to a reference sequence. All
the software and databases related to miRNAs have been
listed on a web-based platform, Tools4miR [126]. Among these,
miRDeep2 [127] has been most popular algorithm for miRNA
identification. miRDeep2 is a deep-sequencing tool based on
the miRNA biogenesis that uses RNA-fold [128] to predict the
secondary structures and characteristics and determine potential
miRNAs.

Recent developments
Metatranscriptomics
The microbiome, which is defined as ‘a characteristic microbial
community occupying a reasonable well-defined habitat which
has distinct physio-chemical properties’ [142], has drawn great
attention over the last decade. Because microbial metabolism
can significantly contribute to host health or fluctuations in
natural complex ecosystems [143,144], it is crucial to identify the
involved microbes and understand how they act and respond
under specific conditions. Metatranscriptomics can help this goal
by capturing the transcripts and active genes of a whole micro-
bial community, in contrast to transcriptome of a single type
of cell/organism with traditional RNA-Seq. Here we focus on
the metatranscriptomics bioinformatics workflow, whereas the
sequencing workflow can be found in Supplementary S12.

The metatranscriptomics bioinformatics workflow includes
quality control of raw reads, assembly-based or read-based anal-
ysis, taxonomic and functional annotation, and DE analysis. The
first step is to clip sequence adapters, trim low-quality bases, and
remove undesired reads (e.g. short fragments after trimming, host
mRNA or rRNA due to incomplete removal prior to sequencing).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac529#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac529#supplementary-data
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Table 1. Applications of ML/DL in (meta-)transcriptomics

Method Application Source code References

GA/kNN Identification of differentially expressed genes https://www.niehs.nih.gov/
research/resources/software/
biostatistics/gaknn

[129]

GA/kNN,
gradient boosting

Identification of differentially expressed genes NA [130]

E-M algorithm De novo assembly of meta-transcriptomics data https://sourceforge.net/projects/
dnpipe

[131]

Logistic regression w/ L2
regularization

Identification of predictive microbial taxa and KOs
from meta-transcriptomics

NA [132]

Random forest, gradient boosting Construction of predictive models from
meta-transcriptomics

https://github.com/armbrustlab/
trophic-mode-ml

[133]

CNN/Grad-Cam Identification of marker genes and classification of
cancer types

NA [134]

CNN/Grad-Cam Identification of marker genes and classification of
oral cancer types

NA [135]

CNN/saliency maps Identification of marker genes and classification of
cancer types

https://github.com/chenlabgccri/
CancerTypePrediction

[136]

Deep NN Alternative splicing analysis https://github.com/Xinglab/DARTS [137]

CNN and DeepLIFT Regulatory mechanisms identification https://github.com/stasaki/DEcode [138]

Mixing observation Data augmentation NA [139]
Autoencoder Cell content inference from bulk RNA-Seq data

(which is typically done w/ scRNA-Seq data)
https://github.com/xindd/DCNet [140]

ICA Identification of novel regulons https://github.com/avsastry/
modulome-workflow

[141]

CNN: Convolutional neural network; E-M: expectation–maximization; GA: genetic algorithm; ICA: independent component analysis; kNN: k nearest neighbors;
NN: neural network.

Commonly used QC tools for NGS data include FastQC [145]
and Trimmomatic [146]. For rRNA removal after sequencing,
SortMeRNA [147] and barrnap [148] can be used. The retained
high-quality reads can be subsequently analyzed through either
assembly-based or read-based approaches. The former requires
more computational resources and only reconstructs transcripts
with enough coverage, yet it is suitable for discovering novel
expressed genes or when the reference genomes are unavailable
or inadequate. Further, there are few assemblers specifically
developed for metatranscriptomic data (e.g. IDBA-MT and IDBA-
MTP), although some designed for metagenomics or traditional
RNA-Seq, such as MEGAHIT, SPAdes, metaSPAdes and Trinity, are
still used in metatranscriptomics research [149–154]. The read-
based approach, on the other hand, is relatively computationally
inexpensive and more sensitive to lowly expressed genes, but
largely depends on the accuracy and adequacy of reference
databases. Sequence aligners, such as BWA, Bowtie2, DIAMOND
and SOAP2, are commonly used to search against reference
databases [155–158]. The contigs or mapped reads can thereafter
be annotated against databases (e.g. GO, KEGG, Uniprot, COG,
Pfam, etc.) for functional profiling. They can also be mapped to
the reference databases or, if available, the recovered genomes
from paired metagenomics analysis, to understand and quantify
microbial transcripts among all transcripts. DE analysis for
metatranscriptomics is still in its early stage of development,
so methods for traditional RNA-Seq, such as DESeq2 and edgeR,
remain used in metatranscriptomics research [159–161]. However,
because transcript abundance in a microbial community varies
strongly due to gene-copy variation, spurious DE signals can
be introduced if this is not accounted for [162]. To that effect,
several models have been proposed for metatranscriptomic
data normalization, including RNA-level within-taxon total-sum-

scaling and, when paired metagenomic data are available, scaling
by DNA-level estimated taxon abundance [162,163].

Several packages have integrated most, if not all, of the steps
for metatranscriptomic data analysis. Packages incorporating
assembly-based approach are SqueezeMeta, IMP, MUFFIN, DiTing,
CoMW and MetaPro [164–169], and those applying read-based
approach are SAMSA2, MetaTrans, HUMAnN3, COMAN, FMAP
and ASaiM-MT [170–175]. For long-read assembly, Canu was
wrapped in SqueezeMeta for both PacBio and Oxford Nanopore
data processing [176]. Lastly, it is worth noting there is currently
no consensus on the best practice for metatranscriptomic data
analysis, and the corresponding statistic methods and tools are
continuously developing.

Machine learning approaches
In RNA-Seq data, the number of features is generally significantly
larger than the number of samples (i.e. ‘large p, small N’ problem).
Traditional statistical methods rely on stringent and often hard-
to-verify assumptions, making it difficult to control false-positives
when dealing with high-dimensional low-sample-size data [186].
In the context of RNA-Seq data, this high-dimensionality will
produce many spurious or undetected genes when performing DE
analysis with traditional statistical methods, even if the actual
false-positive and false-negatives are low. To address this, meth-
ods banking on machine learning (ML) and deep learning (DL)
approaches have been proposed. A brief introduction to ML/DL
can be found in Supplementary S13 and the applications of ML/DL
in transcriptomics/metatranscriptomics are covered in the fol-
lowing paragraphs and Table 1.

One key task in RNA-Seq analysis is to identify DEGs. The
underlying assumption is here that if genes are differentially
expressed, they might contribute to the trait/phenotype/disease

https://www.niehs.nih.gov/research/resources/software/biostatistics/gaknn
https://www.niehs.nih.gov/research/resources/software/biostatistics/gaknn
https://www.niehs.nih.gov/research/resources/software/biostatistics/gaknn
https://sourceforge.net/projects/dnpipe
https://sourceforge.net/projects/dnpipe
https://github.com/armbrustlab/trophic-mode-ml
https://github.com/armbrustlab/trophic-mode-ml
https://github.com/chenlabgccri/CancerTypePrediction
https://github.com/chenlabgccri/CancerTypePrediction
https://github.com/Xinglab/DARTS
https://github.com/stasaki/DEcode
https://github.com/xindd/DCNet
https://github.com/avsastry/modulome-workflow
https://github.com/avsastry/modulome-workflow
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac529#supplementary-data
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Table 2. Examples of publicly available workflows for multi-omics data integration, analysis, and/or visualization

xMWAS PaintOmics 3 TIMEOR Mergeomics 2 OmicsAnalyst BIOMEX miodin 3Omics multiGSEA

Implementation R, online Online Online,
command
line

Online Online R R Online R

Functionality
Pre-processing x x x x x
Data integration x x x x x x
Network analysis x x x x x x
Enrichment analysis x x x x x x x
Pathway analysis x x x x x x
Time series analysis x x
Visualization x x x x x x x x

Accepted-omics data
(besides transcriptomics)

Metabolomics x x x x x x x
Proteomics x x x x x x x x
Genomics x x x x
Epigenomics x x
Region-based omicsa x x
Regulatory omicsb x x x x

Reference [177] [178] [179] [180] [181] [182] [183] [184] [185]

aChIP-seq, ATAC-seq or Methyl-seq. bmiRNAs or other transcription factors.

being studied. ML, however, instead of making such an assump-
tion, simply finds a combination of features (transcripts) that
can largely discriminate two groups. For example, the genetic
algorithm k-nearest neighbors method (GA/kNN) has long been
proposed to select a subset of discriminative genes (usually also
DEGs) from RNA-Seq data between two groups (e.g. control versus
experimental group) [129]. This method has been used to iden-
tify discriminative genes from RNA-Seq data of 31 tumor types,
showing greater than 90% accuracy for classification task [130].
Interestingly, using a different ML approach (gradient boosting
machines), the authors observed a comparable classification per-
formance, yet the gene set selected by the two methods slightly
overlapped. This highlights the need for experimental confirma-
tion of gene sets identified as biologically relevant, when ML
techniques are applied to discover DEGs.

Leveraging the power of ML in metatranscriptomics is still an
under-researched topic, but it has shown to improve the quality
of de novo assembly of metatranscriptomic data by learning
the abundance information of transcript contigs [131]. Another
application, in parallel with traditional RNA-Seq, is to identify
informative microbial taxa and KOs from metatranscriptomic
data [132]. Yet another desirable application is to directly build
a predictive model based on metatranscriptomic data. As one
example, a random forest-based feature selection method was
used to obtain a subset of expressed genes from protist meta-
transcriptomes to predict the in situ trophic status of marine
protists [133].

Beyond traditional ML approaches, DL has also been used
for DEGs discovery. For example, researchers [134–136] applied
convolutional neural network (CNN) to identify key transcripts
from RNA-Seq data of different phenotypes. The RNA-Seq data
were normalized and embedded into two-dimensional images,
followed by representation learning using a CNN model. Finally,
a heatmap based on Guided-Grad CAM [187] was generated to
visualize and extract the important transcripts from the model
output. Additional applications of ML/DL, beyond DEGs discovery,
include differential alternative splicing inference [137], regulatory
mechanisms identification [138] and RNA-Seq data augmentation

[139]. Other DL applications include the identification of cell
landscapes based on RNA-Seq data (rather than scRNA-Seq) using
autoencoder models [140]. Using unsupervised learning methods,
one can build a transcriptional regulatory network to identify
key regulons and elucidate the function of undercharacterized
regulons [141,188].

Though being powerful and promising methods, ML and DL are
no panacea. In some cases, classical statistical approaches may
still be useful. For example, ML approaches including RF and SVM–
RFE have been used to select relevant genes for GSA with quan-
titative trait loci, but the performance of the selected gene sets
based on biologically relevant criteria did not outperform those
obtained using simple univariate gene selection methods [189].
Aside, one criticism of using ML/DL in biological systems is the
resulting inscrutable black box model, which, even if highly accu-
rate, cannot facilitate our understanding of biological processes or
molecular mechanisms. Methods have been proposed to explain
the prediction/classification from ML/DL models, such as TreeEx-
plainer [190] and class activation maps [191], and have recently
been applied to interpret the performance of black-box ML models
for tissue types’ prediction from RNA-seq data [192]. However,
deciphering underlying biological principles could highly bene-
fit from constructing inherently interpretable ML models [193].
Overall, more sophisticated algorithms and methods have yet to
be developed for extracting meaningful information from high-
dimensional expression data, DE analysis and GSA, as well as
integrating with other ‘omics’ data.

Multi-omics integration
Recent advances in high-throughput technologies enable us
to study complex biological systems through various ‘omics’
methods beyond RNA-Seq, including genomics, proteomics,
and metabolomics, to name a few. Integrating omics data can
provide novel insights, broadening our understanding of complex
molecular mechanisms. For instance, researchers have combined
transcriptomic, epigenomic and proteomic data to identify
potential epigenetic drivers involved in Alzheimer’s disease [194].
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Figure 1. Flowchart describing the major steps of bioinformatics analyses in this study.

Figure 2. Venn diagram of (A) DE genes with adjusted P value < 0.05 and (B) top 100 DE genes based on three reference genome databases (Ensembl,
GENCODE and UCSC) and two DE analysis methods (edgeR and DESeq2).
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Figure 3. Top 10 up-regulated hallmark gene sets obtained from pre-
ranked gene list (sgn(logFC)∗log(P-value)) and DESeq2-normalized counts
data with GSEA built-in ranking functions including difference statistic,
ratio statistic, log-ratio statistic, signal-to-noise statistic and t-test statis-
tic. The number indicates the rank of the gene set based on the NES and
the color represents the FDR q-value of the gene set. The dash symbol (–)
indicates the gene set is not listed among the top 10 based on the NES.

A typical multi-omics workflow includes data collection, data
pre-processing, data integration and data analysis. For data col-
lection, researchers can generate different types of omics data
from the same samples, and then analyze by individual omics and
collectively as multi-omics data. Alternatively, the data set can be
integrated with multi-omics databases to study single-nucleotide
polymorphisms (SNPs), insertions and deletions (indels), structure
variations (SVs) and other molecular interactions and mecha-
nisms. There are publicly available multi-omics databases for
various research topics including cancer [195], cancer driver genes
[196], tissues [197], aging biology [198], maize [199,200], micro-
biome [201], and early embryos [202], among many others. Typi-
cally, each omics data set can be raw counts or abundances matri-
ces containing sample IDs and feature identifiers (e.g. transcripts,
proteins or metabolites) as the first row or column. Data pre-
processing may include data filtering, quality checking, normal-
ization, missing value imputation and batch effects correction.
These steps help reduce false discoveries and spurious results.
Tools incorporating pre-processing step as part of their workflow
include miodin [183], BIOMEX [182], OmicsAnalyst [181], Merge-
omics 2.0 [180] and TIMEOR [179]. After the pre-processing step,
integrative analysis is usually performed to systemically discover
underlying, complex biological mechanisms. Depending on the
principle applied, integrative methods can be categorized into
multivariate, similarity, correlation, network, fusion and Bayesian
approaches [203]. The widely used R package mixOmics [204]
provides a number of multivariate methods for multi-omics data
integration, including principal component analysis (PCA), canon-
ical correlation analysis (CCA), partial least squares (PLS), MINT

[205] and DIABLO [206]. Besides data integration, network anal-
ysis can be used to reveal the association, interaction, and even
causation between pairs of omics features. One common and
simple approach is correlation network analysis, which calculates
the association between biological features in a pairwise manner.
Another popular network analysis approach is based on dimen-
sion reduction techniques, such as PCA and PLS, to compress the
information into a limited number of feature combinations. Web-
based platforms such as 3Omics [184] and OmicsAnalyst [181]
offer correlation network analysis, whereas xMWAS [177] and
PaintOmics 3 [178] provide dimension reduction-based network
analysis. Recently, a novel tool TIMEOR [179] was developed to
uncover the causal regulatory mechanism networks by analyzing
time-series multi-omics data. For gene set or pathway enrichment
analysis for multi-omics data, the R package multiGSEA [185]
and many other aforementioned platforms can complement the
need of such analysis. Table 2 summarizes the functionality of
a non-exhaustive list of workflows for different types of multi-
omics data.

Lastly, ML techniques have also been applied to multi-omics
integration, to gain insights into molecular mechanisms. For
example, with the combination of multi-omics data and ML-based
network models, researchers identified chemical compounds
modes of action, which cannot be found using single-omics
data [207]. The integration of RNA-Seq data and information on
copy number alterations with the application of unsupervised
ML algorithms (autoencoder and K-means clustering) can also
generate new features, and this has been illustrated by research
associated with ultra-high-risk neuroblastoma [208]. Overall, the
application of ML on multi-omics analysis is still in its inchoate
stage and we refer interested readers to [209] for a comprehensive
review on this topic.

Results
To demonstrate the typical RNA-Seq analysis process and evalu-
ate the effect of reference genome databases, DE methods, and
enrichment analysis methods, we re-analyzed murine data pre-
viously published in the literature [56]. This dataset contains
three replicates from Foxp3+CD4+ T regulatory (Treg) cells and T
follicular regulatory (TFR) cells, respectively. The reads quality was
checked with FastQC prior to downstream analysis. The overall
flowchart of the RNA-Seq analysis is presented in Figure 1 and
additional detailed steps can be found in Supplementary S14.

Evaluation
The DEGs can be selected based on a somewhat arbitrary cutoff
for the P-value, adjusted P-value, or log-fold change, or even
selected from the list of the top ranked genes. To assess different
choices, we first considered the genes with an adjusted P-value <

0.05. As shown in Figure 2a, a total of 6247, 6268 and 6202 DEGs
were identified by edgeR using Ensembl, GENCODE and UCSC
database, respectively; likewise, 6255, 6289 and 6286 DEGs were
identified by DESeq2, and 5612 genes were identified regardless of
databases and DE methods. When the significant DEGs generated
by different methods with the same reference genome were com-
pared, approximately 5% of genes identified by edgeR (4.32–5.46%)
did not show statistical significance when DESeq2 was used, and
vice versa (5.56–5.72%). When the gene lists generated by the same
DE method with different databases were compared, a total of
6572 and 6626 distinct DEGs were identified by edgeR and DESeq2,
respectively, with 5879 and 5924 of which were common among
databases. In addition, the results from Ensembl and GENCODE

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac529#supplementary-data
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Figure 4. Comparison of top 10 up-regulated hallmark gene sets using GSEA with input pre-ranked gene lists from the combinations of different reference
genome databases (Ensembl, GENCODE and UCSC) and DE analysis methods (edgeR and DESeq2), along with the latest reference genome (mm39). The
solid line indicates a hallmark gene set and the rank is based on the NES.

were more consistent than that of UCSC, as the former two gene
lists shared additional 368 and 328 genes using edgeR and DESeq2,
respectively. Next, instead of setting a cutoff for DEGs, we selected
the top 100 ranked DEGs based on their P-values (Figure 2b). A
total of 121 distinct genes were included and 82 of them were
ranked among the top 100 DEGs regardless of databases and
DE methods. There were 11 and 9 genes exclusively presented
in the top ranked lists using edgeR and DESeq2, respectively.
Using the latest mm39 reference genome from GENCODE with
DESeq2, 6353 genes passed the cutoff of p-value of 0.05, of which
6261 genes were also identified in mm10 reference genome (data
not shown), suggesting that the impact of different versions of
reference genome database on DEGs discovery might be minor.

Using the same gene list for GSEA, we showed that the
enriched gene sets varied according to different ranking functions
(Figure 3). When the results were evaluated based on the
presence/absence of the top 10 enriched gene sets, identical
results were observed when signal-to-noise and t-test statistic
were applied to rank the input gene list. These results were also
comparable to that using log-to-ratio with Jaccard similarity
J = 0.82. The top 10 gene sets derived from the pre-rank list
were similar to those from signal-to-noise, t-test and log-to-
ratio functions with J = 0.67. The difference and ratio functions
generated relatively distinct patterns though, with J = 0.15 ± 0.06
(mean ± SD) and J = 0.33 ± 0.14, respectively. When considering
the FDR of the five ranking functions, 9 out of the top 10 enriched
gene sets passed the recommended FDR cutoff of 25% using
ratio, signal-to-noise and t-test functions, whereas no single gene
set was below the FDR cutoff using difference and log-to-ratio
functions. These results clearly demonstrate that, even when the
input gene list was the same, the enriched gene sets’ output might
still be distinct when different ranking functions are applied.

Next, we compared the outputs of the same enrichment anal-
ysis method (here, pre-ranked GSEA) with six DE gene lists gener-
ated from three reference genome databases and two DE methods.
Ranked according to the NES, the top 10 enriched gene sets were
identical (Figure 4), albeit the rank for each gene set was slightly
different between datasets, accounting for up to 5% of DE gene

difference between each dataset. Notably, the top three enriched
gene sets remained the same regardless of the reference genome
databases or DE methods. In addition, the top 10 enriched gene
sets identified by pre-ranked GSEA with gene list from mm39
were also found in the analysis using mm10, despite the slight
discrepancy of ranking order between each other. This result
suggests that, despite reference genome databases and DE meth-
ods, with the same enrichment analysis method and parameters,
consistent output despite different ranking order can be obtained.
Note, however, that we only tested two DE methods that rely on
the same assumptions.

Using multiple pathway enrichment analysis methods, a total
of 62, 32 and 5 enriched pathways were identified by DAVID, limma
and GSEA, respectively. When pairwise comparing the enriched
pathways, we found 18, 2 and 1 shared pathway(s) in common
between DAVID and limma, DAVID and GSEA, and limma and
GSEA (Figure 5), respectively. Only one pathway (phosphatidyli-
nositol signaling) was found by all the three methods. Overall, the
results show the distinct over-representation patterns among the
enrichment analysis methods using the same dataset.

Conclusions
RNA-Seq has become ubiquitous for studying the gene expression
and transcript identification of cells or organisms. Transcrip-
tomics methods are still under active development and compu-
tational theories, analysis pipelines and integrated databases are
continuously proposed. In this review paper, we first provided a
detailed introduction to RNA-Seq analysis steps from raw reads to
functional enrichment analysis, for both coding and non-coding
RNAs. Next, we summarized the recent advances related to ML
in RNA-Seq, metatranscriptomics, integrative multi-omics and
ncRNA-Seq technologies. Lastly, by analyzing a real-world data
with different analysis options, we demonstrated that the results
can be unintentionally impacted by the choice of methods.

Although the reference genome annotations were slightly
different among databases, and different DE methods were used,
similar DEGs were identified in our analysis. This slight difference
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Figure 5. Treemap showing the KEGG pathway enrichment analysis using (A) DAVID, (B) limma’s kegga function and (C) GSEA. Each rectangle represents
a single KEGG pathway, and the pathways are clustered and colored based on BRITE hierarchies. The uncolored (white) rectangle indicates the pathway
is not significantly enriched; namely, that it does not pass the FDR q-value threshold of 0.05 for DAVID and limma, and 0.25 as suggested by GSEA.

affected the statistical significance of the enriched pathways
but, overall, the same enriched pathways were captured by
using GSEA regardless of the source of the reference annotation.
The consistent results can be partly attributed to the use of
similar assumptions and normalization approaches in edgeR and

DESeq2. Other RNA-Seq normalization approaches with different
assumptions are available, and they can largely affect the
downstream analysis and engender inflated false positives
if chosen unwisely [210]. That said, reporting the version
information of reference database and software is still important
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for transparency and reproducibility [211]. In addition, we showed
that GSEA, one of the most popular enrichment analysis methods,
can yield completely different gene sets from the same input
gene list due to the choice of ranking functions, which is based
on different statistics and assumptions. For example, the default
ranking function of GSEA (i.e. signal-to-noise) assumes normal
distribution of data without outliers, and the statistical power
diminishes when the assumptions are not met [212].

We also addressed differences depending on the choice of the
enrichment analysis approach. We have demonstrated that, by
using the same gene list with different analysis methods, almost
non-overlapping pathways can be obtained. This is expected
as competitive methods (which consider all genes in the list,
such as GSEA) are generally more conservative compared to
self-contained methods (which consider only genes in the gene
set of interest, such as the method implemented by DAVID)
[213]. However, there is no consensus about the best practice
of enrichment analysis for a given RNA-Seq experiment [214].
Mathur et al. [213] evaluated the run time and statistical power
of GSEA and three other enrichment analysis methods by
using simulated gene sets with different proportions of DEGs,
and GSEA was recommended as one of the most powerful
methods. Yet another study [215] found that, compared with
self-contained methods, competitive methods tend to have low
reproducibility in terms of gene sets they found; on the other
hand, that self-contained methods, especially those applying
multivariate statistics, have a better performance in terms of false
positive controls, statistical power, robustness to sample size and
reproducibility. Geistlinger et al. [216] has provided guidelines for
the choice of gene set enrichment methods based on the input
gene lists and question of interest.

Overall, we described in detail the most popular RNA-Seq
analysis options and, instead of providing a gold standard or
best practice for RNA-Seq analysis, we pinpointed the differ-
ences that may raise due to selected methods. Researchers thus
need to cautiously interpret the clinical or biological relevance
of the statistically significant features derived from choice of
analysis methods and, wherever possible, conduct experimental
validation after RNA-Seq analyses, which also holds true for
scRNA-Seq.

Key Points

• This manuscript explains RNA-Seq analysis from start
to end including current popular software options and
their similarities, differences, advantages and disadvan-
tages.

• We present a comprehensive summary of RNA-Seq tech-
nologies and applications, including non-coding RNA
analysis, multi-omics, meta-transcriptomics and use of
artificial intelligence-aided methods.

• We show how different RNA-Seq results may be obtained
according to selected computational methods. Overall,
results need to be cautiously interpreted and validated.
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